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ABSTRACT

Be it their pervasiveness, experimental tractability or their impact on human health and agriculture, nematode–bacterium
associations are far-reaching research subjects. Although the omics hype did not spare them and helped reveal
mechanisms of communication and exchange between the associated partners, a huge amount of knowledge still awaits
to be harvested from their study. Here, I summarize and compare the kind of research that has been already performed on
the model nematode Caenorhabditis elegans and on symbiotic nematodes, both marine and entomopathogenic ones. The
emerging picture highlights how complementing genetic studies with ecological ones (in the case of well-established
genetic model systems such as C. elegans) and vice versa (in the case of the yet uncultured Stilbonematinae) will deepen
our understanding of how microbial symbioses evolved and how they impact our environment.
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“The environment is the soul of things”
from “The Book of Disquiet” by Fernando Pessoa

INTRODUCTION

With the turn of the millennium, the application of high-
throughput sequencing techniques to environmental microbi-
ology revealed not only that every functional biological system
is literally bathing in microbes, but also that these and the mac-
robes (as science philosopher John Dupre graphically refers to
multicellular organisms in his Processes of Life: Essays in the Phi-
losophy of Biology. Oxford University Press, 2012). are massively
interconnected. Therefore, we can no longer proclaim animals
and plants as autonomous entities. Instead, we must regard
them as ‘holobionts’, that is, as biomolecular networks includ-
ing their associated microbes (Rosenberg et al. 2007; Borden-
stein and Theis 2015). A postmodern synthesis of evolutionary
biology (Koonin 2009; Jablonka and Lamb 2014) must therefore
take into account that natural selection acts on polygenomic en-
tities (‘hologenomes’), that these are epigenetically connected

(Liang et al. 2013; Asgari 2014; Knip, Constantin and Thordal-
Christensen 2014) and that most genomic entities are likely
not transmitted vertically but horizontally (i.e. environmentally;
Bright and Bulgheresi 2010).

Nematodes exist in marine, freshwater and terrestrial
ecosystems, as well as in plants and animals and may sig-
nificantly modify them. The experimental tractability or, alter-
natively, their applied importance have promoted their use in
several research areas, including symbiology, immunology and
ecology. This is also because many mechanisms underlying sta-
ble nematode–bacterium associations are conserved and may
therefore provide insights into other systems that affect human
well-being such as the gut microbiota. The most-studied nema-
tode, Caenorhabditis elegans, is a terrestrial nematodewhose rela-
tionships with bacteria are predatory (Brenner 1974), defensive
(Tan and Shapira 2011) and symbiotic (Portal-Celhay and Blaser
2012; Cabreiro and Gems 2013). Its long experimental history
and genetic tractability have made C. elegans a very convenient
workhorse to investigate numerous biological processes (Blax-
ter 2011; Xu and Kim 2011), including bacterial pathogenesis

Received: 9 September 2015; Accepted: 7 January 2016
C© FEMS 2016. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the
original work is properly cited.

1

http://www.oxfordjournals.org
mailto:silvia.bulgheresi@univie.ac.at
http://creativecommons.org/licenses/by/4.0/


2 FEMS Microbiology Ecology, 2016, Vol. 92, No. 2

and host immunity (Irazoqui, Urbach and Ausubel 2010; Tan
and Shapira 2011; Pukkila-Worley and Ausubel 2012). This body
of work also has facilitated the advancement of studies of
hardly (or not at all) cultivable and genetically non-tractable
nematodes such as marine ones coated with thiotrophic
bacteria (Stilbonematinae), terrestrial insect-killing nematodes
associated with Xenorhabdus and Photorhabdus bacteria, and par-
asitic filarial nematodes colonized by intracellular Wolbachia
symbionts (Bulgheresi 2011;Murfin et al. 2012; Dillman et al. 2012;
Slatko et al. 2014; see Fig. 1 for drawings of the three nematodes
groups discussed here).

C. ELEGANS: A WEALTH OF GENETICS BUT
HARDLY ANY ECOLOGY

As poetically phrased in the epigraph to this perspective, and as
Petersen and colleagues have reiterated in their timely review
(2015) ‘any in-depth understanding of biology requires consid-
eration of the relevant natural context’. Suspiciously, the lack
of knowledge about the abiotic and biotic factors free-living
C. elegansmust cope with parallels our unawareness of the func-
tion of most of its genes, with almost 70% still lacking validated
functional annotation. This is ironic given that C. elegans was
the first multicellular organism to have its complete genome
sequenced (The C. elegans Sequencing Consortium 1998). More-
over, both its genome sequence and structure have been sub-
sequently confirmed (e.g. Gerstein et al. 2010; Lamm et al. 2011;
Vergara et al. 2014), and the model nematode subjected to many
genetic screens (e.g. Lejeune et al. 2012; Roy et al. 2014). Although
less staggering in other model organisms (e.g. Drosophila), this
situation suggests that only by studying living things in their
habitats and as holobionts we will understand the function of
many orphan genes in their life cycle and evolution (Rosenberg
et al. 2007; Bordenstein and Theis 2015). More or less diverse mi-
crobial communities likely mediated the origin of multicellular
organisms and accompanied them throughout their evolution
until present (Alegado et al. 2012; Brock et al. 2013; Bordenstein
and Theis 2015). These microbiota can remain stable after years
of laboratory cultivation, influence nutrient metabolism, confer
pathogen resistance and affect development (McFall-Ngai et al.
2013). In the wild, C. elegans inhabits rotting plants, and carries
significant amounts of undigested microbes in its gut (Félix and
Braendle 2010; Félix and Duveau 2012). However, their potential
importance is largely ignored, as inside the labworms are reared
on lawns of the uracil auxotroph Escherichia coli mutant strain
OP50, and sterilized by sodium hypochlorite (Stiernagle 2006).
If we are starting to acknowledge the importance of consider-
ing C. elegans’ interactions with non-pathogenic, naturally oc-
curring microbes, it is mostly its reaction to standard, cultivable
microbes that has been analyzed so far. Although some of these
are medically relevant for being human pathogens, we still do
not know if C. elegans can encounter them in the wild (Cabreiro
and Gems 2013; Clark and Hodgkin 2014). Only rare studies have
ventured beyond using the model worm gnotobiotically and ad-
dressed the role of naturally associated microbes, revealing dis-
tinct types of interactions, from deleterious, pathogenic ones
involving bacteria, fungi and a virus (e.g. Troemel et al. 2008;
Hodgkin et al. 2013), to beneficial, immunoprotective ones such
as those with Bacillus megaterium and Pseudomonas mendocina
(Montalvo-Katz et al. 2013). Despite these sparse data, system-
atic analysis of the C. elegansmicrobiota is still lacking: How sta-
ble is it in aworm lifetime andhowmuch is conserved across dif-
ferent worm populations? Which functional gene categories are

expressed by themicrobiota and how have these influencedma-
jor life history characteristics, and what effect have they had on
host evolution?Which worm genes are required for establishing
and maintaining a healthy microbiota? In short, if model taxa
were originally chosen for their undisputable advantages as lab-
oratory systems, we now urgently need to complement this re-
ductionist approach by performing ecological studies (Félix and
Braendle 2010; Petersen, Dirksen and Schulenburg 2015).

STILBONEMATIDS: SOME ECOLOGY BUT
NO GENETICS

Almost the opposite is true for stilbonematid nematodes, which
can be regarded as ‘naturally gnotobiotic’ systems for which cul-
tivation and genetic tools need to be developed fastly. In stark
contrast to C. elegans, live specimen of these far less handy ne-
matodes has been studied exclusively at their collection site,
mainly at the Caribbean marine station of Carrie Bow Cay, Be-
lize. Stilbonematinae do not only thrive in tropical shallow-water
sand, but here their accessibility is the highest as they abound
throughout the year. Astonishingly, each individual of a given
worm species is naturally coated by one phylotype of thiotrophic
Gammaproteobacteria in a one-to-one (binary) relationship (Ott,
Bright and Bulgheresi 2004a,b). As the thiotrophic bacteria are
‘simply’ stuck to the host surface, these associations are referred
to as ectosymbioses. Notably, Stilbonematinae are the only mac-
robes known to invariably establish binary ectosymbioses. Be-
side this distinguishing quality, the fact that the partners can
be easily separated from one another makes Stilbonematinae an
excellent system for dissecting themolecular base of symbiosis-
specificity. Indeed, both host-secreted and microbe-associated
molecular patterns can be recombinantly expressed or chemi-
cally synthesized and their role in partners’ attachment directly
tested (as for the lectins discussed below). Studying how the
high level of host-symbiont specificity evolved in a ‘naturally
gnotobiotic’ nematode can confirm or complement the knowl-
edge gained from C. elegans. This, too, as already said, naturally
bears a multispecies microbiota. However, if the individual con-
tribution of a given gut resident is to be dissected out, themodel
host must be reared germ free or experimentally sterilized and
reinfectedwith one bacterial strain of choice. But there is one ad-
ditional distinctive quality ofmarine nematode–bacteriumasso-
ciations: strikingly, also the symbiont spatial disposition on the
host surface is exact and faithfully transmitted from one gener-
ation to the next (Ott, Bright and Bulgheresi 2004a,b).

Bacterial epithelia, ropes and furs

How are the stilbonematid symbionts arranged on their host
surface? Laxus oneistus and Robbea hypermnestra nematodes are
covered by a single layer of rod-shaped bacteria tightly packed
with one another and standing perpendicularly to the worm’s
surface as to form a columnar epithelium. The L. oneistus sym-
biont is the first bacterium ever shown to divide longitudinally
by default, but it is unclear if it is the host who triggers this
anomalous division mode (Leisch et al. 2012). The filamentous
ectosymbionts of Eubostrichus fertilis and E. dianeae, instead, are
attached to the worm cuticle with two or one pole(s), respec-
tively (Polz et al. 1992; Pende et al. 2014). The first divides by
symmetric transverse fission at virtually any length between 4
and 45 μmand forms a bacterial coat resembling a braided rope.
The second one is the longest (up to 120 μm) bacterium known
to divide by transverse fission and forms a bacterial coat re-
sembling a fur. We currently do not know why the symbionts



Bulgheresi 3

Figure 1. Life cycles of C. elegans (top) and of an entomopathogenic nematode (bottom), and nematode symbiont localization in C. elegans (top right), three stilbonematid
nematodes (center), and two entomopathogenic nematodes belonging to the genera Steinernema and Xenorhabdus (bottom right). L1-L4: larval stages 1–4; d: dauer;
J1-4: juvenile stages 1–4; E: embryo; EPN: entomopathogenic nematode. Nematodes and bacterial symbionts sizes are approximate and given in μm. Sketches by Silvia
Bulgheresi and Aldo Giannotti.
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divide unconventionally or what is the function of a given sym-
biont arrangement, assuming it is an adaptive trait. As for the
host side, a distinctive character unifying all Stilbonematinae is a
system of unique epidermal organs called glandular sense or-
gans (GSOs) (Bauer-Nebelsick et al. 1995). In at least two stil-
bonematids, GSOs likely mediate symbiosis establishment and
maintenance as they secrete the Mermaids, a family of Ca2+-
dependent lectins that mediates ectosymbiont aggregation and
attachment to the cuticle (Bulgheresi et al. 2006, 2011). Although
all omics-subjected nematodes were found to express C-type
lectins (Murfin et al. 2012) and although C. elegans turns on or up-
regulates its corresponding genes in response tomicrobial infec-
tions (Schulenburg et al. 2008; Bogaerts et al. 2010; Miltsch, See-
berger and Lepenies 2014; Kamaladevi and Balamurugan 2015),
the stilbonematid Mermaids were the first and until very re-
cently (Miltsch, Seeberger and Lepenies 2014), the only C-type
lectins shown to bind bacteria. But marine nematode lectins do
not only provide a molecular basis to symbiosis specificity. They
also testified how the study of naturally occurring nematode–
bacterium associations can help solving societal problems: re-
combinant Mermaid was indeed shown to block—among other
pathogens (Zhang et al. 2006, 2008; Mittal et al. 2009; Yang et al.
2015)—HIV-1 virus infection of human cells (Nabatov et al. 2008).

Why dressing up?

If the exquisite selectivity of the stilbonematid immune system
can clearly teach us a lot, what do we know about the part-
ners’ mutual benefits and about the environmental factors that
favored the evolution of stilbonematid symbioses? Ecological
studies performed in the 90s suggest that stilbonematids troph-
ically depend on their ectosymbionts, and these, in turn, profit
from nematode migrations through the sulfide gradient in the
marine sediment (Ott et al. 1991). All the molecularly identified
ectosymbionts belong indeed to the marine oligochaete and ne-
matode thiotrophic symbiont (MONTS) cluster, which comprises
16S rRNA-gene sequences retrieved from gammaproteobacte-
rial sulfur oxidizers associated with these invertebrates, as well
as sequences of environmental origin (Polz et al. 1994; Bayer
et al. 2009; Bulgheresi et al. 2011; Heindl et al. 2011; Pende et
al. 2014). The closest cultivable relatives of MONTS members
are free-living purple sulfur bacteria (Chromatiaceae). Beside the
16S rRNA-gene-based phylogenetic placement, the autotrophy
of the symbionts is supported by uptake of 14C bicarbonate
(Schiemer, Novak and Ott 1990) and by the presence of RuBisCo
enzymatic activity (Polz et al. 1992). As for the symbiont sulfur-
oxidation capability, it is supported by the ATP sulfurylase and
sulfite oxidase enzymatic activities, by the presence of elemen-
tal sulfur in symbiotic but not in aposymbiotic L. oneistus (Polz
et al. 1992), and by the cloning of the symbiont aprA gene, en-
coding the alpha subunit of adenosine-5-phosphosulfate reduc-
tase (Bayer et al. 2009). Moreover, metabolic studies suggest res-
piratory reduction of nitrate and nitrite (Hentschel et al. 1999).
Although recently gained genomic data support all the afore-
mentioned metabolic pathways, in addition to ammonia assim-
ilation, it is unclear how symbiont-synthesized organic com-
pounds are transferred to the host or how the host and symbiont
Nmetabolisms are intertwined (Murfin et al. 2012). Besides nutri-
tion, several observations point to an additional role of the bac-
teria in detoxifying their host’s environment: at high sulfide con-
centrations, Stilbonematinaemay indeed better tolerate heat than
non-symbiotic nematodes (Ott 1995). Moreover, Hentschel et al.
(1999) showed that freshly collected stilbonematids have much
lower internal sulfide and thiosulfate concentrations than cooc-

curring non-symbiotic nematodes, indicating that thiotrophic
symbiont coats may provide an efficient barrier against sulfide
poisoning. Despite the already performed ecological studies, we
still need to determine the exact physical-chemical parameters
and microbial communities characterizing the habitats of the
different stilbonematid species (e.g. back-reef versus mangrove
shallow-water sediment). Especially in view of the fact that no
thiotroph symbiont has been enriched or isolated in the labora-
tory so far, this information could spur symbiont cultivation.

Despite the fact that Stilbonematinae have only been observed
alive right upon sampling (or fixed, upon sampling and stor-
age), numerous key questions still tantalize us: why do differ-
ent host species—even within the same microhabitat—coexist
each one carrying its own specific bacterial phylotype? Why
are different bacterial phylotypes morphologically different and
why are they arranged in different, host-specific spatial dispo-
sitions, which are transmitted from generation to generation?
What is the ecological and evolutionary significance of a spe-
cific ‘symbiosis outfit’? Does it favor vertical transmission of
those symbionts that cannot survive free living? Nematodes car-
rying filamentous symbionts are more abundant in sulfide-rich
mangrove sediments than in sulfide-poor back-reef sediments
(J.A.O., pers. comm.): Is Eubostrichus symbiont filamentation nec-
essary to allow its host to tolerate a sulfide-rich environment? I
hope that by applying comparative transcriptomics, proteomics
andmetabolomics between different species, or between nema-
todes thriving in different habitats, or carrying different kinds of
symbiont coats, wewill elucidatewhether each symbiont spatial
disposition serves a specific, host-symbiont metabolic network,
evolved, in turn, as adaptation to a given habitat. Following
the identification of molecules or molecular pathways, inactiva-
tion of host candidate genes to confirm their function might be
achieved using the CRISPR/Cas9 system. This was successfully
employed in Pristionchus pacificus and might therefore become a
powerful tool to determine gene function in non-Caenorhabditis
nematodes (Witte et al. 2015). Further, if some symbiont genomic
data and host transcriptomic data are already available (Murfin
et al. 2012), the genome sequence of at least the best studied stil-
bonematid, L. oneistus, would greatly ease the interpretation of
high-throughput data. Filarial parasitic nematodes are as refrac-
tory to lab practice as stilbonematids but complete genome se-
quences of both Brugia malayi, which causes lymphatic filariasis,
and its Wolbachia endosymbiont are already available (Foster et
al. 2005; Ghedin et al. 2007) and have facilitatedmicroarray, tran-
scriptomic and proteomic studies that pinpointed fundamental
aspects of these pathogenic nematode–bacterium associations
(Murfin et al. 2012; Slatko et al. 2014).

THE PERFECT MIDDLE

Entomopathogenic nematodes (EPNs) occupy the perfect mid-
dle between C. elegans and stilbonematids: they are experimen-
tally tractable but, at the same time, much is known about
how they shape the populations of plants and host insects
(Campos-Herrera et al. 2012; Murfin et al. 2012; Hussa and
Goodrich-Blair 2013). At least two genera of nematodes, Stein-
ernema and Heterorhabditis, have evolved symbiotic associations
with Gammaproteobacteria, Xenorhabdus and Photorhabdus respec-
tively that enable them to kill insects and feed on their car-
casses (Dillman and Sternberg 2012; Dillman et al. 2012). A spe-
cialized infective stage of EPNs vectors the symbionts within
the intestine and releases them upon invasion of an insect
host. There, the bacteria mediate insect killing and digestion,
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and protect the carcass from opportunists. Once the insect re-
sources are consumed, the EPN offspring develop into the col-
onized infective stage and emerge to hunt for a new insect
host (Herbert and Goodrich-Blair 2007; Clarke 2008). Luckily,
in both types of associations, bacteria and nematodes can be
cultivated independently or together, and molecular genetic
techniques are available for the bacteria and, in some cases,
for the nematodes (Ciche and Sternberg 2007; Goodrich-Blair
2007; Clarke 2008). This technical tractability has enabled the
use of EPNs and bacteria as models of mutualism, virulence,
evolution, behavior and ecology (Clarke 2008; Ram et al. 2008;
Adhikari et al. 2009; Bode 2009; Richards andGoodrich-Blair 2009;
Eleftherianos et al. 2010; Hallem et al. 2011; Bashey et al. 2012).
Furthermore, since these nematode–bacterium complexes are
pathogenic toward a wide range of insects, an additional goal
in studying EPNs is improving their employability in insect pest
control (Stock 2005). In particular, investigators are focusing on
identifying EPNs traits associated with insect host range and
successful parasitism to help improve their field efficacy, and on
identifying EPN symbiont products with insecticidal properties,
efforts facilitated by sequencing of both bacterial and nema-
tode genomes (Duchaud et al. 2003; Ciche 2007; Wilkinson et al.
2009; Chaston et al. 2011; Dillman,Mortazavi and Sternberg 2012;
Bai et al. 2013).

CONCLUSIONS

In closing, I hope that the marriage of ecological knowledge
and experimental tractability will soon be stipulated and con-
tracted in as many nematode–bacterium systems as possi-
ble. Their study is of fundamental importance to test existing
symbiosis theory (Douglas 2008), including how symbionts en-
able their hosts to conquer oligotrophic environmental niches,
how symbionts evade or tolerate host immunity, how they
are transmitted between generations and how symbiosis im-
pacts the evolution of an organism. On one hand, it is impor-
tant to look at model worms in their natural environmental
and microbial milieu and, on the other hand, to develop the
necessary tools [e.g. cultivation techniques, genetic platforms
(Kumar et al. 2012) and manipulation] for mechanistic explo-
rations of less-user friendly ones. Comparison among different
systems is critical to nail conserved, fundamental molecular
mechanisms.
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