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Abstract: Asian countries have abundant resources of natural fibers, but unfortunately, they have
not been optimally utilized. The facts showed that from 2014 to 2020, there was a shortfall in meeting
national demand of over USD 2.75 million per year. Therefore, in order to develop the utilization
and improve the economic potential as well as the sustainability of natural fibers, a comprehensive
review is required. The study aimed to demonstrate the availability, technological processing, and
socio-economical aspects of natural fibers. Although many studies have been conducted on this
material, it is necessary to revisit their potential from those perspectives to maximize their use. The
renewability and biodegradability of natural fiber are part of the fascinating properties that lead
to their prospective use in automotive, aerospace industries, structural and building constructions,
bio packaging, textiles, biomedical applications, and military vehicles. To increase the range of
applications, relevant technologies in conjunction with social approaches are very important. Hence,
in the future, the utilization can be expanded in many fields by considering the basic characteristics
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and appropriate technologies of the natural fibers. Selecting the most prospective natural fiber for
creating national products can be assisted by providing an integrated management system from
a digitalized information on potential and related technological approaches. To make it happens,
collaborations between stakeholders from the national R&D agency, the government as policy maker,
and academic institutions to develop national bioproducts based on domestic innovation in order to
move the circular economy forward are essential.

Keywords: natural fibers; socio-economic assessment; technological aspects; sustainability; renew-
able resources

1. Introduction

Scientists, researchers, and practitioners around the world have recently been working
to maximize the potential of natural fibers to create the most sustainable, biodegradable,
and high-quality natural fiber products [1–3]. Natural fibers, which are renewable and
ecologically acceptable sources of raw materials for producing environmentally friendly
products, have played a significant part in human civilization [1]. Natural fibers have
many advantages over synthetic fibers, including lower density, lighter weight, lower cost,
biodegradability, minimal health hazards during processing, abundant availability and
ease of availability, low investment at low cost for production, lower energy requirements,
and lower CO2 emissions, indicating that they have great potential as a substitute for glass,
carbon, or other synthetic fibers. Natural fibers are desirable bio-sourced materials as an
alternative to non-sustainable glass and carbon fiber reinforced composites owing to their
availability and technical viability.

From the physical and mechanical properties point of view, natural fiber has relatively
high tensile strength and Young’s modulus, good thermal, good acoustic insulation charac-
teristics, and high electrical resistant [1–8]. Furthermore, chemical properties of natural
fibers, such as high cellulose content, have a strong relationship with tensile properties,
crystallinity, and density [1,7]. Notwithstanding, natural fibers have some drawbacks
that need to be enhanced, such as low impact strength, non-uniformity in quality and
price, poor moisture resistance, low durability, low compatibility, low adhesion efficiency,
moisture absorption, and poor wettability [9–14]. Therefore, to achieve adequate uses and
overcome some natural fiber limitations such as biocompatibility and hydrophilic proper-
ties, appropriate technologies should be applied for instance by surface modifications and
chemical treatment methods [3].

Natural fibers have been successfully applied to a wide range of applications, for
instance, furniture, automotive, electronic industries, and building construction. According
to Ahmed et al., the wear resistance of Areva javanica fiber brake pads is 16% higher than
acrylic fiber-based brake pad; hence, the A. javanica fiber can be used as a possible substitute
for synthetic acrylic fiber-based disc brake pads [15]. One example in the automotive sector
is the utilization of hybrid kenaf-glass reinforced epoxy composite for passenger car bumper
beams [16]. Chandramohan and Bharanichandar [17] also develop natural fiber reinforced
polymer composites for automobile accessories and conclude that one of the best materials
is the hybrid of sisal and rosella. Plastic/wood fiber composites are used in a variety of
applications, including decks, docks, window frames, and molded panel components [18].
Furthermore, corn husk fiber/polyester composites have also been used as sound absorbers
to replace glass fiber composites [19].

According to all the development technologies and the availability of natural fibers
mentioned above, the utilization of natural fibers can improve economic growth and
the well-being of citizens. Industries that use natural fibers as a raw material provide
a major source of revenue. Various studies have already been conducted on the use
of natural fibers, namely, as reinforced composites in biomedical applications [20–22],
automotive devices [23], aerospace [24], and textile resources [25]. This study provides
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more information about the potential of Indonesian natural fibers from technological and
socio-economical aspects.

2. Overview on Natural Fibers

The most common classification for natural fibers is from botanical forms. Natural
fibers can be classified into five types [26]: Other forms include (1) bast fibers (for example
abaca, sisal, pineapple), (2) leaf fibers (such as ramie, flax, kenaf), (3) seed fibers (coir,
cotton, and kapok), (4) grass and reeds (wheat, corn, and rice), and (5) wood and roots. A
more comprehensive list of fiber classifications can be found in Figure 1. A variety of fibers
are produced by several plants. For example, jute, flax, hemp, and kenaf have both bast
and core fibers, whereas agave, coconut, and oil palm have both fruit and stem fibers. Both
stem and hull fibers can be found in cereal grains [27].
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The musa plants (Musa acuminata) are native to the South-East Asia and belong to
the Musaceae family [6,28,29]. This plant produces biomasses that are categorized as
useful materials with high fiber materials, such as bunches, pseudo-stems, leaves, and
stalk [30]. Banana is widely available in tropical countries such as Malaysia and South
India [31]. It is the fourth most important crop in developing countries [32]; meanwhile,
tropical and subtropical countries also have sufficient natural resources [6,28,29]. However,
approximately 88.84% of the waste with a high fiber content was discarded [33]. The tree
becomes waste after one season of fruit harvesting and cutting it allows for the growth of
new plants [34]. After the banana trees have been cut down, they are dried and processed
to extract the fiber [34,35]. High low elongation at break, light weight, good fire resistance,
strong moisture absorption, low density, high tensile strength, and modulus are some of
the advantages of banana fiber [36].

Abaca (Musa textilis) fiber is classified as leaf fiber in some classifications, but it is
classified as a stem fiber in others, especially those derived from pseudo stem [37]. This
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plant grows to a height of 4.5 to 7.5 m and has a stem diameter of 12.5 to 20 cm. The stem
was surrounded by a tangle of large, piled-up fronds. Fibers with a width and length of
12.5 to 30 cm and 1.5 to 2.5 m, respectively, are found in the leaf fronds [38]. The abaca
fiber has high tensile strength and is resistant to banding and sea water. The position of the
frond on the stem influences its fiber quality, with the outer part being stronger than the
inner part. Additionally, abaca fiber has excellent flotation properties [38]. Abaca is widely
planted in Talaud, North Sulawesi, and from this location, five local superior varieties were
released in October 2019 [39].

Pineapple leaf fibers (Ananas comosus L. Merr.) are one of the waste materials available
in South East Asia, India, and South America that has not been fully explored [40]. In
addition, after Philippines and Thailand, Indonesia contributes 23% of pineapple produc-
tion. Almost all of Indonesia’s regions have ideal tropical climates for growing pineapple
plants. On the other hand, the pineapple plantation needs more development by applying
superior varieties and appropriate cultivation techniques [41]. These plants grow in moist
and dry climates, as well as tropical and subtropical regions [42]. However, these plants
tend to grow at temperatures between 18–45 ◦C and at altitude below 800 mdpl, due to high
altitude and extreme temperatures influencing the size and quality of pineapple plants [40].
With a fiber yield of 1.55% to 2.5% [43], pineapple leaf fibers could become a new source of
raw material for industries [40], such as polymer composites reinforcement [42], and could
also be used to replace synthetic fibers [40,43]. Additionally, they have a softer texture than
other vegetable fibers [43], as well as a high strength and smooth surface [42].

Bamboo is a type of lignocellulose material from the grasses (Graminae) family that
has a wide range application as a potential fiber source. Bamboo fiber is a type of natural
fiber that aligns in longitudinal directions, according to Zakikhani et al. [44] and Wang and
Chen [45]. After India and China, Indonesia is ranked the third place in bamboo produc-
tion [46]. Bamboo has the highest productivity [47], is easy to grow, and harvests quickly
when compared to other non-wood forest products [48,49]. Indonesia has 160 bamboo
species, 88 of which are endemic [50]. Betung bamboo (Dendrocalamus asper (Schult.f)) is
one of the most common species in Indonesia [51]. Betung bamboo has better fiber mor-
phology and physical–chemical properties compared to the other species, followed by the
yellow bamboo (Bambusa vulgaris Scharader ex Wendland), andong bamboo (Gigantochloa
pseudoarundinaceae (Steud) Widjaja), tali bamboo (Gigantochloa apus (Schutz)), and black
bamboo (Gigantochloa atroviolacea Widjaja) [52]. In the textile industry, this plant is used in
two ways: to produce natural (bast) fiber by physical and chemical treatment and to spin
regenerated (pulp) fiber through retting bamboo plant into pulp [53].

Cotton fiber (Gossypium sp.) is a type of fruit fiber that is used as a primary raw
material for textile, health, and beauty products [54]. The cotton production was about
2.558 tons, with a plantation area of 11.287 Ha [55]. Even though the domestic cotton
demand is increasing, the supply is not keeping up. Low cotton production and less farmer
interest in planting are to blame [56]. Cotton is classified into three classes based on the
length and smoothness of the fibers: long, medium, and short cotton fibers with lengths of
1.5, 0.5 to 1.3, and 0.3 to 1 inch, respectively [20]. Training on cultivation techniques and
the use of superior seeds are needed to increase cotton productivity [57].

Ramie (Boehmeria nivea S. Gaud) is a kind of compatible fiber, making it is simple to be
combined with a variety of other fibers [25]. Ramie is a fast-grown and branchless plant
that can reach a height of 1 to 2 m. The stem-extracted bast fibers are the strongest and
the longest natural bast fibers [58]. The productivity of ramie fiber is determined by the
stem’s height, diameter, skin thickness, and fiber yield (fiber content per stem). Since the
fiber production can be carried out every 2 months, harvesting is conducted 5 to 6 times
per year in tropical areas like Indonesia. China grass crude fiber contains around 2–4%
of fresh stalk, 1–3% of degummed fibers, and 1–2% of hemp top [59,60]. Furthermore,
ramie production is about 100 thousand tons per year, which is higher than abaca fiber
production, at about 70 thousand tons per year [61]. According to Soeroto [62], these plants
could grow in Indonesia’s middle to highland areas, with the highest productivity in the
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highlands (700 mdpl) from 2.5 to 3.0 tones/ha/year [63]. Ramie productivity per hectare is
much higher than cotton [64] and its fiber quality is higher than cotton with the color and
luster comparable to natural silk. Furthermore, ramie absorbs 12% of water while cotton
absorbs just 8% [65].

Sisal (Agave sisalana L.) is a good fiber-producing plant that can be grown on dry land
and is resistant to soil with a high salt content [66]. Because of its ease of cultivation and fast
renewal times, sisal fiber accounts for half of all textile production [67]. Indonesia produces
500 tons of sisal fiber per year, which is obtained from the plant’s leaves [61]. According
to Mukherjee and Satyanarayana [67], sisal plants can produce 200 to 250 leaves per year,
with each leaf containing 1000 to 1200 fiber bundles. Furthermore, each bundle contains
87.25% water, 4% fiber, 0.75% cuticle, and 8% dry matter. Sisal fibers are characterized by
their hardness, strength, and yellowish white color. Each leaf of 1000 fiber bundles contains
4% fiber [68], which has not been used to its full potential [37].

Coconut (Cocos nucifera) is a plantation plant that produces fiber from its fruit for use
in furniture, crafts, and probably polymer composite reinforcements [69]. Coir fiber can be
obtained from coconut, and it has the thickest, the most resistant, and the lowest decompo-
sition rate of all-natural fibers. It is ideal for rope production due to its high strength [70].
Fruit cultivation and pruning produce a significant amount of coir fiber [71,72]. Further-
more, coconut cultivation produces coir and pith, which account for around 35% of the
total weight of the crop [73].

Sansevieria is a genus of ornamental plants in the Agavaceae family that grows from
lowlands to highlands in the tropics and sub tropics [74]. This plant is xerofit with thick
leaves due to high moisture content [75] with a spherical, half-shaped leaf style round,
stiff as a blade, short curved, and sunken fleshy. The leaves have smooth and corrugated
margins, and the tips are tapered, pointy, and blunt [76]. In addition, fibers from Sansevieria
were extracted using the retting method [14]. It may be used as textile raw materials, an
absorbent of pollutants, and cancer cell inhibitor [76–80]. It is also used to treat diseases like
stomach pain, earaches, diarrhea, hemorrhoids, fungi, scabies infections [81], as well as for
anti-inflammatories, analgesics, antipyretics, antioxidants, and antimicrobial activity [82],
and as raw material for handicrafts [83].

Jute fibers (Corchorus capsularis and C. olitorius) are off-white to brown in color and
range in length from 1 to 4 m, which is obtained from the bast or skin of the plant. Jute
fibers with a large amount of cellulose, high tensile strength, and low extensibility could
be grown in 4 to 6 months. They have better fabric breathability, are free of narcotics or
odor, have strong insulating and anti-static properties, low thermal conductivity, and mild
moisture recovery. Jute fibers are appealing because they are biodegradable, recyclable and
environmentally friendly [84]. According to Suliyanthini [38], these fibers have very low
creep, are brittle, and have a coarse nature that limits the fineness of the yarn. Packaging,
sack material, tapestry coatings, electrical insulation, an industrial fiber for carpet coatings,
electrical, rigging, tarpaulin, roofing materials, automotive manufacture, and straps are
some of these fiber applications [38,85]. Because of broken hair that may cause food
contamination, jute fiber is not appropriate for certain forms of food [38]. Jute plants have
short, tall, straight stems with leaves at the top of the tree, and the fibers are derived from
them. The jute tree grows to a height of 1.5 to 4.8 m and has a stem diameter of 1.25 to
2.0 cm [38]. Furthermore, the retting method may be used to draw these fibers [86].

Kenaf fiber comes from the Hibiscus cannabinus L. plant stem, which has been grown
since 1979/1980 as part of the ISKARA (intensification of community sack community)
program [87]. These plants are adaptable and can be grown on a variety of surfaces,
including peat [88] and flooded soil [88,89]. Depending on the variety and growing climate,
kenaf productivity can range from 2.0 to 4.0 tons of dry fiber/ha [90]. It is an annual plant
with a stem diameter of 1.25 cm and a height of 2.5 to 3.75 m [38]. According to previous
records, India and Pakistan are the world’s top kenaf producers. Tropical and subtropical
climates with high humidity, heavy rain, and no strong winds are ideal for these plants.



Polymers 2021, 13, 4280 6 of 27

They thrive in loose, well-draining soil and are planted similarly to jute. They can be
harvested 4 to 5 months after they begin to bloom [38,91].

Bombix mori caterpillar cocoons are used to make silk fiber [35,92]. Due to its high
tensile strength, strong degree of resilience, elasticity, flexibility, biodegradation, and great
biocompatibility, it is considered a possible biomaterial that supports cell attachment and
proliferation [92–98]. Silk fibers are strong, smooth and crease resistant, with a high capacity
to absorb water. Furthermore, these fibers are used in the manufacture of women’s clothes,
socks, ties, and tissue engineering [35]. They are considered as the most desirable and
coveted fibers because of their relative rarity, unique luster, softness, and drape [99]. Wool
is the most essential animal fiber, and it is obtained from sheep, in either a staple or short
form. It contains keratin protein, lanolin (an external lipid), and a small amount of internal
wool lipid (about 1.5%) [100,101]. Clothing, sweaters, blankets, rugs, weaving, and knitting
all use wool as a raw material [35].

Collagen is a connective tissue extracellular matrix that is derived from the skin and
bones of animals and comprises 30% protein [102]. It is commonly used in biomedicine,
medicinal food, food and drug growth, and cosmetics [103]. It has been used as a home-
ostatic agent, bone tissue regeneration, membrane oxygenator, contraception (barrier
method), implant, and drug delivery system in biomedicine. In the cosmetics industry,
collagen is used as an emulsifier and foaming agent in the food industry, while in the field
of cosmetics, it becomes an active ingredient used to avoid the incidence of premature
aging (anti-aging) [103]. Chemical processes and the combination of both enzymatic and
chemical processes [104] have been used to isolate collagen (acid-soluble collagen and
pepsin-soluble collagen) [105]. To make certain products, collagen fibers in animal skin are
processed into leather through a tanning process [103]. Footwear, clothing, gloves, leather
goods, heavy leather, and upholstery are all made of leather [35].

Corn is the most common crop found in every region of many Asian countries. The
potential of corn plants in providing natural fiber is very high, such as the stems, leaves, and
skins of corn. Cornhusk fiber contains cellulose, hemicellulose, and lignin of 46.15%, 33.79%,
and 8.92%, respectively. The tensile strength value of corn husk fiber is 169.49 MPa, which
is higher than the tensile strength of glass fiber, which is 1.7–3.5 MPa [7]. Modification
of corn husk fiber using sodium hydroxide (NaOH) solution with a concentration of
0.5–8% is known to reduce the hydrophilic properties, and increase the crystallinity, tensile
strength, and thermal resistance of the fibers [7]. The addition of corn husk fiber to polymer
composites can increase the tensile strength, bending strength, and toughness properties of
the polyester composite [19,106]. Although immersed in water and exposed to ultraviolet
(UV) light, the mechanical properties of the corn husk fiber composite were still quite high
compared to the “pandan wangi” fiber-reinforced composite. In several previous studies,
this corn husk fiber composite was found suitable to be used as a substitute for wood,
soundproofing panels, and building materials [19,106]. Figure 2 shows some natural fiber
resources.
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3. Technological Perspective of Natural Fibers Processing

Temperature, humidity, height, growing site, local climatic conditions, season, and
harvesting are all factors influencing the quality and structure of natural fibers [39,107–109].
Handling method, storage period and condition, and harvested plant portion can all affect
fiber qualities [107–109]. Some of the elements should be closely monitored to acquire the
best fiber characteristics.

Natural fibers include kapok, ramie, pineapple, sansevieria, kenaf, abaca, sisal, and
coconut fiber, as well as bamboo [110]. Bamboo has a greater ultimate strength [111]
than other fiber bioresources like jowar and sisal, which may be tested in single unit
fiber or fiber-bundle tests. Practically, the last test is preferable because it is easier to
administer and yields faster findings [110]. The mechanical properties of fibers were also
influenced by their microstructure and chemical composition (cellulose, hemicellulose, and
lignin) [112], and the fiber-cross-sectional area became the key variable controlling the fiber
strength [110]. Aside from that, the extraction method and chemical treatment have an
impact on fiber tensile strength. Deka et al. [113] observed that alkali soaking increased the
tensile strength of Parthenium hysterophorus fiber.

According to De Farias et al. [114], cellulose content has a significant impact on tensile
strength and Young’s modulus. The lignin content, on the other hand, had an inverse effect
on those strength. Hemicellulose, pectin, and wax, like cellulose, play a role in specific
Young’s modulus. The moisture gain of fiber is related to the quantity of hemicellulose
and lignin [114]. Microfibril angle (MFA) has a negative and positive relationship with the
pectin and lignin content, as well as hemicellulose, respectively, while failure strain value
was affected by hemicellulose, lignin, and pectin content, respectively. Cellulose and pectin
have a positive effect on density, while wax has a negative effect. Based on this knowledge,
it is crucial to investigate the chemical composition of fiber as well as its mechanical and
physical qualities.

Glass fiber and natural fibers are extensively distributed, with glass fibers being non-
renewable and non-recyclable and natural fibers being the opposite. Natural fibers do not
abrade the machine and are not harmful to the lungs when inhaled. According to their
disposal viewpoint, glass fiber is a non-biodegradable material, whereas natural fibers are
the opposite. Natural fibers have lower tensile strength than synthetic fibers, but they have
several advantages, such as not being fractured during processing, equivalent stiffness,
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and specific strength to glass fibers [115]. They also have less Young’s Modulus and
density [116] as well as less energy, density, and cost consumption [117] than synthetic fiber.

To match the use of natural fiber, it was necessary to understand the physical-
mechanical properties. Natural fibers have porous qualities, which might make it is
difficult to estimate a realistic density. Glass fiber has a higher density of 2.4 g/cm3 than
natural fiber, which has a density of 1.2–1.6 g/cm3. As a result, it can be used to make
light-weight composites [58]. The increase in porosity has a proportionate relationship
with the lumen size and density of fiber [110]. Fiber bundle diameter tends to rise as
density decreases. The specific toughness of bananas, hemp, pineapples, and jute fibers
is high. Natural fibers are suitable as reinforcing components in composites because of
their unique specific stiffness and tensile strength. Fiber bundle diameter tends to rise as
density decreases. The specific toughness of bananas, hemp, pineapples, and jute fibers is
high. Natural fibers are suitable as reinforcing components in composites because of their
unique specific stiffness and tensile strength. Some of natural fiber, such as jute and sisal
fiber, have the potential to replace glass and carbon fibers [118] in composites that demand
a high strength-to-weight ratio and weight reduction in that application [119] due to their
ease of availability and low cost.

Ramie, sansevieria, pineapple, sisal, and kenaf had low strain (2–6%) but high stress,
while Cocos nucifera husk fiber had high stress (24%) but low strain [110]. Jute fibers dis-
played a similar pattern on the stress-strain curve of pineapple fiber [86]. Ramie bast fiber
has cellulose content (69–97%) and a low spiral angle (7–12%), as well as a high molecu-
lar weight (69–97%), resulting in good mechanical properties [120–124]. Sisal fiber also
possesses excellent porosity, tensile strength, bulk, folding strength, and absorbency [90].
Bast fibers were found to have low stiffness, but great strength and elongation, as well as
elastic recovery. These fibers are widely available, inexpensive, and function well [125].
The mechanical strength of pseudo-stem banana fiber was also discovered. The flexural
and tensile strength of glass fibers were enhanced when sisal or jute fiber were mixed
in [31]. The addition of hay fiber, milkweed fiber, kusha grass, and sisal fiber boosted the
tensile strength of polypropylene composite [126].

The principal constituents of lignocellulose, which included the cell walls, are cellulose,
hemicellulose, and lignin. Aside from that, ash, silica, pectin, waxes, and water-soluble
compounds [127–129] and oil [128,129] can be found in natural fibers. Plant growth
conditions, harvesting period, geographical considerations, and fiber extraction technology
all affect the chemical component within the same plant species [127]. To assure the quality
of the manufacturing process, the impact of various plant material properties must be
analyzed [130]. The fiber characteristic is determined by the angle of the microfibrils
and their placement within the cell wall [131]. Figure 3 depicts the position of chemical
components in the cell wall (a) and layer position in the secondary cell wall of a plant.
Cellulose uses lignin and pectin as glue to join with hemicellulose. The cellulose content of
cell wall increases from primary layer (S1) to secondary layer (S2), while the lignin content
decreases. Hemicellulose content is found in equal amounts in each layer. The S2 layer
is primarily responsible for the physical and mechanical strength of fibers. It has lower
microfibrillar angle, higher cellulose content, and contribute to improve fiber strength
properties [132,133].
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Harvesting method, plant age, sample position in plant, environmental growth condi-
tion, and extraction fiber methodology all play role in this diversity, as previously indicated.
Cotton linter, cotton, ramie, Mamordica charantia, flax, Henequen, and palmyrah are exam-
ples of natural fiber with a higher cellulose content than others. Because fibers with low
lignin and high cellulose content have high tensile strength, numerous factors might influ-
ence this number, and therefore the relationship is not necessarily linear. The crystalline
domains of cellulose have a substantial impact on the tensile strength, with more cellulose
crystallinity resulting in higher fiber strength. The position of lignin on biomass affects
tensile strength because it is wedged between cellulose and hemicellulose.

Some methods have been established in preparation of natural fiber which are sum-
marized in Table 1. Dew retting and water retting process are two common techniques
to separate the plant fibers that require about 14 to 28 days to degrade the waxes, pectin,
hemicellulose, and lignin [131].

Table 1. Preparation method for producing the extracted natural bast fibers.

Introducing Methods Advantages Disadvantages References

Dew retting

• Relative ecofriendly or less energy
process by using bacteria and moisture
in the plant for separating individual
fibers from the plant

• Common in areas with heavy night
dew and warm days, as well as areas
with water shortages.

• Excessive retting brings difficulties in
separating individual fibers or tend to
weak the fiber strength

• Required long processing time (2–3 weeks)
depending on climatic condition

• Obtaining dark fiber and poor quality

[15,136]
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Table 1. Cont.

Introducing Methods Advantages Disadvantages References

Water retting

• Produce fiber with high cellulose
content, which gives the fiber a higher
tensile strength

• Produce fiber with lower density
which is suitable for low weight
composite applications

• Duration of process for 7–14 days

• Need surface treatment as initial step to
increase the surface roughness

• High cost
• High water treatment maintenance

[17,137–143]

Mechanical extraction
• Produce a significant amount of

acceptable quality of fibers
• Short time process duration

• Damage fiber cell wall structures, resulting
in dislocations, kink bands or node that
have a negative impact on tensile
mechanical properties and may even
compromise composite performance

• High cost

[15,134,141]

Chemical treatment

• Produce fiber with high cellulose
content, higher tensile strength,
thermal stability, and crystallinity
index

• The surface roughness of the fiber
relatively good (based on SEM
analysis)

• Enhance the physicochemical
properties of the fibers

• Some chemical treatment waste can pollute
the environment [17,137–142]

Figure 3 depicts the structures of cellulose, lignin, and hemicellulose [134]. The
cellulose content of a plant is determined by its age and species. Cellulose has hexose
sugar with greater thermal stability than hemicellulose’s branched structure. It is made
up of a linear chain of glucose units linked together by (β (1→4) bonds with a high
degree of polymerization (DP). Cellulosic plant fibers have high moisture absorption
capacity and poor dimensional stability when exposed to water [144]. The hydrophobicity
and hydrophilicity of fibers, as well as their interaction with the matrix, may alter fiber-
matrix adhesion with natural fibers as reinforcement [145]. Different cell wall polymers of
lignocellulosic materials influence the degradability and properties of natural fibers [146].
Furthermore, cellulose affects natural fiber strength, but lignin prevents UV breakdown
and char production [1].

Hemicellulose, which has a low DP, is the third most abundant cell wall constituent of
lignocellulosic biomass after cellulose and lignin. As a result, this biopolymer dissolves
more quickly in the liquid fraction during biomass pretreatment. Pentose is the most
prevalent hemicellulose in non-wood plants, hence a larger concentration effects fiber
fibrillation, which raises the bonding potential of pulp sheets [147]. High hemicellulose
content improves fiber flexibility during paper sheet usage, allowing it to swell and expand
to a large surface area. The higher the crystallinity of cellulose, the less hemicellulose
present. As a result, a low hemicellulose content promotes cellulose in the amorphous
zone [148]. Thermal, biological, and moisture degradation, as well as absorption, are all
caused by hemicelluloses in natural fibers [146]. Hemicellulose material has a favorable
relationship with moisture sorption and biodegradation. In addition, hollow natural fibers
have a lower/lighter bulk density and contain more water. The degree of crystallinity,
orientation, swelling behavior, tensile strength, and porosity of fibers are all affected by
their moisture content. As a result, the higher the moisture absorption, the higher the risk
of microbial attack [149].

Excess amorphous material such as lignin, pectin, hemicellulose, wax, and cellulose
are removed during the alkali process by adding NaOH. Reactive dye fixation is improved
by the presence of –OH and –COOH groups in natural fibers [150]. The alkali treatment
(adding NaOH) removes excess amorphous content such as cellulose, lignin, hemicellulose,
pectin, and wax from natural fibers (Pennisetum orientale grass), whereas the alkali treatment
removes excess amorphous content such as lignin, pectin, hemicellulose, wax, and cellulose.
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As a result, the thermal stability and density of the NaOH-treated fibers were higher than
those of the untreated fibers and the HCl-treated fibers [151].

Lignin is a biological substance that helps plants maintain their structural integrity [152].
It is also the second most abundant biopolymer with an aromatic molecular structure after
cellulose and forms an ester connection with hemicellulose. Lignin molecules include
three active functional groups: namely, coniferyl alcohol (G), p-coumaryl alcohol (H), and
synapyl alcohol (S). The most frequent connection in lignin is the aryl ether linkage (β-O-4),
which accounts for nearly half of all links. This connection is more easily cleaved during
lignin conversion and depolymerization. In natural fibers, lignin is also implicated in UV
degradation and the formation of char [146]. Coir has a larger microfibrillar angle, as well
as a reduced proportion of hemicellulose and cellulose, which impacts plant qualities like
strength, durability, damping, wear, weather resistance, and high elongation at break [58].

Since lignin is an unwanted component in raw materials in pulping, it is typically
removed during the pulping process in the pulp and paper industry. A complete delignifica-
tion process could produce pulp with desirable Kappa numbers. Furthermore, delignifica-
tion of samples with higher lignin content requires a significant quantity of chemical energy.
Delignification of samples with decreased lignin content is possible under lower chemical
charges and temperatures [147]. Binder-less fiber board with a high lignin content could
be used as an adhesive source. It could also be extracted for use in high-value products
including adhesives, biosurfactants, antibacterial agents, fine chemicals, lignosulfonate,
and so on [1,153–157].

Cellulose content is one of the most important components in assessing the mechanical
and physical properties of natural fibers; it is one of three main components (cellulose,
hemicellulose, and lignin). The DP was reduced because of excessive chemical treatments
such as pulping and bleaching. The number of glucose molecules in one cellulose chain is
measured in DP. Depending on the cellulose source, the length of the cellulose polymer
chain varies greatly. Plants with a DP of more than 10,000, for example, are vascular
cellulose plants. The amount of DP released by a plant is determined by the process used
to isolate and treat it. Pure cellulose has a DP of over 10,000 in most cases. Microcrystalline
cellulose is another example, which is a high-level crystalline cellulose after going through
hydrolyzed acid. Microcrystalline cellulose has a DP value of between 300 and 600 [158,159].
The DP value of microcrystalline cellulose ranges from 300 to 600. This is due to the strong
chemical treatment that results in the breakage of the short cellulose chains, and it also
influences the crystallinity, mechanical properties, and morphology of cellulose [160,161].

The crystallinity index, or degree of crystallinity, is used to determine the physical
and mechanical properties of natural fibers. X-ray diffraction (XRD) at the crystalline peak
at 2θ (22.6◦) for diffraction intensity I200 (crystalline region) and 18◦ for diffraction intensity
Iam (amorphous region) can be used to measure the degree of crystallinity of cellulose. The
peak height method can be used to calculate the crystallinity [162,163].

4. Social and Economic Aspects on Utilization of Natural Fibers

Since prehistoric times, natural fibers have played a vital role in human society as a
sustainable and ecologically beneficial source of raw materials that are easily degraded into
environmentally friendly items and have the ability to absorb enough moisture. Natural
fibers have a variety of fascinating properties, including low density, light weight, low
cost, biodegradability, abundant accessibility, minimal health hazards during process-
ing, relatively good basic strength and modulus, good thermal and acoustic insulation
characteristics, physical properties, and ease of availability [125,131].

Natural fibers have been favored over synthetic fibers because of their superior quali-
ties [125,131]. Natural fiber has been used as a raw material in a variety of industries, in-
cluding aerospace, automotive, marine, building and construction, sports and leisure items,
electronic appliances, military vehicles, biomedical purposes [10,11,15,16,21,22,164–166]
as shown in Figure 4: Natural fiber applications are also increasing in textiles, packaging,
printed goods, filters, automobiles, furniture, particleboard, insulation board, and other
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materials [167–170]. Woven-kenaf aramid and pineapple leaves were used in military
vehicles, especially for ballistic purposes [166], and hard armor plate [166,171], respec-
tively. In biomedical applications, natural fibers are in fiber-reinforced composites (FRC),
such as various clinical fields [172] as described in Table 2. Hemp and sisal have been
reported for utilization as cementitious construction and fancy materials in the construc-
tion field [173,174]. In the biomedical field, the most promising natural fiber candidate is
undoubtedly cellulose, in the form of nanofibers. Nanocellulose has a variety of biomedical
applications, including drug delivery, vascular grafts, skin tissue regeneration, antimi-
crobial membranes, medical implants, biosensors and diagnostics, and scaffolds [175].
Several methods have been developed to improve the compatibility of natural fibers and
polymer matrices in order to enhance the physical and mechanical properties of targeted
bioproducts. However, the acceptability of natural fiber and biocomposite materials by the
human body is a critical requirement that must be addressed [176].
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Table 2. Application of natural fiber composites in biomedical field.

Specific Area Application of Fiber Composite Source of Fiber References

• Blood bag
• Drug/gene delivery scaffold Pineapple, rambutan and banana skin [177]

• Ancient medicine
• Modern functional food Flax and flaxseed oil [178]

• Wound dressings Flax [179]

• Drug delivery Cotton [179]

• Wound healing Bombyx mori silk [180]
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Table 2. Cont.

Specific Area Application of Fiber Composite Source of Fiber References

• Tissue engineering
• Drug delivery
• Wound dressing
• Medical implants
• Cardiovascular implants
• Scaffolds for tissue engineering

Pineapple leaf [181,182]

• Prosthodontics
• Orthopedics
• Cosmetic orthodontics

- [176]

• Dental application - [20–22]

Natural fibers are a type of biomaterial used for reinforcement of polymer-based com-
posites. Some agricultural plants, including ramie, sisal, and pineapple leaf fiber [107–110,183]
and hybrid fibers of Egyptian and Qatari palm trees [176] and woven cotton fabrics [184]
have reported used as bioresources of FRC. The manufacture of natural fiber composite
materials or eco-friendly composites has become a popular topic as people become more
aware of environmental sustainability. To minimize material weight, natural fibers may be
a suitable option for replacing synthetic materials. Natural fiber reinforced polymer and
resin composites have been widely used in a variety of industries, including automotive
and aviation interior components, as well as military vehicles [166,185–187]. Because of
their high specific qualities at a lower cost than synthetic fibers, they are appealing for
several applications.

Miller [167] mentions the usage of hemp fiber in textile manufacture. The mechanical
properties of the bio-based textile composites studied in this review are like those of some
traditional materials. The use of pineapple leaf fiber as a reinforcement in the fabrica-
tion of yam starch films with packing potential was defined by Mahardika et al. [168].
Asrofi et al. [188] created a bioplastic made of tapioca starch and sugarcane stem fiber
for reinforcement. The interior components of an automobile are composed of hemp
fiber/polypropylene composites [169], while kenaf and wheat straw were used as vehicle
spall-liners and quarter trim panel storage [189]. Natural fiber mats, aluminum sheets,
and epoxy resins provide excellent electromagnetic interference prevention while keep-
ing high mechanical qualities in hybrid composites [170]. Good specific properties, low
cost, low density, good formability and processability, good mechanical properties, and
a plentiful and sustainable source of raw materials are all the benefits of using natural
fibers over synthetic fibers. Natural fibers, on the other hand, have a high moisture sensi-
tivity [190,191]. The development of natural fiber composites in a variety of applications
has paved new avenues in both academia and industry for the future applications of
sustainable natural fibers.

As previously stated, several of the shortcomings of natural fibers should be addressed
during the optimization of natural fiber applications. When used as a composite, the hy-
drophilic nature of natural fibers makes it difficult to adhere to a hydrophobic matrix,
resulting in poor mechanical characteristics and processability [112]. Surface treatment
methods applied include chemical and enzymatic treatments, corona treatment, and cou-
pling agent addition [119,120,192–197]. Furthermore, the handling of the interfacial region
before processing with thermoplastics at a temperature up to 200 ◦C, the interfacial treat-
ment (surface treatment resins, additives, and coating) must be reinforced to address the
low degradation temperature of natural fibers [107,198].

The Indonesian government has taken steps to encourage the use of natural fibers, such
as appointing an institution to focus on the development of natural fibers and establishing a



Polymers 2021, 13, 4280 14 of 27

multi-stakeholder research community, namely, the Indonesian Ramie Consortium (KORI),
to study specific natural fibers, primarily ramie. Ramie is a type of natural fiber that has
become a national priority in Indonesia for widespread use. Figure 5 depicts the strategy
for manufacturing of ramie development in Indonesia.
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Manufacturing integration strategies in ramie processing systems to support large-
scale production are to be developed with an emphasis on three main sub-systems: cultiva-
tion, fiber processing technology, and machining. The ramie-based industry will be able
to support the functional value of the fiber or fabric of ramie for functional enhancement
of the products. Strategies in business concepts and supply of human resources with
competence in all aspects of processing systems will be able to support the realization of
the manufacturing of ramie production in Indonesia. This research strategy is currently
supported by the Indonesian government in the National Research Program, for the period
2020–2024.

Additionally, the Indonesia Natural Fiber Council (DSI) was founded in Indonesia to
assist scientists, policymakers, and other stakeholders in the development of bioproducts
generated from natural fibers. DSI proposed a road map for the Indonesian fiber sector
from 2020 to 2024, with abaca, kenaf, bamboo, pineapple, sisal, cotton, and ramie as types
of promising fiber to be further developed [199]. Furthermore, biduri (Calotropis gigantea)
is a natural fiber that has the potential to be developed in Indonesia as a thermal and
acoustic insulation material and filler material [200] and for winter jacket [201]. Biduri fiber
production is predicted to be around 3.6 tons per hectare per year [200]. Some bioproducts,
such as biopellets, food, textiles, biocomposites, and ecofriendly shoes, have been launched
into the Indonesian market as a result of continued efforts. In addition, several small local
businesses extract fiber from fresh pineapple leaves using basic techniques such as retting
followed by decortication for clotes, handycraft, and other items. However, the process
output is still low, with 2.5 kg of air-dry pineapple fiber produced from 100 kg of fresh
leaf fiber and 97.5% of decorticator waste that has yet to be used (visualized in Figure 6).
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Banana stems are treated in a similar way to make banana fibers in this local enterprise.
Until now, cotton has been the main fiber source in the Indonesian textile industry, but
the qualities of local cotton have not met the requirements, so nearly all of it is imported,
while the other fibers have been used to their full potential. Considering the potency and
challenge, continual efforts to disseminate information about the various uses of natural
fibers in the community are required.
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Natural fibers play an important role in improving the quality of human life. How-
ever, waste can be generated during the product life cycle and during the processing of
natural fibers into bioproducts. To achieve the most efficient utilization of resources, waste
management should be conducted continuously by recycling and/or upcycling of waste,
aside from innovation in the design of bioproducts. Shanmugam et al. [202] recognized
recycling and the use of bio-based constituents as essential issues in adopting a circular
economy (CE). CE adheres to the principles of reduce, reuse, recycle, and replace. CE is
beneficial to the environment, economy, and society when used in FRC manufacturing.
Given the numerous sustainability challenges confronting our societies, transitioning to a
circular economy and closing resource loops through recycling is a viable solution [203].
Figure 7 proposes a CE concept based on natural fibers that is more considered than a
linear economy concept for future resource conservation and environmental balance. The
CE approach is gaining traction and has been proposed in some fields, such as carbon fiber
manufacturing [204], agricultural sector [205] and biomass biorefinery [206], for gradually
reducing energy consumption during the manufacturing process. Biomaterials in the CE
present numerous challenges for the industry in terms of developing new network and
commercial opportunities while remaining focused on consumer demands [206].
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The development of an information system for Indonesian natural fibers, as well as
collaboration with a variety of stakeholders such as research and development institutions,
industries, policymakers (local and national), and universities, are ongoing efforts to
bring Indonesian local industry independence. National innovation products made from
natural fibers can be created by local industry in the future and sold at least locally, with
Indonesians consuming them.

Natural fiber as lignocellulosic biomass has an economic chance to meet industrial
needs, depending on the processing level that has been made to make its derivative
products, including its market to accomplish. According to Ruamsook and Evelyn [207],
there are four levels in which biomass can be processed and turned into value-added
goods before being sold to potential demand markets (Figure 8). Farmers become the first
important people actors to create their biomass as the major components of industrial
needs, as indicated in this picture. Commodities such as corn, wheat, cotton, and hay, as
well as other crop farms such as paddy, are the possible resources of rubber and polymer
markets. Many industrial polymers and plastics are still made from non-renewable oil
and gas resources today. This would cause a supply shock when non-renewable resources
are depleted, causing the processed product to bubble to an unacceptably high price [207].
As a result, the growing interest in bio-based polymer and plastic products derived from
renewable sources creates a market opportunity for biomass in exchange for enhanced
environmental support in reducing climate change pressure.
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Farmers will benefit from the potential use of paddy waste as an alternative source of
packaging because they have been heavily reliant on agriculture without any additional
revenue, as most farmers are still subsistence and have a low-middle income. On the other
hand, this will contribute to reducing future climate change issues by allowing farmers to
benefit from better climate conditions through sustainable agriculture. Nonetheless, the
government must promote this innovation to increase economic potential and to provide
an instrument for industrial businesses to improve their knowledge of the sustainable
industrial environment. It may not be easy, but once the government steps in to regulate the
industrial ecosystem by paying more attention to reducing plastic waste and implementing
sustainable bioplastic for bio-packaging for both large industrial ecosystems and small-
medium enterprises, it could have structural potential. One of the studies that uses
paddy-waste as bioplastic is the usage of rice straw cellulose (Oryza sativa) as bioplastic by
the pulping process and phase inversion method [208].

Building an ecosystem of sustainable industry, particularly for consumer behavior,
is to use more sustainable packaging or bio-packaging that can be created from natural
fiber. As it is known that the production of food packaging made from plastic as well
as styrofoam is about 14.000 tons per year, it has affected the use of plastic packaging
for food [203]. However, this material is not environmentally friendly and could cause
a significant impact both on the user and the environment after its usage, with a long-
term impact on climate change. Thus, the government could develop bio packages as a
particular potential both for reducing environmental issues and improving the economic
opportunity of farmers from the paddy waste produced. Basically, this novel innovation
could be started by a small-scale industry where a group of farmers could start to process
the paddy waste materials where generally they would not be sold except for burning.

On the other hand, the development of bio-packages made of paddy straw benefits not
only farmers in terms of economic earnings, but also consumers, as they have paid more for
the environmentally friendly food package to have both future-health preservation as well
as the original flavor and scent of stored food from this bio-package material, compared to
a conventional plastic food package, which has more influence on their food, particularly
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when the foods are still at high temperatures. With these kinds of benefits, coupled with
intense regulatory aspects, consumers would indeed be willing to pay more to get this
type of food package if the government could guarantee that it would not harm them and
be rigid in implementing environmental policy in general. If this is accomplished, the
introduction of novel food packages made of paddy straw will be imminent, benefiting
farmers who are the primary source of this material. Many countries have taken steps
to encourage the use of natural fibers, such as appointing an institution to focus on the
development of natural fibers and establishing a multi-stakeholder research community.

5. Future Prospects

Many different types of natural fibers are potential raw materials for bioproducts,
but it is necessary to select the most locally viable fiber before attempting to employ it in
an industry. In several fields, using local potential natural fiber for industrial purposes
helps to lessen reliance on imported products. Some efforts will be made to speed up the
exploitation of local raw materials for local industry, thereby assisting in the establishment
of local industry, mostly on a small and medium scale. The wide diversity of natural fiber
characteristics remains a difficulty in manufacturing consistent quality of bioproducts.
Therefore, understanding the features is essential when processing natural fiber effectively.
Processing of natural fiber with environmentally friendly technology and appropriate pro-
cedures should be used in the future as environmental concerns grow for the preservation
of sustainable nature. Kenaf and ramie, bamboo, bananas, and pineapple have all been
used as commercial bioproducts for a variety of industries, including automotive, building
materials, handicrafts, and textiles. Up to now, there has been no exposed intermediate
industry in natural fiber; therefore, the biocomponent industry has been initiated in recent
years and is able to create environmentally friendly footwear products. This footwear can
be built with biocomponents from natural bioresources such as natural fiber. In summary,
viability, suitable technology, and social issues in the development of natural fibers are
significant components that, when controlled together, can stimulate the use of bioproducts
made from natural fibers. It is critical that respective ministries should be involved in
natural fiber development and prioritize the agenda to ensure a strong supply chain and
sustainability of natural fiber production. The Ministry of Agriculture should be in charge
of providing sufficient land for planting as well as the necessary technology for a successful
harvest. While the Ministry of Industry can provide the manufacturing technology and
create the product diversification design.

6. Conclusions

Natural fibers with enticing properties such as lower density, lighter weight, biodegrad-
ability, good specific strength and modulus, good thermal insulation, good acoustic in-
sulation, and high electrical resistance can be used for various applications. Furniture,
automotive (car bumper beam, disc brake pads), electronic industries (automobile compo-
nents), and building construction (molded panel components, window frames) are only
a few of the applications for natural fibers. Biomedical application refers to the potential
use of natural fibers to cover tissue engineering, biomedical implants, and drug delivery
systems that must be biocompatible with the human body. Although natural fibers such
as bananas, abaca, pineapples, bamboo, cotton, ramie, sisal, coconut, sansevieria, jute,
and kenaf are plentiful and readily available, industrial applications require access to the
most readily available. Ramie is being used as a model for developing a national priority
bioproduct based on textile innovation, which is facilitated through government support.
This way, it will coordinate the efforts of all stakeholders, including industry, research and
development agencies, and farmers, in order to maximize benefits. A circular economy that
is sustainable can be achieved by developing a biocomponent industry for bioproducts.
The establishment of an information system for natural fibers, as well as collaboration
with a variety of stakeholders such as research and development institutions, companies,
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policymakers (local and national), and universities, are ongoing efforts to increase the use
of natural fibers in a sustainable circular economy.
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