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The etiology of Legg-Calvé-Perthes’ disease (LCPD) is unknown. There are many insights however from epidemio-
logic/demographic information. A systematic medical literature review regarding LCPD was performed. The incidence ranges
from 0.4/100,000 to 29.0/100,000 children <15 years of age. There is significant variability in incidence within racial groups and is
frequently higher in lower socioeconomic classes. The typical age at presentation ranges from 4 to 8 years (average 6.5 years), except
for children from the Indian subcontinent (average 9.5 years). There is a mild familial component. The children demonstrate
impaired growth in height, skeletal age, and birth weight. This impaired growth coincides with an age appropriate reduced
somatomedin A activity and decreased levels of IGF. LCPD can be associated with abnormalities in the coagulation cascade,
including an increase in factor V Leiden mutation, low levels of protein C and/or S, and decreased antithrombin activity. There is
decreased turnover in type I collagen and synthesis of type III collagen, as well as reduced levels of urinary glycosaminoglycans in
the active phases of the disorder. Subtle abnormalities in the opposite hip and other minor/major congenital defects are reported.
Children with LCPD are active and score abnormally in certain standardized psychological tests.

1. Introduction

Legg-Calvé-Perthes’ disease (LCPD) is an idiopathic
osteonecrosis of the proximal capital femoral epiphysis
in children. The epiphysis undergoes collapse, resorption,
reossification, and eventual healing. The healed hip may
range from an essentially normal contoured femoral
head (Stulberg I) to one with incongruous incongruity
(Stulberg V). As with any pathologic process, LCPD goes
through a course of disease denoted by the Waldenström
stages, which are synovitic, avascular, fragmentation
(collapse), reossification (healing), and healed (residual).
The magnitude of epiphyseal involvement is determined by
the Catterall class [1], Salter-Thompson group [2], and/or
lateral pillar group [3]. The Catterall class is determined on
both anteroposterior and frog-lateral radiographs during
the stage of maximum fragmentation, the Salter-Thompson
group is determined on the frog-lateral radiograph during

the avascular/precollapse stage using the subchondral
crescent fracture, and the lateral pillar classification is
determined on the anteroposterior radiograph during early
fragmentation.

2. Materials and Methods

There are many epidemiologic and demographic findings in
LCPD. A systematic review of LCPD was performed. LCPD
has been known by at least 22 different names since its first
description in the late 19th and early 20th centuries [4]. Since
1963, the official medical subject heading (MESH) used by
the National Library of Medicine is Legg-Perthes’ disease,
but many other names had been previously used. To ensure
capture of all the published literature, older terms were also
searched as keywords or keyword phrases. Therefore, the
terms used to search for LCPD were arthritis deformans
juvenilis, Calve-Perthes disease, coxa plana, femoral head
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necrosis, juvenile chondroepiphysitis, Legg-Calve-Perthes
disease, Legg-Perthes disease, Legg’s disease, osteochondritis
deformans juvenilis, osteochondritis deformans juvenilis
coxae, osteochondritis juvenilis, osteochondrosis of capital
epiphysis of femur, Perthes disease, and pseudocoxalgia.

The databases searched were PubMed (http://www.ncbi.
nlm.nih.gov/pubmed/), Ovid Medline, EMBASE, World-
Cat (books and theses) (http://firstsearch.oclc.org/), and
IndexCat (Index Catalogue of the Library of the Surgeon-
General’s Office) (http://www.indexcat.nlm.nih.gov/). Exclu-
sion criteria were those manuscripts discussing surgery,
therapy, rehabilitation, and any foreign language articles
without an English abstract. Individual journals were also
searched for articles published prior to 1996 that predate
electronic Medline indexing, including Journal of Bone and
Joint Surgery (American and British), Clinical Orthopaedics
and Related Research, and Acta Orthopaedica Scandinavica.
Age groups were limited to those <18 years old. Duplicate
citations were removed. The dates for the search were 1880–
1961 for IndexCat, 1900–2009 for WorldCat, 1948–1965 for
OldMedline, and 1950–February 2010 for Ovid Medline.

This search resulted in 1124 unique citations. These
1124 manuscripts were reviewed to find those that discussed
any of the topics regarding etiology, epidemiology, demo-
graphics, incidence, prevalence, race, gender, family history,
genetics, inheritance, age, bone age, weight (either birth
weight or normal weight), height, growth, maturation, other
anthropometric characteristics, hormone/endocrine, smok-
ing, coagulation, fibrinolysis, congenital anomalies, collagen,
immunoglobulin, opposite hip, behavior/psychology, sea-
sonal variation, and infection. Of these 1124 manuscripts,
144 provided ample information and are the contents of this
paper.

3. Results

3.1. Incidence. The conventional quotation for the incidence
of LCPD is the number per 100,000, usually for age < 15
years. The incidence of LCPD ranges widely, from 0.4 in
Eastern India (Vellore-Taluk area) to 29.0 (Table 1) in the
Faroe Islands (North Atlantic ocean). Significant variability
exists within countries, cities, and ethnic groups. Race
is classified using the definitions of Eveleth and Tanner:
Caucasians, Africans in Africa and of African ancestry, Asi-
atics (Amerindians, Hispanics, Indonesian-Malays), Indo-
Mediterraneans (inhabitants of the Near East, North Africa,
and Indian subcontinent), and Australian Aborigines and
Pacific Island peoples [23].

3.2. Whites

3.2.1. British Isles. The incidence ranges from 5.5 in Wessex,
England [13], to 15.6 in Liverpool, England [21]. The
incidence in 3 different regions of England [13] was 5.5 in
the Wessex Health District, 7.6 in the Trent Health District,
and 11.1 in the Mersey Health District (including Liverpool)
(Figure 1(a)). In Liverpool, the incidence in the inner city

was higher (21.1) compared to the surrounding areas (13.1—
outer Liverpool, 14.6—Knowsley district, 11.9—Sefton dis-
trict) [21] (Figure 1(b)) implying that the incidence is
lower in less populated or more rural areas. However, in
southwest Scotland [20], the incidence was higher in less
populated areas (17 to 30) compared to more populated
areas (4.5). In Yorkshire, England, which has a substantial
rural population, the average incidence was 6.1, with large
geographical variations unexplainable by differences between
urban and rural populations [15]. The East Riding area of
Yorkshire, located on the best agricultural land, had no cases
[15].

Many authors have noted differences in incidence by
social class and/or inner city/urban/rural location. In the
seminal epidemiologic study of 310 children in Edinburgh
and Glasgow, Scotland [24], there was a higher than expected
proportion of children with LCPD in lower socioeconomic
classes; the same was noted in Liverpool [25] (Figure 2(a)).
The incidence in the Liverpool inner city within the highest
socially deprived area was 31.7 and 10.3 for the lowest; in the
outer city the incidence was 21.8 within the highest socially
deprived area and 7.4 for the lowest [21] (Figure 2(b)). In
Northern Ireland [19], the highest incidence is in the most
deprived rural location (16.1), over twice that in the least
deprived rural location (7.1). In Southwest Scotland [20], the
incidence was 33.6 in the most deprived areas and 7.8 in the
least deprived areas; the 33.6 incidence is the highest found
to date in any series/publications. However, in Glasgow, there
was no association of LCPD incidence and social class [26].
In general, the incidence of LCPD in the British Isles is
higher in lower socioeconomic classes and variable regarding
rural/urban location (Figure 2(b)).

3.2.2. Scandinavia. The incidence is 8.5 in Uppsala, Sweden
[16], and 9.2 in Norway [17]. Within Norway, similar to
the British Isles, there is significant variability; the lowest
incidence in the north (5.4) and the highest in the center and
west (10.8 and 11.3).

3.2.3. North America. In British Columbia [12], the inci-
dence was 5.10 and, in Massachusetts, [14] 5.7.

3.2.4. Africa. In Eastern Cape, South Africa [6], the incidence
in Whites is 10.8; in the urban areas (Port Elizabeth and
Uitenhage), it is ∼2 times greater than in rural areas. This
urban-rural dichotomy was noted overall (3.85 versus 1.1)
and when separated by race (12.6 versus 6.0 for Whites, 2.2
versus 1.4 for mixed African-White, and 0.7 versus 0.28 for
Africans).

3.3. Indo-Malays. In Japan [7], the incidence was 0.90.
In Bradford, England, the incidence was 4.6 in Caucasian
children and 0.63 in Indo-Malay children [27]. In Korea
[9], the incidence was 3.8 and lower in the greater
Gwanju metropolitan areas compared to the rural Chonnam
province (3.2 versus 4.3).

http://firstsearch.oclc.org/
http://www.indexcat.nlm.nih.gov/


ISRN Orthopedics 3

Table 1: Incidence of Legg-Calvé-Perthes’ disease∗.

Study Year City, country Region Ethnicity No Pts Incid

Joseph et al. [5] 1988 Vellore, India Asia Indo-Med (Indian) 4 0.4

Purry [6] 1982 Eastern Cape, South Africa Africa Black 6 0.45

Kim et al. [7] 2006 Japan Asia Indo-Malay (Japanese) 711 0.9

Purry [6] 1982 Eastern Cape, South Africa Africa Mixed 11 1.73

Ebong [8] 1977 Nigeria Africa Black 10 1.8

Rowe et al. [9] 2005 Chonnam, Korea Asia Indo-Malay (Korean) 84 3.8

Joseph et al. [5] 1988 Udupi, India Asia Indo-Med (Indian) 138 4.4

Wijesekera [10] 1984 Kurunegala, Sri Lanka (Ceylon) Asia Indo-Med (Indian) 76 3.96

Thompson and Leong [11] 1978 Hong Kong Asia Indo-Malay (Chinese) 32 4.5

Gray et al. [12] 1972 British Columbia, Canada North America White 379 5.1

Barker et al. [13] 1978 Wessex, England British Isles White 34 5.5

Molloy and MacMahon [14] 1966 Massachusetts North America White† 86 5.7

Hall and Barker [15] 1989 Yorkshire, England British Isles White 101 6.1

Barker et al. [13] 1978 Trent, England British Isles White 78 7.6

Moberg and Rehnberg [16] 1964 Zealand, Denmark Scandinavia White NA 8.0

Moberg and Rehnberg [16] 1992 Uppsala, Sweden Scandinavia White 51 8.5

Moberg and Rehnberg [16] 1964 Jutland, Denmark Scandinavia White NA 9.0

Wiig et al. [17] 2006 Norway Scandinavia White 425 9.2

Purry [6] 1982 Easter Cape, South Africa Africa White 38 10.8

Margetts et al. [18] 2001 Liverpool, England British Isles White 122 11.1

Barker et al. [13] 1978 Mersey, England British Isles White 68 11.1

Kealey et al. [19] 2000 Northern Ireland British Isles White 313 11.6

Pillai et al. [20] 2005 Dumfries, Scotland British Isles White 40 15.4

Hall et al. [21] 1983 Liverpool, England British Isles White 157 15.6

Niclasen [22] 1974 Faroe Islands, Denmark Scandinavia White 43 29.0
∗

(per 100,000 children <15 yrs old).
†one of the 86 children was African.
NA: not available.

3.4. Indo-Mediterraneans

3.4.1. India/Sri Lanka. There is a 10-fold variability in
incidence in India; 0.4 in the east (Vellore Taluk) [5] to 4.4
in the west (Udupi Taluk). In Sri Lanka (Kurunegala district)
the incidence is 3.96 [10], and all 76 children with LCPD were
from lower income groups [10].

3.5. Africans. True LCPD (excluding sickle cell hemoglobin-
opathy) is extremely rare in Africans. In Eastern Cape, South
Africa [6], the incidence is 0.45 and rises to 1.73 in children
of mixed African/Caucasian ancestry. The incidence is 1.8
in Nigeria [8]. In Togo, there were 22 cases of LCPD in
29620 children attending two Togolese hospitals over a 7-
year period, indicating the rarity of the disorder. One of 86
children in Massachusetts [14] was African, and two of the
188 children in Connecticut was African [28].

3.6. Other Demographics (Age, Gender, Laterality,

Family History)

3.6.1. Age, Gender, Laterality, LCPD Severity. The average age
is 6.5 years, with a typical age range of 4 to 8 years (Table 2).
The average age for Indian children is 9.5 years, for Nigerian

children 10.3 years, and for all others 6.3 years. LCPD is more
common in boys (81.4%) than girls (18.6%) and mostly
unilateral (89.2%). Right and left hip involvement is similar
(46.5% and 53.5%). In 1638 hips (Table 3), 112 (6.8%) were
Catterall class I, 295 (18.0%) class II, 710 (43.3%) class III,
and 521 (31.8%) class IV. In 1671 hips, 236 (14.1%) were
lateral pillar group A, 971 (58.1%) B and B/C border, and
464 (27.8%) C.

3.6.2. Family History/Genetics. A positive family history
has been noted by many [7, 24, 27, 28, 37–41]. Quoted
percentages are 4.5% [7], 7% [28], and 8% [27]. There are
also reports in siblings [42, 43]. The recurrence risk was
2.6% for siblings and offspring in a review of the family
histories of 842 English children with LCPD [44], arguing
for a multifactorial inheritance pattern. The proportion of
the 842 children having a 1st degree relative with LCPD was
1.6%, a 2nd degree relative 0.27%, and a 3rd degree relative
0.27%; all higher than the average English incidence. In
South Wales [45], the risk of LCPD in siblings was under 1%
and of an affected parent 3%. There are several case reports
of LCPD transmitted through several generations [40, 46].
In the Faroe Islands [47], an isolated genetic community, an
accumulation of both LCPD and developmental dislocation



4 ISRN Orthopedics

T
a

bl
e

2:
D

em
og

ra
ph

ic
s

of
41

66
ch

ild
re

n
w

it
h

Le
gg

-C
al

vé
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Figure 1: Maps demonstrating various incidences of LCPD in different regions of England. (a) Incidence of LCPD in 1976 per 100,000
children aged 14 years and under in three regions of England. Map of England taken and adapted from the National Policing Improvement
Agency, located at http://maps.police.uk/, with permission (Data from [13]). (b) Average yearly incidence of LCPD per 100,000 children
aged 14 and under in the Liverpool administrative area. Map of Merseyside area taken and adapted from the National Museums Liverpool
located at http://www.liverpoolmuseums.org.uk/maritime/exhibitions/magical/placenames/index.asp, with permission (Data from Hall et
al. [21] and Barker et al. [13] (Wirral)).

Table 3: Severity of epiphyseal involvement in Legg-Calvé-Perthes’ disease.

Study Year Location
Catterall class Lateral pillar group

I II III IV A B BC B + BC C

Rosenfeld et al. [29] 2007 Dallas, TX 7 108 30 138 43

Catterall [1] 1971 London, England 31 31 22 13

Guille et al. [32] 1998 Wilmington, DE 37 120 228 233 155 204 204 204

Wang et al. [33] 1990 Taipei, Taiwan 0 7 19 21

Kim et al. [7] 2006 Japan 30 103 352 210 68 350 350 157

Herring et al. [35] 2004 USA 6 218 61 279 60

Wijesekera [10] 1984 Kurunegala, Sri Lanka 13 21 33 11

Chacko et al. [36] 1986 Karnataka, India 1 13 56 33

Total 112 295 710 521 236 880 91 971 464

Percentage 6.8 18.0 43.3 31.8 14.1 52.7 5.4 58.1 27.8

of the hip was noted in certain families; it remains to be
determined if this is genetic, environmental, or both. Others
note no significant association with family history [24, 33].

There are case reports of LCPD in twins, both monozy-
gotic [48–51] and dizygotic [52], as well as three female 1st
degree relatives [53]. These dated studies could not assess for

genetic markers, and thus it is unknown if this represents a
true genetic pattern or simply the statistical chance of siblings
developing the same disease. Wynne-Davies and Gormley
[24] described 6 sets of twins with only one of the twins
having LCPD.

http://maps.police.uk/
http://www.liverpoolmuseums.org.uk/maritime/exhibitions/magical/placenames/index.asp
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Figure 2: (a) Incidence of LCPD (100,000 children per year ≤14
years of age) by social class in location in Liverpool (Data from Hall
et al. [21]). (b) Composite incidence of LCPD (100,000 children per
year <14 years of age) by highest and lowest deprivation indices
separated by rural and urban locations in the British Isles (Data
from Hall et al. [21], Kealey et al. [19], and Pillai et al. [20]).

Several studies show associations with certain HLA types.
A positive association was noted with HLA-A1 [54, 55] and
HLA-A9, HLA-A10, and HLA-B27 [56]. A protective effect was
seen with HLA-A2 and HLA-Cw3; the incidence of LCPD was
less in those types [57]. Two studies found no differences in
HLA types [58, 59]. There is no apparent association between
ABO and Rh blood groups [60].

3.7. Perinatal Factors (Parental Age, Birth Order/Presentation,
Birth Weight). Both parents of children with LCPD were
older than the normal population (31.7 versus 28.8 years for

the fathers, 28.9 versus 26.9 for the mothers) in one study
[24], with no differences noted in parental age by others
[28, 33, 61].

LCPD was more frequent in the 3rd born or older
children [24] in one study, while others noted no differ-
ences [33]. Children with LCPD are more commonly born
breech—10.7% compared to 2–4% in the normal population
[24]. A lower birth weight was noted in children with LCPD
[62, 63]; 7.1 lbs in 70 children with LCPD and 7.8 lbs in 70
control children without LCPD [62]. In 5 sets of twins, the
smaller twin at birth developed the LCPD [63]; the average
discordance in birth weight was 13.4% (range 7.1 to 23.5%).
Others note no differences in birth weight [24, 33, 61].

3.8. Impaired Growth, Anthropometric Differences, and

Skeletal Maturation

3.8.1. Impaired Growth and Anthropometric Differences.
Height retardation was noted in 185 Ohio children with
LCPD [64], even when accounting for parental height; body
weight was average or above average. In Scottish children,
a greater proportion of LCPD children have diminished
height (<10th percentile) with no differences for weight
[24]. In 76 Sri Lanka children with LCPD, 46% were below
average height at presentation [10]. In 109 Japanese children
with LCPD, 97 (89%) were below the mean in height [65].
Children with LCPD are shorter at birth and remained so
during the phases of LCPD and adulthood [66, 67]; boys were
4.4 cm shorter and girls 2.5 cm shorter than their norms [66].
No height or weight differences were found in Irish [68] and
Jewish children with LCPD [69].

Skeletal growth is progressively impaired in a caudal
direction. Rostral sparing is documented by normal head
growth [70] with increasing growth retardation in a caudal
direction: biacromial width was less reduced than standing
height; forearm and hand showed more impaired growth
than the upper arm; the feet showed more impaired growth
than the leg. This impaired growth most severely affects the
feet [24, 71]. Growth retardation in LCPD children from
rural India [72] is identical to English children.

3.8.2. Skeletal Maturation. Aside from one study in Jewish
children with LCPD [69], all others note delayed bone age
in LCPD. In 182 children with LCPD, many were <3rd
percentile bone age, which was more common in boys than
girls [76]. In 125 of 140 (89%) children with LCPD [28]
bone age was delayed. Bone age was at least 3 months less
in 83% of children [67]. This is seen [75] with both the
Greulich-Pyle hand-wrist assessment [73] and the Oxford
pelvis method [74] of determining bone age (Figure 3). The
average chronologic age for both boys and girls was 8.2 years;
for boys, the average hand-wrist bone age was 7.4 years and
average pelvic bone age 5.9 years, and, for girls, the average
hand-wrist bone age was 6.9 years and average pelvic bone
7.0 years [75]. Carpal maturation was delayed in 125 children
with LCPD; the most severe delay was at 3 to 5 years of age
[77]. In a study of 27 girls with LCPD at the time of diagnosis
[78], bone age (Tanner Whitehouse 2 method) was delayed
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an average of 1.4 years for the radius/ulna and 1.9 years for
the carpals. A greater delay in bone age is associated with
more severe LCPD [79]. Children with transient synovitis
show minimal delay in bone age compared to those with
LCPD (7 months versus 23 months) [80].

In non-Caucasians, bone age was delayed 31.8 months
in 17 of 25 Formosan (68%) children with LCPD [33]. In
Hong Kong, all Chinese children with LCPD had a bone age
lower than the mean [11]. In Korean children, bone age was
delayed 10.4 months in boys and 4.6 months in girls [9].
In 21 Japanese LCPD children, delayed bone age was noted
in all [65]. In 76 Sri Lankan children, 78% demonstrated
skeletal retardation [10]. In Mexican children (Hispanic-
Amerindian), bone age was delayed 28 months in children
with LCPD between the ages of 6–10 years [81].

Skeletal standstill (no increase in bone age with increas-
ing chronologic age) occurs in LCPD [75, 76] and resolves
after the LCPD has healed [80].

3.9. Endocrine Dysfunction. Postnatal skeletal development
is regulated by growth hormone, whose effects are partly
mediated by somatomedins. Somatomedins stimulate car-
tilage activity resulting in cell proliferation and hypertro-
phy. In Japan, the incidence of LCPD was 70 in growth-
hormone-deficient children [82] compared to 0.9 in the
normal population [7]. Serum growth hormone response to
insulin-induced hypoglycemia is reduced in boys with LCPD
compared to those with constitutional short stature [83].
The primary somatomedin responsible for postnatal skeletal
maturation is somatomedin C insulin-like growth factor
(IGF-1). Somatomedin deficiency may result in impaired
skeletal maturation, a well-known phenomenon in LCPD.
Somatomedin A [84] and C [65] deficiency has been noted
LCPD. Somatomedin activity normally increases with age in
growing children, but this does not occur in children with
LCPD [85, 86]. Plasma levels of IGF-1 were reduced the first

2 years after the diagnosis of LCPD [87], but with normal
levels of IGF-binding protein [88]. Low levels of IGF-1 were
confirmed by Crofton et al. [89], who also noted abnormal
collagen turnover in the acute stages of LCPD. In plasma,
nearly all the IGF-1 is bound to specific binding proteins,
which for IGF-1 is the IGF-binding protein 3 (IGFBP3).
Decreased levels of IGFBP in children with LCPD have been
seen but with normal levels of IGF-1 [90]. No abnormalities
in IGF-1 or IGFBP concentrations have been encountered by
others [68, 83, 91, 92] in children with LCPD.

Early studies [93, 94] noted an association with hypothy-
roidism and LCPD but not seen in more recent studies [68,
83, 95–98]. No abnormalities in adrenal function (cortisol)
[68, 83] or cholesterol [96] have been noted.

3.10. Smoking, Hypofibrinolysis, and LCPD. Passive smoke
exposure during pregnancy has been correlated with LCPD.
This was first noted in Massachusetts [62]; maternal smoking
while pregnant was present in 63% of LCPD and 43% of
control cases. This was confirmed in Sweden [99]; maternal
smoking during pregnancy increased the odds of developing
LCPD in the child by 1.44 if the mother smoked <10
cigarettes per day, and by 2.1 when ≥10 cigarettes per day. It
was also noted that children with a birth weight <1500 gms
had a 2.4 times increased risk of developing LCPD.

An increase in LCPD in children exposed to passive
smoke after birth has also been noted. In children with
LCPD [100], 63.9% had at least one smoker living in the
child’s household with a mean of 1.03 smoker years per
year of life exposure to smoke; in control children, 39.6%
had at least one smoker living in the child’s house with
a mean of 0.48 smoker years per year of life exposure to
smoke. No association was noted between lower income and
LCPD. This association with passive smoke exposure was
corroborated in Spain [101], where 79% of LCPD children
were passive smokers compared to 43% of controls. The
odds ratio for a child, after controlling for age and gender,
of developing LCPD when exposed to passive smoke was
5.3 (95% CI 2.9–9.7). There were no associations between
passive smoking and age of child, Catterall class, or final
Stulberg result. In another study of 39 children with LCPD
[102], 24 had exposure to second hand smoke, some even
in utero (17 of the 24). Of the children with LCPD and
smoke exposure, 48% had low stimulated tissue plasminogen
activator activity, compared to only 7% of the children with-
out smoke exposure. In Georgia [103], children exposed to
passive smoke were 5.6 (95% CI 2.0–12.0) times more likely
to develop LCPD than those not exposed. This was strongly
associated with a polymorphism in the β-fibrinogen gene
G-455-A, which results in increased fibrinogen levels, thus
leads to thrombotic/coagulation abnormalities in children
with LCPD (Figure 4).

Factor V Leiden mutation discovered in Leiden, Nether-
lands [104], results in production of factor V that cannot be
inactivated by activated protein C. This leads to a persistence
of circulating activated factor V with continued activation
of the coagulation cascade and a hypercoagulable state.
Families with LCPD and factor V Leiden mutations have
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been described [105, 106]. In nonfamilial LCPD, a factor
V Leiden mutation has been noted by many; 12.5% [107]
and 10.6% in children with LCPD [108] in studies without
controls. In studies with controls, these values are 30% in
LCPD and 1.87% in controls [109], 11% in LCPD and
4% in controls [110], 9% in LCPD and 5% in controls
[111], and 4.9% in LCPD and 0.7% in controls [112].
Children with the most severe LCPD (Catterall IV) were
homozygous for factor V Leiden mutation [108]. High levels
of anticardiolipin antibodies (26% versus 11%) have also
been noted [110]. The OR of developing LCPD with factor V
Leiden mutation in two studies are 22.5 [109] and 3.3 [113];
the OR of developing LCPD with ≥ abnormalities in factor
V or anticardiolipin antibody is 3.29 [110].

Other coagulation abnormalities exist in LCPD. Throm-
bophilia and hypofibrinolysis were noted in 8 children
[114] in 1994. A subsequent investigation noted that 75%
of 44 children with LCPD had coagulation abnormalities
[115]; thrombophilia (a deficiency in antithrombotic factor
C or S, with an increased tendency towards thrombosis)
in 23 children; increased lipoprotien(a) (a thrombogenic
lipoprotein associated with osteonecrosis in adults) in 7
children; hypofibrinolysis (reduced ability to lyse clots) in 3
children. In another study, only 14 of 64 children (22.5%)
with LCPD had entirely normal coagulation measures [107]
with resistance to activated protein C the most common

abnormality (23 of 64). A 3.8 times increased risk for LCPD
with low levels of protein C has been found [111]. Protein C
activity is also lower in LCPD [116, 117]. Both protein C and
antithrombin activities were lower in LCPD than controls
[117]; a family history of hereditary thrombophilia was
higher in LCPD than controls. LCPD was increased 2.8 times
with protein S deficiency and 7.5 times with elevated factor
VIII levels [113]. Others note no coagulation abnormalities
in LCPD [116, 118–127].

Another fact supporting a hypercoagulable state in LCPD
is tissue factor pathway inhibitor (TFPI). TFPI is an impor-
tant natural anticoagulant molecule that downregulates the
tissue factor dependent coagulation pathway. A deficiency
leads to a prothrombotic state, and over expression may
be a protective mechanism against ongoing local microvas-
cular events. TFPI concentrations in children with LCPD
were significantly higher (56.8 ng/mL) compared to controls
(37.3 ng/mL) [128]. This is interpreted as a physiologic
response to a hypercoagulable state; an increased TFPI is
natural anticoagulation. Increased blood viscosity in LCPD
is reported [129]; thus vascular occlusion may simply be due
to fluid mechanic properties [129].

After thrombosis, the body attempts to lyse the clot.
Fibrinolysis is mediated in part by thrombomodulin, an
endothelial cell membrane-associated glycoprotein which
functions in activation of the anticoagulant systems. In
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Figure 5: Urinary DPD/CREA (urinary deoxypyridinoline/creat-
inine ratio) in children with LCPD in different Waldenström
stages. The control level is denoted by the hatched line. DPD
is a degradation product of type I collagen; a decrease in its
urinary excretion indicates a decrease in bone turnover. Thus,
there is decreased bone turnover in children with LCPD during
the avascular and fragmentation phases of the disease (Data from
Westhoff et al. [131]).

LCPD, thrombomodulin and global fibrinolytic activity are
elevated [130]. This is interpreted as a compensatory reaction
to the thrombosis in LCPD.

3.11. Other Associations with LCPD

3.11.1. Collagen Metabolism/Genetics and Bone Turnover.
Type I collagen is found almost exclusively in bone and
calcifying tissues. Markers of type I collagen degradation
are urinary deoxypyridinoline (DPD) and type I collagen
telopeptide (ICTP). ICTP is higher in children with LCPD
compared to controls [89], indicating an increase in type I
collagen degradation. The median urinary DPD/creatinine
ratio in children with LCPD is reduced during the fragmenta-
tion stage and returns to normal (if not slightly higher) in the
healed stage [131] (Figure 5). The DPD/creatinine decrease is
greater with more severe LCPD (egg lateral pillar C > lateral
pillar B). These findings support a systemic etiology in LCPD.

A marker of type III collagen synthesis is the procollagen
type III N-terminal propeptide (P3NP). Type III collagen
synthesis is reduced at diagnosis in children with LCPD
as demonstrated by very low levels of P3NP. However,
there were no controls, and the differences in children with
LCPD compared to otherwise normal children in the same
geographic/ethnic/socioeconomic situation are not known.

A recurrent mutation in type II collagen (cartilage col-
lagen) in a Japanese family with LCPD [38] has been noted.
This mutation amino acid change (p.G1170S) perturbs the
Gly-X-Y triple-helix of type II collagen. Similar findings were
noted in a Chinese family where a p.Gly1170S mutation of
COL2A1 resulted in premature hip osteoarthritis, avascular
necrosis of the femoral head, or LCPD, depending upon the

age at onset [39]. In a cohort of nonfamilial children with
LCPD, no mutations in the COL2A1 gene were found [124].

3.11.2. Articular Cartilage Markers. Glycosaminoglycans
(GAGs) are chains of repetitive disaccharide units linked
with proteins in the cartilaginous extracellular matrix to
form proteoglycans. Upon cartilage degradation, GAGs are
eliminated by the kidneys. Elevated urinary GAG levels
indicate increased articular cartilage degradation. Decreased
levels of urinary GAGs in children with LCPD compared
to normal children or those with transient synovitis have
been noted [132]. This can be interpreted as either increased
preservation of the GAGs within the hip or a decrease in the
quantity of synovial fluid. Increased levels of proteoglycan
fragments and stromelysin in the synovial fluid of children
with LCPD have been noted, consistent with a synovitis
[133].

3.11.3. The Opposite Hip in Unilateral LCPD. In a review
of the radiographs of 153 children with unilateral LCPD
[134], 48.4% demonstrated irregularity of the epiphyseal
surface, flattening, or dimpling of the opposite “normal hip.”
In most instances (37%), they were present in the initial
radiograph. Similar changes were noted in only 10.4% of
a control group of 153 age and gender-matched children
using intravenous urograms. This was interpreted as the
capital femoral epiphysis in the young child being very
vulnerable to stress; the minimal contour irregularities in the
“normal hip” represent one end of the spectrum and frank
LCPD, the other as the stress response of the capital femoral
epiphysis. Another study confirmed that the “unaffected”
hip in LCPD demonstrates anterior and lateral flattening
perhaps indicating a constitutional abnormality [135]. In a
third study, 15% of the opposite “normal” hips demonstrated
physeal changes, especially decalcification below the physis
[136]. The initial radiographs of 125 Japanese children with
unilateral LCPD demonstrate delayed ossification of the
opposite epiphysis as seen by diminished epiphyseal height
[137].

3.11.4. Behavioral/Psychological Issues. Children with LCPD
are extremely busy and active. An early study (PhD thesis)
discovered that children with LCPD demonstrated a motor-
expressive personality, an active approach to life and had
higher psychosomatic and visceral complaints [138]. A
later study [139] reviewed the behavioral characteristics
of 24 children with LCPD; 33% of children with LCPD
had abnormally high scores in standard psychological child
behavioral questionnaires for profiles associated with atten-
tion deficit hyperactivity disorder, greater than the 3–5% of
age matched children. Certain epidemiologic characteristics
of LCPD (gender, socioeconomic status, geographic location,
and associated congenital anomalies) are also similar char-
acteristics of attention deficit hyperactivity disorder. These
findings were confirmed in a recent study of 19 children
with LCPD [92]; 8 of 12 school-aged children had negative
scores in neuropsychological tests and 5 of the 8 had learning
difficulties at school.
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3.11.5. Miscellaneous Findings. An increase in both major
and minor congenital defects in children with LCPD is
known [61]. These include anomalies of the genitourinary
tract and inguinal region [140] and spina bifida occulta
[10, 141, 142]. Sacral inclination, decreased lumbar lordosis,
and an overall more negative spinal balance with vertebral
end plate anomalies have been recently described in the spine
of LCPD patients [143].

Low blood manganese levels were noted in children with
LCPD in Liverpool [144], but refuted by others [145]. An
increase in IgG and IgM, but not IgA serum immunoglob-
ulin levels in LCPD, are described [146], suggesting that
immunological mechanisms may mediate certain changes in
LCPD. Rubella antibody titers are higher in both mothers
and affected children with LCPD [147].

4. Conclusion and Unifying Possibilities

Can these epidemiologic and demographic findings be
unified? There clearly is disharmony between cartilage and
bone and growth in LCPD as evidenced by progressive caudal
growth impairment and delays in skeletal maturation, both
involving the wrist and the pelvis. The insult on skeletal
maturation appears to occur early in life, perhaps even
prenatally, since there is an increased frequency of minor
congenital malformations in children with LCPD. These
delays in maturation (both anthropometric and skeletal age)
can be due to a combination of familial and environmental
circumstances (lower socioeconomic class with malnutrition
[148], underlying genetic/collagen defects, or some other
unknown entity). The delay in skeletal ossification results
in a weaker skeleton that is more susceptible to trauma.
A highly active child incurs more skeletal injuries; this
microtrauma in a biologically susceptible weaker skeleton
creates microfractures in the proximal femoral epiphysis
and metaphysis. A hypercoagulable state, due to underlying
abnormalities in the clotting mechanisms and/or exposure to
passive smoke, results in increased thrombosis in the proxi-
mal femur after microfractures with subsequent necrosis of
the capital femoral epiphysis and the development of LCPD.
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