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Abstract: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has resulted in significant morbidity and mortality across
the world, with no current effective treatments available. Recent studies suggest the possibility
of a cytokine storm associated with severe COVID-19, similar to the biochemical profile seen in
hemophagocytic lymphohistiocytosis (HLH), raising the question of possible benefits that could be
derived from targeted immunosuppression in severe COVID-19 patients. We reviewed the literature
regarding the diagnosis and features of HLH, particularly secondary HLH, and aimed to identify
gaps in the literature to truly clarify the existence of a COVID-19 associated HLH. Diagnostic criteria
such as HScore or HLH-2004 may have suboptimal performance in identifying COVID-19 HLH-like
presentations, and criteria such as soluble CD163, NK cell activity, or other novel biomarkers may be
more useful in identifying this entity.

Keywords: COVID-19; SARS-CoV-2; natural killer cells; cytokine storm; hemophagocytic lymphohis-
tiocytosis; macrophage activation syndrome

1. Hemophagocytic Lymphohistiocytosis

Hemophagocytic lymphohistiocytosis (HLH) is a potentially life-threatening disorder
characterized by uncontrolled activation of cytotoxic T cells, natural killer (NK) cells and
macrophages which results in the hypersecretion of cytokines and immune-mediated
organ damage [1,2]. Clinical presentation includes; fever, splenomegaly, coagulopathy,
liver dysfunction, cytopenias, hypertriglyceridemia, hyperferritemia, hemophagocytosis,
neurologic dysfunction and diminished NK cell activity [1–3]. It is classically subdivided
between primary (familial or lymphoproliferative disorder) and secondary (acquired) HLH,
affecting children and adults, respectively.

Familial HLH is divided into four subtypes based on the gene affected by mutation [4].
Mutations of PRF1, UNC13D, STX11 and STXBP2 result in impaired granule mediated cy-
totoxicity by natural killer (NK) or cytotoxic T cells [4]. Effective cytotoxicity is essential for
the control of infection, as well as regulation and termination of the immune response [5,6].
The PRF1 gene was the first to be associated with familial HLH, and accounts to up to
58% of familial HLH [7,8]. PRF1 encodes perforin, lower levels of which result in de-
creased natural killer cell cytotoxicity and reduced effector cell lysis due to impaired pore
formation [7,8]. The genes UNC13D, STX11 and STXBP2 encode vesicle priming and
fusion proteins, the loss of which results in impaired cytotoxic granule exocytosis [9–12].
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Lymphoproliferative disorders caused by mutations in BIRC4 or SHD21A are associated
with an increased sensitivity to Epstein–Barr virus (EBV) infection, often leading to the
development of HLH [13].

Secondary HLH is associated with hematological malignancies, viral infection, and
rheumatic disease, with the latter being termed as macrophage activation syndrome
(MAS)) [1,14–17]. Ramos-Casals et al. detailed 2197 adult HLH cases between 1974
and 2011 and identified HLH associated with an infectious trigger in 50.4%, malignant
trigger in 47.7%, autoimmune trigger in 12.6% and an unknown trigger in 3.7%. Nearly
one third of cases had more than one underlying cause [18]. Hematologic malignancies
such as lymphomas, T/NK-cell disorders, acute leukemias, lymphoproliferative diseases,
and myelodysplastic syndrome, are the most common triggers of malignancy derived
HLH [1,14,19]. Interestingly, EBV is a frequent co-trigger affecting 24% of patients and
88% of patients during chemotherapy [19,20]. Chemotherapeutic triggers cell lysis and
necrosis, resulting in a release of IL-5, IL-13, IL-10, IL-6, TNF-α, IFN-γ and IL-1β, further
potentiated by tumor infiltrating lymphocytes [21,22]. Chemotherapy can also increase un-
derlying single nucleotide polymorphism or subclinical mutation leading to development
of HLH [21,23,24].

Macrophage activation syndrome is a subset of secondary HLH in the context of
autoimmune disease, with systemic lupus erythematosus most frequently reported, fol-
lowed by adult-onset Still’s, rheumatoid arthritis and vasculitis [18]. Pathogenesis of MAS
is attributed to a patient’s underlying immune activity with studies showing elevated
pro-inflammatory cytokines, most notably IL-6, IL-1β and IL-18 [25–27]. Genetic predis-
position and a potential infectious triggers can initiate the development of macrophage
activation, resulting in the expansion and activation of T cells, particularly CD8 cytotoxic
T-cells [1]. Activated T-cells release IFN- γ, that in turn further stimulates activation of
macrophages [1]. Natural killer cell dysfunction also contributes to this process in that
deceased function has both an effect of reduced ability to remove viral triggers and reduced
immunomodulatory effect on CD8 T-cell IFN-γ expression [15,28,29]. NK cells are divided
into CD56BRIGHT and CD56DIM subsets, with CD56DIM demonstrating higher cytotoxic
activity and perforin expression. On the other hand, CD56BRIGHT cells demonstrate higher
cytokine production (notably IFN-γ, TNF-β, granulocyte macrophage-colony-stimulating
factor, IL-10 and IL-13), playing a more immunoregulatory role and only becoming cyto-
toxic when activated [30,31]. While the relationship between CD56BRIGHT and CD56DIM

is controversial, the CD56BRIGHT NK cell subset is diminished in both MAS and HLH, as
is cytotoxicity [32,33].

Epstein–Barr virus (EBV) is a ubiquitous virus that infects nearly all people worldwide
without serious sequelae. It is however recognized as the leading cause of infection-
associated HLH, with other herpes viruses also playing a prominent role. Without early and
effective therapy, EBV-HLH has a high mortality rate, frequently due to multiorgan failure.
EBV-HLH can result from (1) HLH development secondary to EBV infection, in apparently
EBV-immune individuals, (2) EBV infection where there is a genetic predisposition for
lymphoproliferative disease (BIRC4 or SHD21A), (3) chronic active EBV infection, and
(4) aggressive NK cell leukemia, and T/NK cell lymphoma [34–36].

Influenza viruses have also been associated with the development of HLH; influenza
B, H1N1, H5N1, H3N2 have all seen cases of HLH, though the presentation is often varied
with ineffective cytotoxicity, elevated ferritin levels, thrombocytopenia and in rare instances
the development of lethal multi-organ failure syndrome being observed [37–39]. Ebola
virus infection has been shown to bare striking resemblance to HLH and MAS, with the
presence of fever, cytopenia, hypofibrinogenemia, low NK cells levels and in particular
hyperferritinemia which was shown to be associated with hemorrhage and death [40,41].
Although rare in occurrence, human immunodeficiency virus (HIV) should also be consid-
ered when the cause of HLH is not apparent [42]. While less frequent, bacterial, parasitic
and fungal infections have also been reported to trigger infection-associated HLH [18].
Infection-associated HLH have been demonstrated to have elevated IFN-γ, s-IL-2r, IL-6,
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IL-10 and IL-18, as well as higher frequencies of CD8 T cells suggesting similar profiles
to MAS [43,44]. Studies comparing non-infectious versus infectious causes of HLH have
demonstrated significantly lower mortality rates in the infectious cohorts [45,46].

2. Clinical Criteria for HLH

As the clinical features of HLH frequently mimic septic shock syndrome, the diagnosis
of HLH, particularly in adults, is challenging and prompt verification is pivotal to ensure
early and rapid treatment in this rapidly progressing disorder [47–49]. Though the first
reported case of HLH was described in 1952, the diagnostic guidelines for HLH were
first put forth 39 years later by the familial hemophagocytic lymphohistiocytosis (FHL)
study group of the Histiocyte Society, which comprised of five criteria including fever,
splenomegaly, bicytopenia, hypertriglyceridemia (≥3.0 mmol/L) and/or hypofibrinogene-
mia (≤1.5g/L), and hemophagocytosis [50,51]. In 1994 the first prospective international
treatment protocol (HLH-94) was introduced [50]. These guidelines were updated in 2004,
which expanded on the existing five criteria, adding low or absent NK cell activity, hy-
perferritinemia (≥500 µg/L) and elevated soluble CD25 (soluble IL-2 receptor [sIL-2r])
(≥2400 U/mL). Five of the eight criteria are required to make the diagnosis of HLH,
unless patients have a molecular diagnosis of an underlying genomic defect known to
cause FHL [8,52].

While the HLH-2004 criteria were widely used, limitations existed in that they were
proposed in the context of pediatric populations and did not differentiate primary HLH
from secondary disease. As such, the HScore was developed and validated in the diagnosis
of reactive HLH in 2014. The HScore incorporated nine variables, including features of im-
munosuppression, fever, organomegaly, hypertriglyceridemia, hyperferritinemia, aspartate
transaminase (AST), hypofibrinogenemia, cytopenias and presence of hemophagocytosis
on bone marrow aspirate. Scores range between zero and 337, with the probability of
HLH being <1% with an HScore of <90 points and >99% with an HScore of ≥241 points.
An HScore of 169 has a reported sensitivity of 93%, a specificity of 86%, and accurate
classification of 90% of patients [53].

The clinical and laboratory findings utilized by the HLH-2004 and HScore are re-
flective of the proinflammatory state that is the hallmark of HLH. Fevers are a result of
high concentrations of IL-1 and IL-2, with macrophage and T-cell proliferation result-
ing in organomegaly [1,54]. Cytopenias are caused by cytokine-mediated inflammation,
particularly involving high levels of TNF-α and IFN-γ [55]. Hypertriglyceridemia is a
consequence of TNF-α secretion and its inhibitory effects on lipoprotein lipase, which
hydrolyzes triglycerides for use by muscle and adipose tissues [56,57]. Higher triglyc-
eridemia is noted in HLH patients compared to patients with sepsis [58]. Ferritin is an iron
storage protein and an acute phase protein triggered by the release of IL-1 [59]. Increasing
autophagy associated with HLH degrades ferritin and increases cellular iron, accumulat-
ing reactive oxygen species leading to cell death, also known as ferroptosis [60]. While
HLH-2004 criteria established a ferritin cut off of ≥500 mg/L, the HScore criteria utilizes
a higher lower limit cut off of <2000 mg/L, with additional points for ranges ≥2000 and
≤6000 mg/L, as well as >6000 mg/L [52,53]. While ferritin is an acute phase reactant, its
concentration in sepsis is notably lower compared to those in secondary HLH, vasculitis
and other rheumatic diseases [58]. Fibrinogen is also an acute phase reactant often elevated
in sepsis, but is low in HLH. Hypofibrinogenemia in HLH is caused by plasminogen
activators released by activated macrophages, increasing plasmin concentration, leading
to increasing cleavage of fibrinogen [61]. Hypofibrinogenemia must be interpreted in the
context of platelet count and coagulation profiles, which may suggest a component of
disseminated intravascular coagulation, a known complication of HLH that is associated
with increased mortality [45,46,62].

Due to the overlap in clinical features between sepsis and HLH, HLH is often undiag-
nosed in patients who are affected by both conditions, an occurrence that is not unusual
in viral infection [47,49,63]. The treatment strategies for these conditions differ, and an
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accurate diagnosis is essential in critically ill patients. Multiple studies have suggested
that reducing the number of diagnostic criteria for HLH may lead to earlier diagnosis and
improved prognosis [63–65].

3. NK Cell Activity, Soluble IL-2 Receptor and Soluble CD163

While the diagnosis of HLH (through the HScore or the HLH-2004 criteria) can be
made without biomarkers such as NK cell activity, s-IL-2r and soluble CD163, various
studies (Table 1) have demonstrated the utility of decreased NK cell activity, increased s-IL-
2r levels and increased soluble CD163 levels in primary and secondary HLH. As a result of
these studies, s-IL-2r and decreased NK cell activity were added to the HLH-2004 criteria.

Table 1. Summary of published findings for NK activity, soluble IL-2 receptor and CD163 in primary and secondary causes
of HLH.

Decreased NK Cell Activity Soluble IL-2 Receptor
(Soluble CD25) CD163

Primary

Perez et al. 1984 [66]
Sullivan et al. 1998 [67]
Kogawa et al. 2002 [68]

Schneider et al. 2002 [69]

Komp et al. 1989 [70]
Imashuku et al. 1995 [71] Gao et al. 2019 [72]

Malignant Konjević et al. 1999 [73]

Bien and Balcerska 2008 [74]
Zhang et al. 2011 [75]
Tsuji et al. 2014 [76]

Hayden et al. 2017 [77]

Sadaat and Jang 2018 [78]

Infectious

National Research Project for
SARS, BG. 2004 [79]

McElroy et al. 2019 [80]
Cimini et al. 2017 [81]

Guo et al. 2011 [82]
Schulert et al. 2016 [83]

Chellapandian et al. 2013 [84]
McElroy et al. 2019 [80]
Hofmann et al. 1991 [85]

McElroy et al. 2019 [80]
Beltran et al. 2014 [86]
Burdo et al. 2011 [87]

Wiedemann et al. 2020 [88]
Hasegawa et al. 2013 [89]

Autoimmune Grom 2004 [15]
Vastert et al. 2010 [90]

Bleesing et al. 2007 [91]
Hayden et al. 2017 [77]
Witkowska et al. [92]

Bleesing et al. 2007 [91]
Sakumura et al. 2018 [93]

Nishino et al. 2019 [94]

The primary functions of NK cells include their ability to eliminate virally infected cells,
as well as their role in downregulating the systemic inflammatory response by killing acti-
vated inflammatory dendritic cells, monocytes, and T cells [95,96]. Decreased NK cell num-
bers and effector functions are associated with a multitude of conditions, including ageing,
atherosclerosis, autoimmunity, hematologic malignancies and viral infection [81,82,97–102].
Decreased NK cell activity has been established in both primary and secondary forms of
HLH [15,29,66–69,73,79,80]. Zhang et al. developed a flow cytometry-based assay for the
detection of NK cell activity and evaluated 113 HLH patient and 64 healthy volunteer
samples. They found that the mean NK cell activity in HLH was significantly lower than
in healthy controls (20.23 ± 4.12%), and that primary HLH (10.76 ± 2.54%) could also be
distinguished from secondary HLH (15.01 ± 3.62%) [103].

In the context of infection-associated HLH, decreased NK cell activity has been demon-
strated in infections including, but not limited to, EBV, CMV, Ebola virus and in severe acute
respiratory syndrome-related coronavirus (SARS-CoV-1), the causative pathogen in the
2002–2004 SARS outbreak [29,43,79,80]. NK cell activity is decreased in HLH, particularly
with regard to loss of both cytolytic activity as measured by degranulation, and by IFN-γ
production [15,69], the importance of which is highlighted by the fact that patients with
influenza and systemic juvenile idiopathic arthritis that developed severe HLH more fre-
quently carry mutations in genes implicated in NK cell cytotoxicity [83,90]. The interlekin-2
receptor (IL-2R, CD25) is primarily secreted by activated T-helper lymphocytes, but is
also expressed by B cells, granulocytes and NK cells [104–106], the release of soluble IL-2r
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(sIL-2r) reflecting the activation of the immune system [70,71,74–77,91]. An interesting
feature of sIL-2R is its ability to bind IL-2 with an affinity similar to that of the form present
on the cell surface, suggesting it may have an immunosuppressive function [92,107]. sIL-2r
is considered a reliable biomarker for disease activity in inflammatory disorders, and is
included in the HLH-2004 criteria. In the HLH-2004 criteria, a cut off of ≥2400 U/mL was
created for the diagnosis of HLH. In children this cut-off is reported to be 93% sensitive
for HLH and is more sensitive than elevated ferritin [52]. Unfortunately, elevated sIL-2r
can also be seen in autoimmune diseases, malignancies, viral infections (such as HIV
and Ebola), as well as cardiac damage [76,80,91,108,109], which means adults levels are
likely to be higher. sIL-2r is elevated in primary HLH, MAS and septic shock. In HLH
the medians have been reported to be consistently higher than the proposed cut off, with
medians ranging between 2963 and 21,500 U/mL [58,84]. This is in contrast to sepsis in
which medians range between 3000 and 4250 U/mL [84]. In adults there is some overlap
in sIL-R2 levels between HLH and sepsis and in particular lymphoma when considering a
cut off of ≥2400 U/mL. Hayden et al. noted that the cut-off best optimizing specificity and
sensitivity in diagnosing HLH is 2515 U/mL (sensitivity, 100%; specificity, 72.5%) and a cut
off of >10,000 improved specificity to 93% [77].

CD163 is a cortisol-regulated monocyte and macrophage specific surface glycoprotein,
the extracellular portion of which circulates in blood as a soluble protein (sCD163) [110].
Inflammatory stimuli trigger sCD163 cleavage and subsequent systemic release from mono-
cyte/macrophage cell membranes, signaling macrophage activation [94,110]. sCD163 has
been linked to obesity, sepsis, insulin resistance and type 2 diabetes mellitus [111]. sCD163 has
been investigated as a biomarker for infection-associated HLH and MAS [72,91,93,94,112],
though it is not included in HLH-2004 criteria or HScore. Elevated sCD163 has been
linked to disease severity and mortality in viral infections of Ebola, HIV and Influenza
and intriguingly these viruses are also associated with the development of HLH [80,86–89].
Levels of sCD163 were measured in severe sepsis patients by Feng et al. which showed
a peak median of 4190 ng/mL on day 5 of intensive care unit admission, Bleesing et al.
showed sCD163 levels in patients diagnosed with autoimmune-associated MAS to be
23,000 ng/mL, and Sadaat and Jang, indicated a level of 6384 ng/mL in a malignancy-
related MAS patient [78,91,113]. Several studies have also compared directly the sCD163
levels seen in septic patients, with or without HLH. These studies demonstrated that
septic patients who meet HLH-2004 criteria, have higher sCD163 levels compared to septic
patients not meeting HLH-2004 criteria [112,114]. Further Gao et al. provided evidence
that sCD163 could be used to distinguish primary HLH from MAS [72]. The study by
Cui et al., however, found that the area under the ROC curve (AUC) for ferritin combined
with sCD163 was superior to the AUC for either ferritin or sCD163 for distinguishing
sepsis-associated hemophagocytic lymphohistiocytosis from sepsis [114].

4. COVID-19: Secondary HLH, Sepsis or HLH-Sepsis Overlap?

Coronavirus disease 2019 (COVID-19) is a disease caused by the severe acute res-
piratory syndrome coronavirus-2 (SARS-CoV-2), of which to date there have been over
25 million infections and over 800,000 deaths [115]. Severe COVID-19 shares distinct clini-
cal and laboratory features with the four entities termed “hyperferritinemic syndromes”,
including macrophage activation syndrome (MAS), adult-onset Still’s disease (AOSD),
catastrophic anti-phospholipid syndrome (CAPS) and septic shock [116–118]. One of the
most prominent features of SARS-CoV-2 infection [119–121] is the presence of a severe
inflammatory signal resulting in a cytokine release syndrome ranging from pyrexia to
severe clinical manifestations such as multi-system organ failure, acute respiratory distress
syndrome (ARDS), and death [117,122–124]. Excessive cytokine release has been described
in up to 20% of COVID-19 cases, and is reminiscent of the ARDS and secondary HLH
observed in patients with SARS-CoV-1 and MERS-CoV [123,125,126]. Older age, comorbid
conditions, elevated body mass index, lymphopenia, and elevated levels of C reactive
protein (CRP), lactate dehydrogenase (LDH), D-dimer, ferritin, and sIL-2r have been associ-
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ated with intensive care unit (ICU) admission and death [121,124,125,127–130]. COVID-19
patients display high levels of both inflammatory cytokines and chemokines (IL-1a/β,
IP-10, MCP-1), with severe cases showing elevation in TNFα, IL-1, IL-6, IL-18, IL-8, IL-10,
MCP-1 and MIP-1A [119,124,127,131,132]. These findings highlight the possibility of an
HLH-sepsis overlap triggered by COVID-19. Furthermore, a high incidence of thrombotic
complications has been described in ICU patients [133–135], on average approximately
30% of these patients developed venous or arterial thromboembolic disease which can
progress to potentially lethal disseminated intravascular coagulation (DIC). Coagulation is
intricately linked with inflammation, in particular elevated levels of the pro-inflammatory
cytokine, Interleukin 6 (IL-6) and C reactive protein (CRP) are known to downregulate
natural anticoagulants, the resultant increase in coagulation in turn further increases in-
flammatory responses [136]. Intriguingly, it has been suggested that secondary CAPS may
be involved in the development of thrombosis in COVID-19 patients [137], and indeed
lupus anticoagulant (LA), antiphospholipid (auto) antibodies (aPL-Abs) and β2 glyco-
protein 1 (β2-GP1) autoantibodies have been identified in COVID-19 patients [138–141].
David and Shoenfeld, also highlighted that the anosmia suffered by a high percentage of
patients [142–144], could be related to autoimmunity [145].

Differentiating sepsis from an HLH-sepsis overlap syndrome is difficult in that fea-
tures of HLH can often be found in patients with sepsis, and severe sepsis has been shown
to be an early manifestation of HLH in multiple studies [63,64]. Due to the radically dif-
ferent treatment approaches, early diagnosis and prompt immunosuppressive treatment
are vital for favorable patients’ outcomes. Currently, with no effective therapy for severe
COVID-19, being able to identify a subset of patients with an HLH-sepsis overlap syn-
drome would support the need for further studies investigating the possible benefit of
immunosuppressive therapies. The need for caution is, however, emphasized, in particular
considering the experience gleaned from the 2002–2004 SARS outbreak. The SARS-CoV-1
virus was highly aggressive, with around 20–30% of patients requiring intensive care and
an overall fatality of approximately 15% [146,147]. The SARS outbreak ultimately affected
more than 8000 patients and caused 774 deaths in 26 countries, with its lethal nature
prompting early attempts at treating severe disease with immunosuppressive agents such
as antiviral agents including ribavirin, protease inhibitors, intravenous immunoglobulins
(IVIg), interferon alpha and corticosteroids. While SARS was relatively short-lived, ul-
timately negating the need for a globally distributed vaccine, retrospective analyses of
these treatment methods showed inconsistency in the treatments for SARS-CoV-1. Studies
analyzing these treatments were later shown to be inconclusive and even had possibly
harmful effects [148].

Mildly symptomatic SAR-CoV-2 infections generally cause a release of pro-inflammatory
cytokines at lower levels than severe disease which is self-limited as a defense response is
mounted against the virus. Use of dexamethasone, a generalized anti-inflammatory agent,
remains the intervention with the strongest evidence of efficacy in such patients [149]. In
patients with severe disease, loss of immune mediation and subsequent cytokine storm
leads to initial lung epithelial damage, ARDS and other organ damage, with end stage
disease increasingly being recognized as an endothelial injury with subsequent widespread
vascular leakage and thrombosis; a process mediated by IL-1, IL-6 and TNF-α [150,151].
IL-1 induces leukocyte adhesion and reduces VE-cadherin production, impeding endothe-
lial barrier function leading to vascular leakage [150,152]. IL-1 also promotes IL-6, which
increases fibrinogen and decreases plasminogen activator inhibitor-1, promoting a pro-
thrombotic, antifibrinolytic environment [151]. Increasing concentrations of TNF-α has
been shown to induce depolymerization of F-actin, an important component of the cy-
toskeleton, to monomeric G-actin, compromising the endothelial barrier and stimulating
intercellular gap formation [153]. Naturally, given this pathophysiology of progression to
severe disease, targeted immunosuppression has become of great interest in COVID-19.

New studies continue to be published for targeted immunosuppression including IL-6
inhibition with tocilizumab and IL-1 inhibition with anakinra. As in the case of tocilizumab,
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we continue to see varying results, with an early retrospective cohort study suggesting
possible reduction in risk of invasive mechanical ventilation or death in severe COVID-19
patients and a subsequent randomized, double-blind, placebo-controlled trial suggesting
tocilizumab as not effective in preventing intubation or death in moderately ill COVID-19
patients, and being unable to rule out possible harmful effects [154,155]. Similarly, anakinra
was demonstrated to be associated with clinical improvement in non-ICU, COVID-19
patients with ARDS in a retrospective cohort and demonstrated to reduce need for invasive
mechanical ventilation in the ICU and mortality among patients with severe COVID-19 in
a prospective cohort study [156,157]. A recent randomized controlled trial, however, has
shown that anakinra did not improve patient outcomes in patients with mild to moderate
COVID-19 pneumonia [158].

While tocilizumab and anakinra have shown varying results, with randomized trials
not showing efficacy, these medications have been shown to be effective in the treatment of
secondary HLH, with tocilizumab being effective in drug-induced HLH, while anakinra
is the treatment of choice in macrophage activation syndrome [26,159]. Other treatments
in secondary HLH include non-targeted immunosuppression with IVIg, as well as B-cell
depletion with rituximab, particularly in EBV or other virus-related HLH [160]. IVIg is
thought to have an immunomodulatory effect by inhibiting complement activation and
neutralizing cytokines. While IVIg has not been robustly studied in COVID-19, a similar
mechanism is proposed in the use of convalescent plasma acquired from individuals who
had recovered from COVID-19 in the treatment of COVID-19 patients, with the thought that,
in addition to the immunomodulatory effect of immunoglobulins, that existing antibodies
would act to neutralize the virus. Unfortunately, convalescent plasma has been shown
to be ineffective in multiple randomized controlled trials, and the presence of anti IFNα

autoantibodies in survivors of severe COVID-19 may result in an unwanted decrease in
host antiviral response [161–163]. Lastly, the use of rituximab in the treatment of EBV-
related HLH has been established and is thought to be effective in that EBV resides in
B-cells and subsequent B-cell depletion reduces EBV load and inflammatory response [84].
Perceived problems for rituximab in COVID-19 patients are twofold. Firstly, COVID-19 is
not known to reside within B-cells. Secondly, B-cell depletion has the potential to impact
antibody formation against SARS-COV-2, whether it be through natural acquisition or
through vaccine administration [164].

Beyond targeted immunosuppression, drugs that target upstream mechanisms are of
interest in COVID-19. Phosphodiesterase inhibition (PDEi) has been proposed as a potential
treatment option for COVID-19 infection, as phosphodiesterase enzymes decrease cyclic
guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) and
promote cytokines such as TNF-α. Inhibition of PDE induces inhibition of proinflammatory
mediators (PDE4/5), deceleration of lung fibrotic changes (PDE4), and inhibition of platelet
aggregation (PDE3) [165]. To our knowledge, PDEi has not been evaluated in HLH and its
role in secondary HLH is unknown, although mutations of the perforin gene involving
cyclic nucleotide phosphodiesterase activities has been identified in familial HLH [166].
Another drug of interest in COVID-19 infection is fingolimod, a non-selective agonist
of sphingosine 1-phosphate receptor, known to inhibit IL-1α, IL-1β, IL-6, IL-10, MCP-1,
TNF-α and GM-CSF [167]. Similarly to PDEi, fingolimod has not been evaluated in HLH,
and interestingly, has been reported to not preclude the development of HLH secondary
to HSV-2 [168].

Several studies have been published to date that identify clinical features in severe
COVID-19 patients such as elevated IL-2, IL-6, TNF-α and IFN-γ, that can resemble the
cytokine profile seen in HLH [169–171]. On the other hand, NK cell activating cytokines
(IL-12, IL-15, and IL-21), usually elevated in HLH, have been shown to be lower in severe
COVID-19 patients [130]. However, to identify and differentiate a true HLH-sepsis overlap
secondary to COVID-19 from COVID-19 triggered septic shock absent HLH, additional
biomarkers would be required.



Int. J. Mol. Sci. 2021, 22, 2967 8 of 16

The diagnosis of HLH, whether utilizing the H-Score or HLH-2004 criteria, is made
based on clinical and laboratory findings characterized by markedly elevated ferritin,
splenomegaly, cytopenias, hypofibrinogenemia, and elevated triglycerides. In adults, these
criteria are not always met, and a more tailored reduced criterion may be of benefit [63–65].
This is evident in COVID-19 patients, where although an excessive cytokine reaction is
evident, many of them do not fulfill the HLH criteria. A prospective study by Lorenz
et al. assessed HScores and a modified HLH-2004 criterion in 19 severe COVID-19 patients
admitted to ICU, found a median HScore of 122, in the absence of confirmed presence
of hemophagocytosis on bone marrow aspirate and a median HScore of 157, if assumed
positive bone marrow aspirate criterion [172]. Notably, Prilutskiy et al. performed autopsies
on four confirmed COVID-19 patients which showed evidence of hemophagocytosis
within pulmonary hilar/mediastinal lymph nodes but none of these patients showed
hemophagocytosis in the bone marrow [173]. Of the 19 patients studied by Lorenz et al.,
only one patient reached a threshold >169 in the absence of the bone marrow aspirate
criterion and six patients reached a threshold >169 if the bone marrow aspirate criterion was
assumed positive [172]. Clark et al. retrospectively reviewed 152 patients with polymerase
chain reaction confirmed COVID-19 patients and demonstrated a median HScore of 52,
with the majority of patients not reaching sufficient thresholds for an HLH diagnosis,
although notably, many variables were missing including 46 patients who did not have
ferritin levels and no patients having bone marrow biopsies collected [174]. These studies
raise the question of the utility of the HScore in COVID-19 patients and highlight a need
for more specific, accessible means of identifying HLH.

As a result, more useful biomarkers present in HLH such as low NK cell activity
and markedly elevated sIL-2r may be useful in identifying these patients [175]. Indeed,
Osman et al. showed that that NK cell numbers are decreased in severe COVID-19 patients,
and that CD56DIM cells are reduced and CD56BRIGHT cells elevated. The reduced cytolytic
function was further emphasized by lowered expression of CD107apos cells [130]. They
also showed that the significantly elevated levels of sIL-2r in these patients was inversely
correlated with NK cell number. In addition, continued monitoring of these parameters,
particularly hyperferritinemia and sIL-2r may be useful in evaluating response to therapies
such as immunomodulation, and/or anti-viral therapies, as has been demonstrated in
malignancy-associated HLH [74]. While soluble CD163 is not a feature of either the
HScore or HLH-2004 criteria, its value as a diagnostic and prognostic biomarker in sepsis-
associated HLH has been demonstrated in a different patient population [114]. Future
studies investigating these parameters in severe COVID-19 patients are required to clarify
the existence of a COVID-19-associated HLH and their utility in COVID-19.

5. Conclusions

Coronavirus disease 2019 is a disease that can lead to potentially life-threatening multi-
organ failure with recent studies suggesting a cytokine storm, similar to the biochemical
profile seen in HLH. As the diagnosis of HLH often includes non-specific clinical and
laboratory findings, future studies including more useful biomarkers such as low NK cell
activity, markedly elevated s-IL-2r and markedly elevated soluble CD163 may help to
identify the existence of a COVID-19-associated HLH and may guide clinical trials using
immunosuppressive therapy in these patients.
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NK Natural Killer
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