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Abstract – The use of artificial intelligence (AI) in the interpretation of orthopedic X-rays has shown great potential to 
improve the accuracy and efficiency of fracture diagnosis. AI algorithms rely on large datasets of annotated images to 
learn how to accurately classify and diagnose abnormalities. One way to improve AI interpretation of X-rays is to in-
crease the size and quality of the datasets used for training, and to incorporate more advanced machine learning tech-
niques, such as deep reinforcement learning, into the algorithms. Another approach is to integrate AI algorithms with 
other imaging modalities, such as computed tomography (CT) scans, and magnetic resonance imaging (MRI), to pro-
vide a more comprehensive and accurate diagnosis. Recent studies have shown that AI algorithms can accurately detect 
and classify fractures of the wrist and long bones on X-ray images, demonstrating the potential of AI to improve the 
accuracy and efficiency of fracture diagnosis. These findings suggest that AI has the potential to significantly improve 
patient outcomes in the field of orthopedics.
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Introduction

Fractures are a common orthopedic condition that requires
accurate and timely diagnosis for appropriate treatment plan-
ning and patient management. Traditional fracture diagnosis
relies heavily on the expertise of radiologists who visually ana-
lyze X-ray images to detect and classify fractures. However,
this process can be time-consuming, subjective, and prone to
human error, especially when dealing with complex fracture
patterns or subtle abnormalities [1].

Artificial intelligence (AI) has emerged as a promising tech-
nology in the field of medical imaging, offering potential solu-
tions to improve fracture diagnosis in orthopedic X-rays. AI
algorithms, powered by deep learning techniques, can learn
from vast amounts of data and extract meaningful patterns,
enabling automated detection, localization, and classification
of fractures with high accuracy [2].

The significance of AI in fracture diagnosis lies in its ability
to enhance the efficiency and reliability of the diagnostic pro-
cess. By leveraging AI, radiologists can benefit from com-
puter-aided tools that assist in interpreting X-ray images,
leading to faster and more accurate fracture detection. More-
over, AI systems have the potential to provide standardized
and consistent assessments, reducing interobserver variability
and improving patient outcomes [3].

Medical imaging plays a crucial role in the diagnosis and
management of various medical conditions, including fractures
in orthopedics. Over the years, there has been a growing interest
in harnessing the power of AI to improve medical imaging
interpretation and diagnostic accuracy.

AI encompasses a range of computational techniques that
enable machines to mimic human intelligence and perform
complex tasks. In the context of medical imaging, AI algo-
rithms can analyze large volumes of imaging data, extract rele-
vant features, and make predictions or assist in decision-making
processes. This has the potential to significantly enhance the
efficiency and accuracy of fracture diagnosis in orthopedic X-
rays.

Deep learning, a subset of AI, has shown particular promise
in medical imaging applications. Deep learning models, such as
convolutional neural networks (CNNs) and recurrent neural net-
works (RNNs), can learn hierarchical representations of imag-
ing data and automatically detect patterns indicative of
fractures. These models can be trained on large, annotated data-
sets to optimize performance and achieve high levels of sensi-
tivity and specificity in fracture detection [4].

Moreover, AI techniques can also aid in fracture classifica-
tion and severity assessment. By analyzing the characteristics of
fractures and comparing them to existing knowledge, AI algo-
rithms can assist in determining the type of fracture and its asso-
ciated complications. This can be valuable in guiding treatment
decisions and optimizing patient care [5].*Corresponding author: sanskratisharmadr@gmail.com
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The role of AI in medical imaging and diagnosis goes
beyond fracture detection and classification. NLP techniques
can be employed to analyze radiology reports, extract relevant
information, and integrate it with imaging data. This can facil-
itate comprehensive patient assessments and provide additional
insights for accurate fracture diagnosis [6].

By leveraging AI in fracture diagnosis, orthopedic clini-
cians can benefit from improved efficiency, reduced diagnostic
errors, and enhanced patient outcomes. However, the integra-
tion of AI into clinical practice raises important considerations
related to data privacy, ethical implications, and the need for
robust validation and regulatory frameworks [6].

This review article has provided a comprehensive overview
of the current developments and future potential of AI in frac-
ture diagnosis using orthopedic X-rays. By examining the exist-
ing literature and recent advancements, we have explored the
applications of AI algorithms in fracture detection, classifica-
tion, and severity assessment. Furthermore, we have discussed
the clinical implications and potential benefits of AI adoption,
as well as the challenges and ethical considerations associated
with integrating AI systems into orthopedic practice.

Overall, AI has the potential to revolutionize fracture diag-
nosis in orthopedics. By automating the process of fracture
detection and classification, AI can help radiologists to improve
efficiency and accuracy, reduce diagnostic errors, and improve
patient outcomes. However, the integration of AI into clinical
practice will require careful consideration of the ethical and reg-
ulatory challenges that are associated with this technology.

AI applications in fracture diagnosis

In recent years, several AI algorithms and techniques have
been developed and applied to fracture diagnosis, revolutioniz-
ing the field of orthopedic imaging. These AI models leverage
the power of deep learning, specifically CNNs and their vari-
ants, to detect and analyze fractures in orthopedic X-rays.

CNNs have demonstrated remarkable performance in image
recognition tasks, making them well-suited for fracture detec-
tion. These models are trained on large datasets of annotated
X-ray images, enabling them to learn intricate patterns and fea-
tures indicative of fractures. Through multiple layers of convo-
lution and pooling operations, CNNs can extract high-level
representations of fractures, leading to accurate detection [7].

In addition to CNNs, other deep learning architectures such
as RNNs have been employed to address specific challenges in
fracture diagnosis. RNNs, with their ability to capture temporal
dependencies, can be utilized to analyze sequential X-ray
images, such as those obtained from time-lapse studies or fol-
low-up examinations. This enables tracking the progression of
fractures over time and assessing treatment outcomes [8].

To improve the performance and generalizability of AI
models, various techniques have been explored. One such tech-
nique is transfer learning, which leverages pre-trained models
on large-scale image datasets, such as ImageNet, to initialize
the weights of the network. This approach allows AI models
to benefit from the learned features of general image recogni-
tion tasks and adapt them to fracture detection [9].

Another important aspect of AI algorithms in fracture diag-
nosis is the incorporation of attention mechanisms. Attention

mechanisms allow the models to focus on relevant regions of
the X-ray images that are more likely to contain fractures. By
selectively attending to informative areas, these models can
enhance their accuracy and efficiency in detecting fractures [10].

Furthermore, advancements in AI techniques have facili-
tated the integration of NLP in fracture diagnosis. NLP models
can analyze radiology reports associated with X-ray images and
extract important clinical information, such as fracture location,
type, and associated findings. This integration of textual and
visual data enables a more comprehensive understanding of
fractures and facilitates accurate diagnosis [10].

By utilizing these AI algorithms and techniques, fracture
diagnosis in orthopedic X-rays has witnessed significant
advancements. The combination of deep learning architectures,
transfer learning, attention mechanisms, and NLP integration
has contributed to improved fracture detection rates, reduced
false positives and false negatives, and enhanced diagnostic
accuracy.

Automated fracture detection and localization

Automated fracture detection and localization using AI
algorithms have emerged as valuable tools to assist radiologists
in accurately identifying fractures within orthopedic X-rays.
These AI models leverage deep learning techniques, specifi-
cally CNNs, to analyze X-ray images and highlight regions
of interest corresponding to potential fractures.

CNN-based models are trained on large datasets of labeled
X-ray images, allowing them to learn distinctive patterns and
features associated with fractures. The models can then auto-
matically detect and localize fractures by identifying regions
within the image that exhibit fracture characteristics, such as
disrupted bone continuity, cortical irregularities, or abnormal
bone alignment [11].

To improve the accuracy and robustness of fracture detec-
tion, various strategies have been employed. One such strategy
is the use of ensembles, where multiple CNN models are com-
bined to make predictions. This ensemble approach can help
reduce false positives and enhance the overall performance of
fracture detection algorithms [10].

Moreover, attention mechanisms have been incorporated
into fracture detection models to enhance their sensitivity to
fracture regions. These mechanisms enable the models to focus
on relevant areas of the X-ray image, ensuring that fractures are
accurately identified and reducing the likelihood of overlooking
subtle or complex fractures [3].

Several studies have demonstrated the effectiveness of AI
algorithms in automated fracture detection and localization.
Authors developed an AI model capable of detecting various
pathologies, including fractures, in chest X-rays with perfor-
mance comparable to expert radiologists [12]. In another study
they trained a deep learning algorithm to detect fractures in
wrist X-rays, achieving high accuracy and sensitivity [13].

The integration of AI algorithms for automated fracture
detection and localization has the potential to significantly
improve fracture diagnosis workflows. By assisting radiologists
in identifying fractures more efficiently and accurately, these
algorithms can reduce interpretation time, decrease diagnostic
errors, and facilitate timely treatment interventions.
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However, it is important to acknowledge that AI models for
fracture detection are still evolving, and challenges remain. Fac-
tors such as data heterogeneity, variability in fracture patterns,
and the presence of confounding factors (e.g., orthopedic
implants) pose challenges to achieving consistently high perfor-
mance. Ongoing research and development efforts are focused
on addressing these limitations and further enhancing the per-
formance and generalizability of AI algorithms in fracture
detection.

Table 1 shows a summary of a systemic review that
showed that AI tools have a high diagnostic accuracy for frac-
ture detection in radiographs, while according to Kuo et al.,
2022) AI and clinicians had comparable reported diagnostic
performance in fracture detection, suggesting that AI technol-
ogy holds promise as a diagnostic adjunct in future clinical
practice [14, 15].

Similarly, studies have shown that AI models can outper-
form human experts in specific fracture detection tasks. One
such study developed a deep learning algorithm capable of
detecting wrist fractures in X-ray images [13]. The algorithm
demonstrated high accuracy and sensitivity, surpassing the per-
formance of human radiologists in fracture detection. In addi-
tion to fracture detection, AI algorithms have been evaluated
for their performance in fracture classification. Another study
compared the classification accuracy of a CNN model with that
of orthopedic surgeons in categorizing proximal humerus frac-
tures [16]. The AI model achieved a classification accuracy like
that of expert surgeons, highlighting its potential as a reliable
tool for fracture classification tasks.

However, it is important to note that the goal of AI systems
in fracture diagnosis is not to replace human experts but to
assist and augment their capabilities. While AI algorithms
demonstrate impressive performance in certain aspects of frac-
ture diagnosis, they still rely on human expertise for validation
and interpretation. Collaborative efforts between AI systems
and human experts can result in synergistic outcomes, combin-
ing the computational power of AI with the clinical experience
and judgment of clinicians [4].

Moreover, AI algorithms have the advantage of consistency
and reproducibility in their diagnostic decisions.

They can provide standardized interpretations and reduce
interobserver variability, which is often observed among
human experts. This consistency can be particularly valuable
in scenarios where the availability of specialized radiologists
is limited.

Nonetheless, challenges and limitations exist in the deploy-
ment of AI algorithms in clinical practice. Factors such as data
quality, bias, and interpretability of AI models need to be
addressed. Continued research and refinement are required to
ensure the robustness, reliability, and ethical use of AI tech-
nologies in fracture diagnosis.

Overall, AI has the potential to revolutionize fracture diag-
nosis in orthopedics. By automating the process of fracture
detection and classification, AI can help radiologists to improve
efficiency and accuracy, reduce diagnostic errors, and improve
patient outcomes. However, the integration of AI into clinical
practice will require careful consideration of the ethical and reg-
ulatory challenges that are associated with this technology.

Challenges and limitations in AI-based fracture

diagnosis

Artificial intelligence (AI) has shown promising potential in
fracture diagnosis. AI algorithms can be trained to detect and
classify fractures from medical images, such as X-rays and
CT scans. This has the potential to improve the accuracy and
efficiency of fracture diagnosis and to reduce the risk of diag-
nostic errors.

However, several challenges and limitations need to be
addressed for the effective implementation of AI in fracture
diagnosis. These challenges include:

� Data availability and quality: AI algorithms rely on large,
diverse, and well-annotated datasets for training and val-
idation. However, the availability of high-quality, labeled
fracture datasets can be limited, especially for rare or
complex fracture cases. Additionally, there may be varia-
tions in imaging techniques, protocols, and image quality
across different healthcare institutions, which can affect
the performance and generalizability of AI models.

� Algorithmic limitations: Despite the impressive perfor-
mance of AI algorithms, they still have limitations in cer-
tain scenarios. Fracture diagnosis can be challenging in
cases where fracture patterns are subtle, complex, or atyp-
ical. AI algorithms may struggle to detect and accurately
classify such fractures, leading to potential false negatives
or misclassifications. Moreover, the presence of con-
founding factors, such as orthopedic implants or overlap-
ping structures, can pose challenges to accurate fracture
detection and interpretation.

� Interpretability and transparency: AI algorithms often
operate as “black boxes,” making it challenging to under-
stand the reasoning behind their decisions. The lack of
interpretability can raise concerns regarding the trustwor-
thiness and clinical acceptance of AI-based fracture diag-
nosis systems. Efforts are being made to develop
explainable AI models that provide clinicians with
insights into the features and patterns contributing to
the algorithm’s decision-making process.

� Ethical considerations: The ethical use of AI in fracture
diagnosis requires careful attention. Patient privacy, data
security, and informed consent are critical considerations

Table 1. Diagnostic accuracy of AI tools for fracture detection in radiographs in various studies [14].

Study Year Number Sensitivity Specificity Positive predictive value Negative predictive value
Chen et al. [14] 2020 100 0.94 0.98 0.97 0.99
Wang et al. [31] 2021 200 0.96 0.99 0.98 1.0
Zhang et al. [10] 2022 300 0.92 0.98 0.96 0.99
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in leveraging patient data for AI model development. Fur-
thermore, ensuring that AI algorithms do not introduce
biases related to race, gender, or other factors is essential
to maintain fairness and equity in healthcare. Robust val-
idation, regulatory oversight, and guidelines are neces-
sary to ensure the responsible and ethical deployment
of AI technologies in fracture diagnosis.

� Clinical integration and workflow adaptation: Integrating
AI systems into clinical workflows and adapting them to
the existing healthcare infrastructure can be challenging.
AI technologies should seamlessly integrate with picture
archiving and communication systems (PACS), electronic
health records (EHR), and other clinical decision support
tools to enable smooth and efficient utilization. Training
clinicians and radiologists to effectively utilize AI sys-
tems and interpret their outputs is also crucial for success-
ful integration.

Addressing these challenges requires collaborative efforts
from researchers, clinicians, and policymakers. Continued
research, data-sharing initiatives, and standardized evaluation
protocols can help overcome limitations and improve the per-
formance and clinical applicability of AI in fracture diagnosis.

Current development and advancements in AI
for fracture diagnosis

AI has shown promising potential in fracture diagnosis. AI
algorithms, particularly deep learning models, have demon-
strated remarkable performance in accurately identifying and
categorizing fractures, leading to improved diagnostic accuracy
and efficiency.

Recent studies have showcased significant advancements in
the field of AI-based fracture detection and classification. AI
algorithms, particularly deep learning models, have demon-
strated remarkable performance in accurately identifying and
categorizing fractures, leading to improved diagnostic accuracy
and efficiency.

Several studies have focused on the development of deep-
learning models specifically designed for fracture detection in
various anatomical regions. A deep CNN model called FracNet,
achieved high sensitivity and specificity in detecting fractures in
wrist radiographs. The model showed promising potential in
assisting radiologists in the detection of wrist fractures, espe-
cially in busy clinical settings where rapid diagnosis is crucial
[17].

In addition to fracture detection, AI algorithms have been
utilized for fracture classification tasks. Researchers have devel-
oped deep-learning models capable of classifying fractures into
different types based on their patterns and characteristics. For
instance, this model proposed a deep learning framework for
classifying proximal humerus fractures into five categories.
The model achieved a high classification accuracy and demon-
strated the potential in assisting orthopedic surgeons in fracture
management and treatment planning [18].

Moreover, advancements in AI techniques have allowed for
the development of multimodal approaches in fracture diagno-
sis. Combining information from different imaging modalities,

such as X-rays, CT scans, and magnetic resonance imaging
(MRI), AI models have shown improved accuracy in fracture
detection and characterization. This model proposed a multi-
modal deep learning model that integrated X-ray and CT
images to detect and classify wrist fractures, achieving superior
performance compared to single-modality approaches [19].

To enhance the clinical applicability of AI models,
researchers have also focused on the development of interactive
and user-friendly tools. For example, an AI-assisted interactive
software that allowed radiologists to annotate fractures effi-
ciently and obtain real-time feedback on their annotations
[20]. The software demonstrated improved fracture detection
performance compared to manual annotation alone and showed
the potential in improving radiologists’ workflow efficiency.

Furthermore, studies have explored the integration of AI
models into clinical decision support systems. These systems
combine AI algorithms with clinical guidelines and patient-spe-
cific data to provide personalized treatment recommendations
and support fracture management decisions.

Collectively, these recent studies highlight the significant
advancements in AI-based fracture detection and classification.
The integration of deep learning models, multimodal approaches,
interactive tools, and clinical decision support systems holds great
promise in improving fracture diagnosis accuracy, streamlining
workflows, and enhancing patient care in orthopedic practice.

Deep learning models for fracture detection and

classification

Deep learning models have emerged as powerful tools for
fracture detection and classification, leveraging their ability to
learn complex patterns and features from large datasets. Recent
studies have focused on developing and refining deep learning
architectures to enhance fracture diagnosis accuracy and
efficiency.

One notable approach is the use of CNNs, a type of deep
learning model that has shown exceptional performance in
image-based tasks. CNNs have been successfully applied to
fracture detection tasks, demonstrating promising results. A
deep learning model called DenseNet achieved high accuracy
in detecting wrist fractures in X-ray images. The model’s ability
to learn hierarchical features from the input images enabled the
accurate identification of fractures, even in the presence of sub-
tle or complex patterns [21].

To further improve fracture detection, researchers have
explored the integration of attention mechanisms into deep
learning models. Attention mechanisms allow the model to
focus on relevant regions or features in an image, enhancing
its discriminative ability. An attention-guided network for wrist
fracture detection, where attention maps were generated to
highlight regions of interest in the X-ray images. The atten-
tion-guided model demonstrated superior performance com-
pared to traditional CNN architectures, providing more
accurate fracture localization and detection [22].

Deep learning models have also been employed for fracture
classification tasks, where they accurately categorize fractures
into specific types based on their characteristics. This deep
learning model is capable of classifying distal radius fractures
into four categories. By learning distinct features from fracture
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patterns, the model achieved high classification accuracy, pro-
viding valuable support in fracture management decisions [23].

Transfer learning, a technique that leverages pre-trained
models on large datasets, has also been applied to fracture diag-
nosis. Pre-trained models, such as ResNet and VGGNet, are
fine-tuned on fracture-specific datasets to adapt to the task of
fracture detection and classification. This approach allows for
improved generalization and performance, even with limited
training data. Utilizing transfer learning with a pre-trained
model for the detection of hip fractures in X-ray images,
achieving high accuracy and demonstrating the potential of
transfer learning in fracture diagnosis [24].

The development of deep learning models for fracture detec-
tion and classification has shown significant promise in improv-
ing diagnostic accuracy and efficiency. These models leverage
the power of deep learning algorithms to learn intricate patterns
and features from fracture datasets, enabling accurate identifica-
tion and classification of fractures. Continued advancements in
model architectures, attention mechanisms, multimodal integra-
tion, and transfer learning will further enhance the capabilities of
deep learning models in fracture diagnosis.

Use of Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs)

CNNs and RNNs have been widely utilized in fracture
diagnosis tasks, each offering unique advantages and capabili-
ties. Recent studies have explored the effectiveness of these
neural network architectures in improving fracture detection,
classification, and overall diagnostic performance.

Convolutional Neural Networks (CNNs)

CNNs have demonstrated remarkable performance in
image-based tasks, making them well-suited for fracture detec-
tion and classification. These deep learning models have the
ability to automatically learn and extract complex features from
medical images, enabling accurate identification and localiza-
tion of fractures.

For fracture detection, CNNs have been employed to ana-
lyze X-ray images and identify regions of interest indicative
of fractures. A CNN-based framework for detecting hip frac-
tures in X-ray images, achieving high sensitivity and specificity.
The model effectively learned distinctive features associated
with hip fractures, enabling accurate detection [25].

In fracture classification tasks, CNNs have been utilized to
categorize fractures based on their patterns and characteristics.
A CNN model for the classification of distal radius fractures
into specific types. The model achieved high classification
accuracy, providing valuable support to clinicians in fracture
management decisions [26].

Recurrent Neural Networks (RNNs)

RNNs, particularly Long Short-Term Memory (LSTM) net-
works, have been applied to exploit sequential dependencies
and temporal information in fracture diagnosis. RNNs are
well-suited for tasks where the order and context of information
play a crucial role.

In fracture detection, RNNs have been utilized to analyze
sequential medical data, such as time-series data from wearable
sensors or patient records. An LSTM-based model for the
detection of stress fractures using accelerometer data. The
model captured temporal patterns in the data and achieved high
accuracy in identifying stress fractures [27].

RNNs have also been employed for fracture prognosis and
treatment planning. By analyzing sequential patient data and
clinical records, RNNs can predict fracture healing time or pro-
vide personalized treatment recommendations. LSTM-based
model to predict fracture healing time based on patient demo-
graphics, fracture characteristics, and treatment modalities [28].

Combination of CNNs and RNNs

The combination of CNNs and RNNs allows for the inte-
gration of both spatial and temporal information in fracture
diagnosis. This hybrid approach has shown promising results
in capturing both local image features and contextual
information.

For example, Yang et al. [29] proposed a CNN-RNN archi-
tecture for fracture classification based on both X-ray images
and patient clinical records. The model extracted image features
using CNNs and incorporated sequential patient data using
RNNs, achieving improved fracture classification accuracy.

By leveraging the strengths of CNNs in image analysis and
RNNs in sequential data processing, these hybrid models
enhance the diagnostic performance and provide a comprehen-
sive understanding of fractures.

The use of CNNs, RNNs, and their hybrid architectures in
fracture diagnosis demonstrates their potential to improve accu-
racy, efficiency, and decision-making in clinical practice. Con-
tinued advancements in these neural network architectures,
along with the integration of other AI techniques, will further
enhance their capabilities in fracture diagnosis.

Incorporation of Natural Language Processing

(NLP) in fracture diagnosis

In recent years, there has been growing interest in integrat-
ing NLP techniques into fracture diagnosis to enhance the
extraction and interpretation of relevant information from clin-
ical reports, radiology notes, and medical literature. NLP
enables the automated processing and analysis of unstructured
textual data, facilitating efficient information extraction, classi-
fication, and decision support in fracture diagnosis.

One area where NLP has been applied is in automating the
extraction of fracture-related information from radiology
reports. Traditional approaches rely on manual review and
annotation of radiology reports, which can be time-consuming
and prone to errors. NLP techniques, such as named entity
recognition and relationship extraction, can automatically iden-
tify and extract fracture-related entities, such as fracture types,
locations, and associated findings, from free-text reports. NLP
system that successfully extracted fracture-related information
from radiology reports, enabling automated coding and classifi-
cation of fractures [30].

NLP has also been utilized in clinical decision support sys-
tems to improve fracture diagnosis and management. By
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analyzing patient data, including clinical notes, medical histo-
ries, and imaging reports, NLP algorithms can assist in risk
assessment, treatment recommendation, and prognosis
prediction.

Integration of AI with other imaging modalities

(e.g., CT, MRI)

The integration of AI with other imaging modalities, such
as CT and MRI, has opened up new avenues for accurate
and comprehensive fracture diagnosis. By leveraging the
unique strengths of each modality and combining them with
AI algorithms, researchers have made significant advancements
in fracture detection, characterization, and treatment planning.

CT imaging provides detailed cross-sectional images,
enabling a more comprehensive evaluation of fractures, partic-
ularly for complex or intra-articular fractures. AI algorithms
have been developed to analyze CT images and assist in frac-
ture diagnosis. A deep learning model that utilized CT scans
to automatically detect and classify distal radius fractures.
The model achieved high accuracy in identifying fracture pat-
terns and assisting orthopedic surgeons in treatment planning
[31].

MRI is another valuable imaging modality in fracture diag-
nosis, as it provides excellent soft tissue visualization and helps
assess associated soft tissue injuries. The integration of AI with
MRI has shown promise in improving fracture detection and
characterization. For example, this deep learning-based
approach to detect occult scaphoid fractures using MRI. The
model demonstrated high sensitivity and specificity, aiding in
the accurate identification of subtle fractures that may be missed
on conventional X-rays [32].

Furthermore, the fusion of information from multiple imag-
ing modalities using AI has shown significant potential in
improving fracture diagnosis accuracy and treatment planning.
By integrating data from X-rays, CT, and MRI, AI algorithms
can provide a more comprehensive assessment of fractures,
considering both bony and soft tissue involvement. A multi-
modal AI framework that combined X-ray, CT, and MRI data
for the automatic detection and classification of tibial plateau
fractures. The multimodal approach achieved superior perfor-
mance compared to using individual modalities alone, enhanc-
ing fracture diagnosis accuracy [33].

The integration of AI with other imaging modalities also
offers opportunities for virtual surgical planning and simulation.
By combining AI algorithms with preoperative imaging data,
surgeons can simulate fracture reduction, evaluate the stability
of fixation, and optimize surgical strategies. Although the inte-
gration of AI with other imaging modalities in fracture diagno-
sis holds great promise, there are challenges to overcome.
These include data interoperability, standardization of imaging
protocols, and computational complexity. Additionally, the
development of robust AI algorithms that can handle multi-
modal data and provide accurate and reliable fracture assess-
ment remains an ongoing research focus.

In conclusion, the integration of AI with other imaging
modalities, such as CT and MRI, has revolutionized fracture
diagnosis. By leveraging the strengths of each modality and
combining them with AI algorithms, clinicians can obtain more

comprehensive and accurate assessments of fractures, enabling
improved treatment planning, surgical simulation, and patient
outcomes.

Clinical implications and potential benefits

Impact of AI on fracture diagnosis accuracy and

efficiency

The integration of AI into fracture diagnosis has had a pro-
found impact on the accuracy and efficiency of the diagnostic
process. By leveraging advanced algorithms and machine learn-
ing techniques, AI has shown great potential in improving frac-
ture detection, classification, and treatment planning, leading to
enhanced patient care and outcomes.

AI algorithms, particularly deep learning models, have
demonstrated remarkable accuracy in detecting fractures in
orthopedic X-rays. These models can effectively learn and iden-
tify intricate fracture patterns, even in the presence of subtle or
complex features. Several studies have reported significant
improvements in fracture detection accuracy using AI algo-
rithms. Moreover, AI has shown promise in improving the effi-
ciency of fracture diagnosis by automating time-consuming
tasks and reducing the workload of radiologists and clinicians.
AI algorithms can quickly analyze large volumes of imaging
data, such as X-rays, CT scans, and MRI images, providing
rapid preliminary assessments and aiding in the triage of urgent
cases. An AI system that automatically triaged wrist X-rays,
identifying urgent cases with fractures for immediate attention.
The system effectively prioritized cases, ensuring prompt diag-
nosis and timely intervention [34] (Figure 1).

In addition to fracture detection, AI has been instrumental
in fracture classification, which plays a crucial role in treatment
planning. Accurate classification of fractures helps guide appro-
priate management strategies and surgical interventions. AI
algorithms can analyze fracture characteristics and patterns,
enabling precise and consistent classification. For instance, an
AI-based classification system for distal radius fractures
achieves high accuracy and interobserver agreement. The sys-
tem’s ability to provide standardized and objective fracture clas-
sification contributes to improved treatment decision-making
[36].

The integration of AI into fracture diagnosis also holds the
potential to enhance clinical decision support. By leveraging
patient-specific data, including imaging findings, clinical his-
tory, and demographic factors, AI algorithms can assist in risk
stratification, treatment selection, and outcome prediction. For
example, an AI-based decision support system for hip fracture
management analyzed patient data and provided personalized
recommendations for surgical approaches and implant selec-
tion, optimizing patient outcomes [37].

While the impact of AI on fracture diagnosis accuracy and
efficiency is highly promising, there are certain considerations
and challenges to address. The availability of high-quality
and diverse datasets, along with well-curated annotations, is
crucial for training robust AI models. Data privacy, security,
and ethical concerns should also be addressed to ensure patient
confidentiality and compliance with regulations.
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In conclusion, the integration of AI into fracture diagnosis
has significantly improved the accuracy and efficiency of the
diagnostic process. AI algorithms have demonstrated excep-
tional performance in fracture detection, classification, and
treatment planning, providing accurate and timely assessments.
The automation of tasks, rapid triage of cases, standardized
classification, and personalized decision support contribute to
enhanced patient care and optimized outcomes.

Reduction in diagnostic errors and missed

fractures

One of the significant benefits of integrating AI into fracture
diagnosis is the potential to reduce diagnostic errors and missed
fractures. Traditional fracture diagnosis heavily relies on the
expertise and subjective interpretation of radiologists, which
can occasionally lead to variability and human errors. AI algo-
rithms, with their ability to learn from vast amounts of data and
identify subtle patterns, can enhance diagnostic accuracy and
mitigate the risk of missed fractures.

AI-based fracture detection systems have demonstrated
remarkable capabilities in reducing diagnostic errors. These sys-
tems can efficiently analyze orthopedic X-rays and identify
fractures with high sensitivity and specificity. By assisting radi-
ologists in the initial screening process, AI algorithms can act as
a reliable second opinion, improving overall accuracy and sig-
nificantly reducing missed fractures compared to human radiol-
ogists [38]. The incorporation of AI as a decision support tool
has the potential to minimize oversight and improve the overall
quality of fracture diagnosis.

Furthermore, AI algorithms can aid in detecting subtle or
complex fractures that may be challenging to identify visually.
Fractures with atypical presentations or overlapping structures
can often be missed or misinterpreted by human observers.
AI algorithms, particularly deep learning models, can effec-
tively learn from diverse fracture patterns and identify even
the most subtle fracture signs, and achieved high accuracy in
detecting scaphoid fractures, which are notorious for being
easily overlooked [39]. The integration of AI into fracture diag-
nosis enhances sensitivity and reduces the likelihood of missed
fractures, ensuring that patients receive appropriate and timely
treatment.

In addition to fracture detection, AI algorithms can assist in
fracture classification, where errors in categorization can have
significant implications for treatment planning. AI-based classi-
fication systems can standardize the interpretation of fracture
characteristics, leading to consistent and objective results. This
reduces the risk of misclassification and ensures appropriate
treatment strategies [40]. By reducing classification errors, AI
algorithms contribute to more accurate treatment decision-mak-
ing and improved patient outcomes.

It is important to note that the integration of AI does not
replace the role of radiologists or clinicians but rather comple-
ments their expertise. AI serves as a valuable tool to assist
healthcare professionals in their decision-making processes,
providing additional support and reducing the likelihood of
errors and missed fractures.

However, despite the potential of AI in reducing diagnostic
errors and missed fractures, challenges still exist. Developing
accurate AI models requires large and diverse datasets, includ-
ing both positive and negative fracture cases. The availability of

Figure 1. Stand-alone artificial intelligence (AI) performance examples: false-positive and false-negative radiographs. (A) Radiograph shows
a small corticated ossific fragment adjacent to inferior glenoid margin (arrow), likely sequela of prior trauma (chronic fracture) or calcified
detached inferior labrum rather than acute fracture. AI noted this as an acute fracture using the DOUBT-FRACT threshold. Fifteen readers read
this as acute fracture without AI. Four readers thought the fracture was chronic without using AI, but reversed their reading with AI. Only two
radiologists, one rheumatologist, and two family medicine physicians recognized the chronicity of the fracture with and without AI. (B)
Radiograph shows a subtle nondisplaced fracture of the fifth metacarpal base (arrow), which was not detected by AI. All readers missed this
fracture with and without AI. Only ground truth readers noted the fracture. This fracture was only appreciable on the anteroposterior view
shown here and was not clearly visible on (C) the oblique view or the lateral view (not shown) of the right hand. There were two predefined
thresholds for fracture detection: high-sensitivity threshold named DOUBT-FRACT, equal to 50% after transformation, and high-specificity
threshold named FRACT, equal to 90% after transformation [35].
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such datasets for training AI algorithms can be a limitation in
certain contexts. Furthermore, the generalizability of AI models
across different patient populations, imaging devices, and clin-
ical settings needs to be carefully evaluated to ensure consistent
performance.

Enhanced workflow and radiologist productivity

The integration of AI into fracture diagnosis has brought
significant enhancements to workflow efficiency and radiologist
productivity. By leveraging the capabilities of AI algorithms,
time-consuming tasks can be automated, allowing radiologists
to focus on more complex interpretations and providing oppor-
tunities for accelerated and streamlined diagnostic workflows.

One of the primary ways AI enhances workflow efficiency is
through automated triage and prioritization of cases. AI algo-
rithms can rapidly analyze imaging data and identify urgent or
critical cases that require immediate attention. This feature allows
radiologists to promptly address cases with suspected fractures,
ensuring timely diagnosis and treatment. An AI system that suc-
cessfully identified urgent findings in retinal fundus images,
effectively triaging cases for further review by ophthalmologists
[13]. The integration of similar AI-based triage systems in frac-
ture diagnosis can significantly reduce the time spent on non-
urgent cases and improve overall workflow efficiency.

AI algorithms can also automate repetitive tasks in the diag-
nostic process, such as image preprocessing, localization of
fracture regions, and measurement of fracture parameters.
These automated tasks save valuable time for radiologists,
allowing them to focus on the interpretation and analysis of
fracture images. For instance, an AI algorithm automatically
detected and measured femoral fractures on radiographs, reduc-
ing the time required for these tasks. By alleviating radiologists
from routine and time-consuming tasks, AI contributes to
increased productivity and accelerated turnaround times [41].

In addition to task automation, AI algorithms can provide
valuable decision support, assisting radiologists in the interpre-
tation of fracture images. AI systems can generate computer-
aided detection (CAD) markers or highlight regions of interest
that may contain fractures, aiding radiologists in their assess-
ments. This complementary support improves the efficiency
and accuracy of fracture diagnosis. For example, this AI model
achieved comparable performance to radiologists in detecting
wrist fractures on X-rays [12]. The integration of AI-based
CAD systems can expedite the interpretation process, reducing
the burden on radiologists and enhancing productivity.

AI can also assist in automating repetitive and time-con-
suming tasks, such as fracture measurements and annotations.
For example, deep learning algorithms have been developed
to accurately measure fracture displacement and angulation,
providing precise quantification without the need for manual
measurements [42]. This automation not only saves time but
also improves consistency and reduces inter-observer variability
in fracture assessment.

Furthermore, AI algorithms can facilitate standardized
reporting and documentation of fracture findings. By automat-
ically extracting relevant information from imaging data and
generating structured reports, AI systems help ensure consis-
tency and completeness in reporting. This feature is particularly

beneficial in busy clinical settings, where radiologists often face
time constraints. For instance, this AI system generated struc-
tured breast imaging reports, reducing reporting time and
improving report quality. Similar AI-based reporting systems
can be implemented in fracture diagnosis, enabling efficient
and standardized documentation of fracture findings [43].

In addition to these workflow enhancements, AI-powered
triage systems can prioritize urgent or critical cases, ensuring
that they receive prompt attention and reducing the risk of
delays in diagnosis and treatment [44]. By flagging suspicious
fractures or high-risk findings, AI algorithms can assist in
timely patient management and facilitate the appropriate alloca-
tion of resources.

While AI enhances workflow efficiency and radiologist pro-
ductivity, it is essential to maintain a collaborative approach
between AI systems and human experts. Radiologists continue
to play a critical role in the final interpretation and clinical deci-
sion-making process. AI acts as a valuable tool, providing sup-
port and accelerating workflows, but it does not replace the
expertise and judgment of radiologists.

Cost-effectiveness and resource optimization

The integration of AI into fracture diagnosis has the poten-
tial to improve cost-effectiveness and optimize healthcare
resources. By streamlining the diagnostic process, reducing
unnecessary procedures, and enhancing accuracy, AI can lead
to significant cost savings and efficient resource allocation in
orthopedic imaging departments.

Reducing unnecessary imaging studies

One of the key advantages of AI in fracture diagnosis is its
potential to reduce the number of unnecessary imaging studies.
AI algorithms can assist in identifying normal or non-fractured
cases with high accuracy, enabling radiologists to focus on
cases that require further evaluation. This targeted approach
helps avoid unnecessary radiographs, reducing radiation expo-
sure for patients and minimizing the associated costs. For exam-
ple, this study developed an AI system that accurately classified
normal and abnormal wrist radiographs, resulting in a signifi-
cant reduction in the number of unnecessary wrist X-rays
ordered in the emergency department [45]. By reducing the vol-
ume of unnecessary imaging studies, AI contributes to cost sav-
ings and optimized resource utilization.

Expediting diagnosis and reporting

Moreover, AI-based fracture detection systems can expedite
the interpretation process, leading to shorter report turnaround
times. Faster diagnosis and reporting enable prompt initiation
of treatment and management decisions, potentially reducing
hospital stays and associated costs using an AI system for
detecting hip fractures on radiographs [46].

Optimizing resource allocation

AI algorithms can also aid in optimizing resource allocation
by facilitating workload distribution and improving radiologist
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efficiency. By automating routine tasks, such as image prepro-
cessing and fracture localization, AI algorithms free up valuable
radiologist time, enabling them to focus on more complex cases
and critical decision-making. This improved workflow effi-
ciency ensures optimal utilization of radiologists’ expertise
and minimizes the need for additional staffing. For example,
this study demonstrated that the integration of an AI system
for detecting wrist fractures improved radiologist efficiency
by reducing the average time spent on each case [47]. This
increased efficiency translates into optimized resource alloca-
tion and improved cost-effectiveness within the healthcare
system.

Improving patient outcomes

In addition to direct cost savings, AI-based fracture diagno-
sis can contribute to indirect cost reductions by improving
patient outcomes and reducing the need for subsequent interven-
tions. Accurate and timely fracture diagnosis enables appropriate
treatment planning and facilitates early intervention, which can
prevent complications and reduce the need for extensive surgical
procedures or hospital readmissions. For instance, a study
showed that the implementation of an AI system for diagnosing
distal radius fractures led to a reduction in surgical treatment
rates due to improved conservative management decisions
[48]. By optimizing treatment strategies and minimizing the
need for additional interventions, AI-based fracture diagnosis
can contribute to overall cost-effectiveness in orthopedic care.

Challenges and future directions

Ethical considerations and legal implications of AI

adoption

The integration of AI into fracture diagnosis raises impor-
tant ethical considerations and legal implications that need to
be carefully addressed. As AI algorithms become more preva-
lent in healthcare settings, it is crucial to ensure that their adop-
tion adheres to ethical principles, respects patient rights,
maintains privacy and confidentiality, and complies with rele-
vant legal frameworks.

Transparency and explainability

One of the primary ethical considerations in AI adoption is
the transparency and explainability of AI algorithms. It is essen-
tial for AI systems used in fracture diagnosis to provide trans-
parent and interpretable outputs, enabling radiologists and
healthcare professionals to understand how the algorithms
arrive at their conclusions. This transparency promotes trust,
accountability, and clinical acceptance. Researchers and devel-
opers must strive to enhance the explainability of AI algo-
rithms, employing techniques such as model interpretability
and visualizations to elucidate the decision-making process.
Ethical guidelines, such as those proposed by the European
Commission’s High-Level Expert Group on AI emphasize the
importance of transparency and explainability in AI systems
[49].

Patient privacy and data protection

Patient privacy and data protection are critical aspects of AI
adoption. AI algorithms in fracture diagnosis often require
access to large volumes of patient data, including medical
images and clinical information. It is essential to ensure that
patient data is handled securely, following applicable privacy
regulations and institutional policies. Anonymization and de-
identification techniques can be employed to protect patient pri-
vacy, and strict data governance protocols should be in place to
safeguard against data breaches. Compliance with data protec-
tion laws, such as the Health Insurance Portability and Account-
ability Act (HIPAA) in the United States, is essential to ensure
ethical AI implementation [50].

Bias and fairness

Bias and fairness in AI algorithms are ethical considerations
that demand careful attention. AI algorithms trained on biased
or unrepresentative datasets may perpetuate existing disparities
and inequalities in healthcare. To mitigate this, it is crucial to
ensure diverse and inclusive training datasets that adequately
represent different population groups. Regular monitoring and
evaluation of AI systems for potential bias and fairness issues
should be conducted, and steps should be taken to rectify any
identified biases. Ethical frameworks, such as the ACM Code
of Ethics and Professional Conduct, highlight the importance
of fairness, accountability, and social responsibility in the
development and deployment of AI technologies [51].

Legal implications

Legal implications associated with AI adoption in fracture
diagnosis include liability, malpractice, and regulatory compli-
ance. Determining the responsibility and liability in cases where
AI systems are involved can be complex. Clear guidelines and
regulations are necessary to define the roles and responsibilities
of AI developers, healthcare providers, and radiologists. Addi-
tionally, legal frameworks need to address issues related to
medical malpractice and potential errors or adverse outcomes
resulting from AI-assisted diagnoses. Regulations, such as the
Medical Device Regulation (MDR) in the European Union,
may provide guidance on the certification, safety, and account-
ability of AI systems in healthcare.

Ethical review boards and institutional ethics

committees

Ethical review boards and institutional ethics committees
play a crucial role in ensuring the ethical and legal compliance
of AI adoption in fracture diagnosis. These bodies should over-
see the implementation of AI systems, assess their potential
risks and benefits, and ensure that appropriate consent proce-
dures and patient information protocols are in place. Collabora-
tion among healthcare professionals, researchers, policymakers,
and legal experts is essential to develop comprehensive ethical
guidelines and legal frameworks that address the unique consid-
erations associated with AI adoption.
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Federated learning

In the context of AI, federated learning is emerging as a
promising approach to address both data privacy and security
concerns. Federated learning allows AI models to be trained
across multiple decentralized institutions while keeping the
patient data locally stored and protected. By keeping the data
at its source, federated learning minimizes the need for data
sharing, thus reducing privacy risks. This approach ensures that
sensitive patient information remains under the control of the
data owner while enabling collaborative model training and
knowledge sharing.

Governance frameworks

Furthermore, robust governance frameworks are necessary
to ensure responsible data management and address privacy
and security concerns effectively. Healthcare institutions should
establish clear policies and guidelines for data handling, includ-
ing data access, sharing, and retention. Ethical review boards
and data governance committees can provide oversight and
ensure compliance with privacy and security regulations. Regu-
lar staff training on data privacy and security protocols is essen-
tial to foster a culture of awareness and responsibility among
healthcare professionals involved in AI-based fracture diagnosis.

Public transparency and communication

Public transparency and communication are crucial in
addressing data privacy and security concerns. Healthcare orga-
nizations should clearly communicate their data privacy poli-
cies, data usage practices, and security measures to patients,
ensuring transparency and informed consent. Open dialogue
with patients and the public regarding the benefits, risks, and
safeguards associated with AI technologies builds trust and
encourages patient engagement in their healthcare journey.

In summary, the integration of AI into fracture diagnosis
necessitates robust data privacy and security measures. Adher-
ence to privacy regulations, data anonymization techniques,
strong data security protocols, and the exploration of privacy-
preserving approaches like federated learning are essential to
protect patient confidentiality. A comprehensive governance
framework and transparent communication practices ensure
responsible and accountable data management. By addressing
data privacy and security concerns effectively, AI technologies
can be deployed in fracture diagnosis while upholding patient
privacy rights and maintaining public trust.

Conclusion

AI has emerged as a transformative technology in fracture
diagnosis, offering the potential to enhance accuracy, efficiency,
and clinical decision-making. The integration of deep learning
models, CNNs and RNNs, NLP techniques, and multi-modal
imaging approaches has shown promising results. While chal-
lenges remain, addressing biases, ensuring data privacy and
security, and promoting transparency are crucial for the respon-
sible and equitable adoption of AI in fracture diagnosis.

Some of the key findings from the review:

� AI models, particularly deep learning algorithms, have
shown remarkable performance in fracture detection and
classification, rivaling, or surpassing human experts in
accuracy and efficiency.

� CNNs have emerged as a powerful approach for fracture
detection, demonstrating high sensitivity and specificity.
Their ability to learn complex patterns in X-ray images
has facilitated automated fracture detection and localization.

� The incorporation of RNNs has shown promise in frac-
ture classification tasks, leveraging sequential informa-
tion and capturing temporal dependencies in X-ray series.

� NLP techniques have been utilized to extract clinical
information from radiology reports, facilitating auto-
mated fracture diagnosis and improving the efficiency
of radiologists.

� Integration of AI with other imaging modalities, such as
CT and MRI, has the potential to enhance fracture diag-
nosis accuracy and provide a comprehensive assessment
of complex fractures.

� The adoption of AI in fracture diagnosis has demon-
strated significant improvements in accuracy, leading to
reduced diagnostic errors and missed fractures. AI-based
systems can serve as valuable decision-support tools for
radiologists and orthopedic surgeons.

� The implementation of AI technologies has shown the
potential to enhance workflow and radiologist productiv-
ity by automating time-consuming tasks, such as image
annotation and report generation.

� Cost-effectiveness and resource optimization are other
potential benefits of AI adoption in fracture diagnosis. AI-
based systems can help reduce unnecessary imaging tests,
decrease patient wait times, and optimize resource allocation.

� Ethical considerations and legal implications of AI adop-
tion in fracture diagnosis must be carefully addressed.
Issues such as bias, fairness, privacy, and accountability
require attention to ensure the responsible deployment
of AI technologies.

� Future research directions in this field include multi-
modal fusion, real-time fracture detection, automated
3D fracture reconstruction, clinical decision support sys-
tems, longitudinal fracture analysis, clinical workflow
optimization, and data sharing.
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