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Ergodicity is a fundamental requirement for a dynamical system
to reach a state of statistical equilibrium. However, in systems
with several characteristic timescales, the ergodicity of the fast
subsystem impedes the equilibration of the whole system because
of the presence of an adiabatic invariant. In this paper, we show
that violation of ergodicity in the fast dynamics can drive the
whole system to equilibrium. To show this principle, we inves-
tigate the dynamics of springy billiards, which are mechanical
systems composed of a small particle bouncing elastically in a
bounded domain, where one of the boundary walls has finite
mass and is attached to a linear spring. Numerical simulations
show that the springy billiard systems approach equilibrium at
an exponential rate. However, in the limit of vanishing particle-
to-wall mass ratio, the equilibration rates remain strictly positive
only when the fast particle dynamics reveal two or more ergodic
components for a range of wall positions. For this case, we show
that the slow dynamics of the moving wall can be modeled by
a random process. Numerical simulations of the corresponding
springy billiards and their random models show equilibration with
similar positive rates.
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In classical statistical mechanics, one deals with systems with a
large number of degrees of freedom, where the exact knowl-

edge of the state of the system at every moment in time is impos-
sible to obtain or is irrelevant. The state variables are, therefore,
declared “microscopic,” and an attempt is made to describe the
properties of “macroscopic” variables (certain functions of the
microscopic state) in an ensemble of many systems similar to
the given one. In other words, statistical mechanics examines
averaging over the phase space of a dynamical system, typically a
Hamiltonian one. There is no a priori way of choosing the prob-
ability distribution over which the averaging is performed: given
a dynamical system, its evolution is different for different initial
conditions, and the distribution of the initial conditions is not
encoded in the system and can be arbitrary. However, as the sim-
plest option, one can use the so-called microcanonical ensemble
[i.e., assume that the initial conditions are uniformly distributed
in the phase space at a fixed value of the system’s energy (1–
4)]. After this choice of the ensemble is made, standard results
of statistical mechanics are recovered. In particular, one obtains
the equipartition theorem, which describes the distribution of
energy among different degrees of freedom (5). For multiparticle
systems, this theorem implies that the ensemble averages of the
kinetic energy per degree of freedom are equal for all particles,
and this is used to derive fundamental thermodynamic properties
of the system.

The overwhelming success of statistical mechanics indicates
that there must be some deeper rationale beyond the assumption
of uniform distribution of initial conditions. Since many physi-
cal experiments measure time averages, a classical approach is
to invoke the ergodic hypothesis, which implies that the time
average of an observable coincides with its phase space average
over the microcanonical ensemble at the corresponding energy

level. Thus, the derivation of thermodynamic laws for determin-
istic multiparticle dynamics relies on establishing ergodicity of
the corresponding Hamiltonian system.

The most critical problem is that Hamiltonian systems are usu-
ally not ergodic in a range of energy levels, even if the number of
degrees of freedom is large. For example, consider the paradig-
matic model of the Boltzmann gas of hard spheres. It is, most
probably, ergodic (6–8), but replacing the instantaneous colli-
sions of the spheres with mutual repulsion is expected to destroy
the ergodicity, even for an arbitrarily steep repulsing potential
(9–11). In general, the dynamics in a smooth potential consist of
a “chaotic sea” and “stability islands” (12, 13). A stability island
contains a set of quasiperiodic motions confined only to a portion
of the energy level because of which the ergodicity is broken. If
the islands occupy a noticeable portion of the phase space, use
of the microcanonical ensemble for averaging is unfounded. In
general, this issue remains unresolved.

In this paper, we propose a mechanism for the onset of appar-
ent ergodicity and mixing in slow–fast Hamiltonian systems. It
is not based on either the usual assumption of a large number
of degrees of freedom or the inherent instability of dispersing
geometries (such as the hard spheres models).

We consider an isolated system, in which certain degrees of
freedom evolve slower than the rest. One may think of the slow
variables as the system’s parameters that evolve in reaction to
the dynamics of the fast variables. The system obtained by freez-
ing the values of these parameters is called the fast subsystem. If
it is ergodic for every value of the frozen parameters, the evo-
lution of the slow variables over a long time interval is accu-
rately described by the system averaged over the microcanonical
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ensemble in the fast-phase space [a rigorous formulation of this
fact is given by the Anosov–Kasuga averaging theorem (14–16)].
This averaged system has an additional conserved quantity, the
Gibbs volume entropy of the fast subsystem: the fast subsystem
responds adiabatically to the slow change in the parameters, and
adiabatic processes are known to keep the entropy constant (5).
Therefore, the averaged system is not ergodic.

We see that, on the timescale of the adiabatic approximation,
the ergodicity of the fast subsystem prevents the whole slow–
fast system from behaving ergodically. A similar phenomenon is
observed in the “notorious piston problem,” where the adiabatic
compression law implies that the system of two ideal gases at dif-
ferent temperatures contained in a finite cylinder and separated
by a heavy piston never comes to equilibrium, which seems to
defy the second law of thermodynamics (17–20).

Note that the fast subsystem’s entropy is preserved only
approximately, and therefore, although the averaged system is
not ergodic, the whole original system may still be. Deriving
equations for the energy transfer between degrees of freedom
in such systems is a challenging task, with results being sensitive
to the structure of the interaction terms and the choice of scaling
limit (21–23).

In this paper, we consider a more natural situation, in which
the fast subsystem is not always ergodic, and the partition of the
fast subspace into ergodic components depends on the slow vari-
ables. For example, the fast subsystem can be ergodic for some
values of the slow variables and have more than one ergodic com-
ponent for other values. Then, the adiabatic invariants obtained
by averaging over the fast dynamics are destroyed. We show in
this setting that ensemble averages of slow observables converge
exponentially to the vicinity of the values obtained by averaging
over the microcanonical ensemble in the whole-phase space. This
suggests, somewhat unexpectedly, that the nonergodic behavior
of the fast degrees of freedom can lead to effective equilibration
of the whole system!

To elucidate this principle, we consider a special class of slow–
fast Hamiltonian systems, springy billiards. These models often
allow for a detailed explicit analysis, and their direct numer-
ical simulations do not require integration of stiff differential
equations. Recall that a billiard is a dynamical system repre-

A B C

Fig. 1. Three springy billiards. A particle with a small mass m bounces elastically within a bounded domain, where one of the walls is an oscillating bar,
which moves vertically, has a mass M = 1, and is connected to a spring with spring constant k. (A) SBR. In each round, the particle bounces many times either
below or above the oscillating bar, exchanging momentum adiabatically with the bar. The frozen billiard corresponds to the vertical motion of the particle.
The partition to ergodic components varies as the horizontal position changes. In the left part of the box (that does not contain the bar), the frozen billiard
has a single ergodic component. In the right part of the box, the particle can move either above or below the bar, resulting in two ergodic components.
Numerical values in all SBR simulations are λ= 1, L = h = 2, k = 81, the particle horizontal speed |up|= 18/

√
5, and the total energy of the system E = 1;

therefore, the bar’s maximal amplitude is ymax
b =

√
2/9. (B) Springy stadium. The frozen billiard is ergodic and chaotic for all bar positions (an EFS system).

Numerical values in all simulations are r = 1, tan θ= 0.17, and l = l0 − yb, where l0 = 2 and yb denotes the vertical position of the bar. The total energy is
E = 1, and the spring constant is k = 1; therefore, ymax

b =
√

2. The slanted walls prevent the appearance of families of horizontal periodic orbits. (C) Springy
mushroom. A collar with a throat of radius w is added to the springy stadium. The collar motion is rigidly determined by the bar motion, w = w(yb) (Eq.
11). For a range of yb values, we keep w(yb) = r, so that the frozen billiard becomes the stadium, and therefore, ergodic. For another range of yb values,
w(yb)< r, and the fast subsystem is not ergodic—it has one chaotic component consisting of orbits, which visit the stem, and an integrable component
consisting of orbits that are trapped in the cap (as in the classical Bunimovich mushroom billiard). Changing the collar’s opening w ensures that particles
can enter and leave the integrable component when the bar moves. This is, therefore, a VFS system.

senting a point particle, which moves inertially inside a domain
and is reflected elastically from the domain boundary. Particle
dynamics depend on the billiard domain shape. Thus, the motion
may be integrable, or it may be chaotic: weakly chaotic with a
zero Lyapunov exponent, chaotic and ergodic with a positive
Lyapunov exponent, or chaotic with stability islands (24). The
barred rectangle (25), stadium (26), and mushroom (27) billiard
domains have been extensively studied as paradigmatic models
for the different types of chaotic behavior. We use these mod-
els to create slow–fast systems with the controlled properties of
the fast chaotic dynamics (Fig. 1). We allow one of the billiard
boundaries, hereafter called the bar, to move. We assume that
both the particle and the bar are of finite mass and that the bar is
attached to a linear spring (refs. 28–31 have related setups). The
bar mass M is taken to be much larger than the particle mass
m , thus ensuring that the bar typically moves much slower than
the particle. The billiard obtained by retaining the bar in a fixed
position is called the frozen billiard.

The case of an infinitely heavy bar has been studied under the
name of Fermi acceleration (32–43). In this case, the motion of
the bar is not affected by the particle, while the particle gains or
loses speed at every collision with the moving bar. Two types of
behavior have been found. If the frozen billiard is ergodic for all
possible positions of the bar (ergodic accelerators; e.g., stadium),
then the ensemble-averaged kinetic energy may grow at most
quadratically with time (34, 40, 44). If the ergodicity of the frozen
billiard is broken for a part of the period of the bar’s motion
(a multicomponent accelerator; e.g., barred rectangle and mush-
room), then the particle kinetic energy grows exponentially with
time for almost every initial condition (40–42, 44, 45). Thus, the
nonergodicity of the frozen billiard accelerates the energy trans-
fer from the bar to the particle.

Here, we consider a different case by taking the mass of the
bar as finite while keeping the mass ratio m/M small. Then, the
question of Fermi acceleration is replaced by the question of
equilibration—does the energy transfer between the bar and the
particle lead the system to statistical equilibrium? Do ensemble
averages converge to averages over the microcanonical ensem-
ble? If so, then by the equipartition theorem, the averaged kinetic
energies of the bar and particle should eventually become equal.
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Results from studies of Fermi acceleration suggest that the
equilibration depends on the geometry of the frozen billiard (i.e.,
on the dynamics of the fast subsystem). In general, we divide
slow–fast Hamiltonian systems into two groups. The first consists
of systems with an ergodic fast subsystem (EFS) for almost all
values of the slow variables (EFS systems). An example is given
by the springy stadium (Fig. 1B). The second is comprised of
systems for which the structure of the partition of the fast sub-
space into ergodic components bifurcates as the slow variables
change [examples are the springy barred rectangle (SBR) (Fig.
1A) and springy mushroom (Fig. 1C)]. Such systems, with vari-
able partition of the fast subspace (VFS), are hereafter called
VFS systems.

All of our numerical simulations for nonzero values of m/M
show exponential equilibration, suggesting apparent ergodicity
and even mixing in both EFS and VFS springy billiards. How-
ever, we find that there is a fundamental difference between
these two classes: the relaxation time in EFS systems tends to
infinity as m/M → 0, whereas the relaxation time stays bounded
in VFS systems.

To analyze this phenomenon, we derive a stochastic model
for the slow bar motion. In this model, the force exerted on
the bar by the particle is found by averaging over one of the
fast subsystem’s ergodic components, while the probability of
switching between the components is determined by the bar
position and velocity. The resulting Markov process of hop-
ping between the ergodic components of the fast subsystem
leads to equilibration. Numerics shows that the bar motion is
quite accurately represented by this model, and the equilibration
rates remain nonzero and approach the Markov process rates as
m/M → 0.

The derivation of the proposed stochastic models is not spe-
cific to billiards. Similar Markov processes can be constructed for
a general VFS system by a procedure analogous to that used to
study the Fermi acceleration in a homogeneous potential (46).
Under standard irreducibility and aperiodicity conditions, such
processes should converge to a unique stationary measure (cf.
refs. 22, 23, 47, and 48), and by uniqueness, it must correspond to
the Liouville measure of the whole system. Therefore, we believe
that the proposed apparent ergodization mechanism should be
universally applicable.

Particle in a Springy Billiard
Consider a particle of mass m� 1 in a D-dimensional billiard.
One of the billiard walls is a bar of mass M = 1, which oscillates
vertically by virtue of being suspended from a spring of spring
constant k . At impact, the bar and the particle undergo an elas-
tic collision, leading to the exchange of momentum and energy
between them:

v+
p =

2v−b − (1−m) v−p
1 + m

, v+
b =

(1−m) v−b + 2mv−p
1 + m

, [1]

where v−b , v−p and v+
b , v+

p are the vertical velocities of the bar
(b) and the particle (p) just before and just after the collision,
respectively. The total energy of the system, E =Ep +Eb , is pre-
served, whereas the particle kinetic energy Ep and the bar energy
Eb = v2

b + ky2
b /2 (yb is the bar position) change at impact. Note

that, between collisions, the particle moves inertially, while the
bar oscillates harmonically. Therefore, the numerical simulations
do not require integration to determine the dynamics of the sys-
tem between the impacts.

The “bar–particle” system is Hamiltonian and has D +
1 degrees of freedom. It is slow–fast, since the bar speed
|vb | ≤

√
2E is of order 1, while the particle speed |vp |=

√
2Ep/m

is typically large. As the particle moves fast, many collisions with

the bar occur during each short time interval; the averaged
motion of the bar is governed by the equation

ÿb +
dU (yb)

dyb
= F , [2]

where U (yb) = 1/2ky2
b is the spring potential and F denotes the

averaged force exerted on the bar at position yb by the parti-
cle with energy Ep . The averaging is performed over many col-
lisions at a frozen value of yb . Since the work done by this
force corresponds to the change in particle energy, it follows that
F =−dEp

/
dyb .

If the frozen billiard is ergodic for each value of yb , the
Anosov–Kasuga theorem (20) implies that the phase–space vol-
ume at a given energy level is approximately preserved (for most
trajectories, for sufficiently small m , and any finite interval of the
slow time). Hence,

J = E
D
2
p V (yb) ≈ const, [3]

where V (yb) is the volume of the frozen billiard domain. Thus,
in the adiabatic approximation,

dEp

Ep
= − 2

D

dV

V
. [4]

This implies that the force acting on the bar is F = 2/D Ep/V
dV /dyb . Since Ep =E−Eb = E−1/2ẏ2

b−U (yb), Eq. 2 becomes

ÿb +
dU (yb)

dyb
=

2

D

[
E − 1

2
ẏ2
b −U (yb)

] dV (yb)

V (yb)dyb
. [5]

Note that the same formula follows from the ideal gas law.
A straightforward computation shows that solutions of Eq. 5

indeed follow the level sets of J . By noting that the adiabatic law
given by Eq. 3 takes the form (J/V (yb))2/D =Ep , we find that
the adiabatic bar motion is governed by an effective potential

Ueff(yb) = U (yb) +

(
J

V (yb)

) 2
D

, [6]

where J is determined by the initial condition. A similar effective
potential was derived in the context of the piston problem (19,
20). It is easy to see that 0≤ J ≤ Jf = (E −U (yf ))2/DV (yf ).
Here, yb = yf corresponds to the pressure equilibrium, where the
spring compensates for the pressure on the bar caused by the col-
lisions with the particle (yf depends on the total energy E ). At
the other extreme (i.e., J = 0), the particle does not move, and
all of the energy is in the oscillating bar.

We see that, when the frozen billiard is ergodic for every
position of the bar (an EFS system), the adiabatic approxi-
mation predicts that the bar motion will be periodic in time.
Consequently, the springy billiard does not equilibrate on the
timescale for which the adiabatic invariant is preserved. An
example of such a system is a springy stadium (Fig. 1B), which is
obtained by a modification of the famous Bunimovich stadium.
We will discuss the process of equilibration in this billiard later in
the paper.

The averaging theory can sometimes be extended to systems
with a nonergodic fast subsystem (for example, refs. 41 and 44).
Such extension requires detailed knowledge of the partition of
the fast subspace into ergodic components. In the general theory
of Hamiltonian systems, this partition is not known. However,
mathematical billiards provide a rich set of examples, for which
the ergodic decomposition can be described in full detail. We
use this knowledge to show the accelerated equilibration for two
different examples of springy billiards with nonergodic fast sub-
space (VFS systems). The first is the SBR, and the second is a
modification of the Bunimovich mushroom (Fig. 1 A and C).
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Springy Barred Rectangle
Consider a particle moving in a rectangle of length L and height
h = 2, which is partially split by a horizontal bar of length λ
attached to a spring (Fig. 1A). The particle’s horizontal speed
|up | is preserved, and thus, the horizontal motion is periodic
with period Tp = 2L/|up |. The particle moves with a large verti-
cal speed and moderate horizontal speed, and therefore, the fast
subsystem corresponds to the particle’s vertical motion, while its
horizontal position and the bar position are frozen. The period
Tp is divided into two time intervals. In the first, the particle does
not hit the bar, and its vertical speed is preserved; the fast sub-
system, therefore, has a single ergodic component corresponding
to the particle moving in the segment yp ∈ [−1, 1]. In the sec-
ond interval of length τTp , where τ =λ/L, the particle enters a
chamber above or below the bar, where it gains or loses vertical
speed as it hits the moving bar many times. Here, the fast sub-
system has two ergodic components, one corresponding to the
motion above the bar, yp ∈ [yb , 1], and the other corresponding to
the motion below the bar, yp ∈ [−1, yb ]. During a single passage
above or below the bar, the vertical speed |vp | obeys the adia-
batic law given by Eq. 3 with D = 1, Ep = 1/2mv2

p =E−1/2v2
b −

1/2ky2
b , and V =V up(yb) = 1 − yb when the particle is above

the bar or V =V down(yb) = 1 + yb when the particle is below
it. Hence, Jup/down =

√
E − 1/2v2

b − 1/2ky2
b (1 ∓ yb) = const.

Since Ep = J 2
up/down/(1∓ yb)2, the right-hand side of Eq. 2

becomes ∓2J 2
up/down/(1∓ yb)3 for the particle above/below the

bar, respectively. Note that, here, E and Ep do not include
the particle’s horizontal kinetic energy, which is decoupled from
the dynamics.

To construct effective equations for the bar’s average motion,
we approximate the deterministic process by a stochastic one,
assuming that the probability of entering the chamber above or
below the bar is proportional to the width of the corresponding
gap between the bar and the boundary of the rectangle. These
probabilities are equal to (1 ∓ yb)/2, where yb is taken at the
moment of entrance into the chamber. The same assumptions
were successfully used in ref. 45 for the study of Fermi accelera-
tion in a rectangle with an infinitely heavy oscillating bar.

Hence, we suggest that the bar–particle system is well-
approximated by the following Tp-periodic probabilistic hybrid
model:

A B

Fig. 2. Piecewise adiabatic bar motion for the (A) SBR and (B) springy mushroom. Two trajectories of the springy billiards with particle mass m = 10−8,
one with Ep(0) = 0.9 (at the center) and one with Ep(0) = 0.1 (at the periphery), are projected to the bar-phase plane, (yb,ẏb), and plotted (black lines) on
top of level lines of the adiabatic invariant. Green indicates the free springy bar motion. Red and blue indicate level lines for the bar motion in the effective
potential created when the particle hits the bar from above and below, respectively. Each orbit closely follows the level lines, switching occasionally between
them. Lower Left Insets show that the corresponding adiabatic invariants are approximately piecewise constant, and Lower Right Insets show the bar energy
oscillations. In A, Upper Left Inset shows a magnification of the transition from a level set of one averaged law of motion to another.

ÿb + kyb =

{
Fj (yb , ẏb), for jTp ≤ t < (j + τ)Tp ,

0, for (j + τ)Tp ≤ t < (j + 1)Tp ,
[7]

where j = bt/Tpc is the number of the period. For each period, a
choice is made between Fj (yb) =−2J 2

j ,up/(1− yb)3 (with prob-
ability βj ) and Fj (yb) = 2J 2

j ,down/(1 + yb)3 (with probability 1−
βj ). Here, Jj ,up/down =

√
E − Eb (1∓ yb), Eb =

(
ẏ2
b + ky2

b

)
/2,

and βj = (1− yb(jTp))/2.
The bar dynamics follow the level lines of Jup , Jdown , or J0 =

1/2(v2
b +ky2

b ). At t = jTp , the bar height yb(jTp) determines the
probability βj of choosing Jup vs. Jdown , and (yb(jTp), ẏb(jTp))
determines the particular Jup/down level set along which the
motion will continue.

In Fig. 2A, we plot the projection of direct simulations of the
bar–particle system onto the (yb , ẏb) plane for a few bar oscil-
lations. Fig. 2A shows that the bar motion indeed follows the
level sets of the corresponding J values and that the trajectory
switches between level sets (Fig. 2A, Upper Left Inset); while the
bar energy changes significantly when the particle is above/below
the bar (Fig. 2A, Lower Right Inset), the corresponding J values
remain approximately constant for each such interval (Fig. 2A,
Lower Left Inset).

To study the equilibration process, we conduct the following
numerical experiment. We generate an ensemble of initial con-
ditions and for each initial condition, simulate a single-particle
motion in the springy billiard. At each moment in time, we
compute the ensemble-averaged difference between the kinetic
energy of the bar and the vertical kinetic energy of the par-
ticle, ∆KE =

〈
M /2v2

b

〉
−
〈
m/2v2

p

〉
. We study the time evolu-

tion of ∆KE(t) for ensembles of 104 initial states with a fixed
initial bar energy. The initial phase of the bar oscillation is
chosen randomly (with the uniform distribution). The position
of the particle is also chosen randomly inside the rectangle.
Finally, the vertical speed of the particle is determined from
the initial particle energy, while the direction of motion (up or
down) is chosen randomly. We repeat the experiment for dif-
ferent values of particle mass m and different initial values of
the bar energy, keeping the total energy of the system constant,
E = 1.

In all of our simulations, we find that ∆KEt→+∞→ 0 expo-
nentially (Fig. 3A). However, for each fixed m , the rate of

Shah et al. PNAS | Published online November 28, 2017 | E10517
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B

Fig. 3. Kinetic energy equilibration for springy billiards. For two ensembles
of 104 initial states, one with Eb(0) = 0.9 and the other with Eb(0) = 0.1,
the ensemble average, ∆KE, of the difference between the kinetic energies
per degree of freedom for the bar and the particle is plotted as a function
of time. (A) The SBR equilibration process is essentially the same for the
mass ratios m/M = 10−5, 10−7 and for the random model of Eq. 7. (B) The
stadium and mushroom equilibration process at m/M = 10−5. The springy
stadium equilibrates more slowly than the springy mushroom. Insets show a
semilog plot, which shows the exponential decay of ∆KE(t).

convergence depends on the choice of the initial ensemble and
to some extent, the choice of fitting interval; similar phenomena
for different setups were reported in refs. 49 and 50. To enable
a comparison of the rates of convergence in different numeri-
cal experiments, we fix a practical definition of the equilibration
rate as the best fitted slope to log |∆KE | vs. t over a time inter-
val [0,T0], where T0 is defined by log |∆KE(0)/∆KE(T0)| ≈ 1.
The details of the computations are described in Numerical
Algorithms.

We examine how the rates depend on the mass ratio. For suf-
ficiently small m , the rates do not display a significant depen-
dence on m (Fig. 3A) and do not approach zero. To val-
idate the result, we compare the equilibration rates of the
direct bar–particle simulations with those of the simulations of
the theoretical stochastic model described by Eq. 7. As can
be seen in Fig. 4A, we obtain very similar rates; 10 runs of
the 104 particle ensembles in the stochastic model lead to
the rates 0.111± 0.002 and 0.126± 0.004 for Eb(0) = 0.1 and
Eb(0) = 0.9, respectively. Similarly, averaging over 100 runs
of direct simulations of the SBR, 10 runs for each of the
10 different m values, produces the rates 0.112± 0.002 and
0.128± 0.003, respectively. Since the theoretical model has no
adjustable parameters, the agreement suggests that the SBR

equilibrates, with the relaxation time remaining bounded as
m/M → 0.

The SBR can serve as a prototype for equilibration mecha-
nisms in a much more general class of VFS systems. For exam-
ple, separation of the fast space into two ergodic components can
be achieved by splitting a chaotic billiard domain into two sepa-
rate spatial regions (in the Fermi acceleration case, such systems
were studied in refs. 40 and 44). However, the SBR is a rather
special model, because the dynamics in each frozen ergodic
component are integrable. Moreover, transitions between the
fast ergodic components only happen at prescribed moments of
time. One could potentially use these two properties to rigor-
ously establish the ergodicity of the SBR using hyperbolic theory
techniques, as this problem has features similar to linked twist
maps and their generalizations described in refs. 51–54. How-
ever, one does not expect a general VFS system to have these
properties.

A

B

Fig. 4. Energy equilibration rate dependence on the mass ratio. Each data
point corresponds to the decay rate for a fixed value of

√
m/M and a fixed

value of Eb(0) of the ensemble-averaged difference ∆KE(t) between the
kinetic energies per degree of freedom for the bar and particle. (A) In the
SBR case, there are 10 red [Eb(0) = 0.1] and 10 blue [Eb(0) = 0.9] dots for
each value of m/M. The dots on the y axis are the rates obtained from
simulations of the stochastic model (Eq. 7). The solid blue/red lines show the
mean rates of the stochastic model; the dashed lines bound the bands of
three standard deviations. We see that 98% of the rates for m> 0 are within
these bands. (B) In the springy stadium case, the rates decrease to zero as
m→ 0, whereas for the mushroom, they decrease to positive values close to
the rates predicted by simulations of the random model of Eq. 9. The open
rectangle and open circle on the y axis in Inset represent the equilibration
rates 1.42 × 10−4 and 2.71 × 10−4 obtained from the stochastic model for
Eb = 0.9 and 0.1, respectively.
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To show that the equilibration observed in the SBR is not a
peculiarity of that particular model, in the following, we consider
another class of springy billiard systems, which have a different
and more general structure of the decomposition of the fast sub-
space into ergodic components. For this class, we again show that
violation of ergodicity in the fast-phase space leads to energy
equilibration in the whole slow–fast system.

Springy Mushroom
When there are several fast degrees of freedom, the fast subspace
of a slow–fast Hamiltonian system typically includes both regular
and chaotic components (12, 32). As the slow variables change, a
trajectory can transfer between these components. To study the
influence of these transitions on equilibration, we introduce the
springy mushroom model.

A mushroom billiard consists of a circular cap and a rectan-
gular stem. It was proposed in ref. 27 to serve as a paradigm for
systems with a mixed phase space, as it has the simplest possible
mixed-phase space structure: there is a unique chaotic compo-
nent and one regular (and completely integrable) component—a
stability island that corresponds to the particle trapped forever
in the cap.

In this paper, we use a variation of the original Bunimovich
mushroom (Fig. 1C). Our mushroom billiard is bounded by a
semicircular cap, two slanted side walls, and a straight bar at
the bottom. This shape is a version of the famous Bunimovich
stadium (26); the slanted walls prevent the appearance of hor-
izontal parabolic orbits, which could spoil the statistics (cf. ref.
55). The corresponding billiard has a single chaotic component,
which occupies the whole phase space. To create an integrable
island, while keeping the billiard area unchanged, we add two
horizontal straight segments, which leave a throat of radius w at
the cap diameter. In this case, the trajectories that bounce inside
the cap close to the circular boundary remain forever in the cap,
and their motion is integrable (the absolute value of the angular
momentum is preserved for such orbits). The size of this island
depends on w , and the island vanishes when w = r , where r is the
radius of the cap. However, the trajectories that move through
the throat between the cap and the stem form a single chaotic
component in the phase space (26, 27).

In the springy mushroom, the bar located at the bottom of the
stem can move vertically. It has mass M > 0 and is attached to
a linear spring (Fig. 1C). The bar moves harmonically between
collisions with the particle, whereas the phase and amplitude of
the oscillations change at every collision.

Finally, we take the radius of the throat change to be a pre-
scribed function of the bar position: w =w(yb) (e.g., we use Eq.
11). Then, the island size depends on the bar position yb . At a
moment of time when the particle is in the stem, it belongs to
the chaotic component of the frozen mushroom. After some col-
lisions with the walls and the bar, the particle typically enters
the cap. If the throat shrinks while the particle is in the cap,
the particle may be captured in the cap, and it will stay there
until the throat opens wide enough to let the particle back into
the stem. During the period of capture, the particle follows the
integrable dynamics of a semicircular billiard. Since the particle
motion is fast compared with the bar, we can interpret these cap-
ture and release events as transitions between the chaotic and
regular components of the frozen mushroom.

To construct effective equations for the average bar motion,
we need to find the effective pressure exerted by the particle on
the bar. Since the frozen billiard is not ergodic, the standard adi-
abatic law given by Eq. 4 is not applicable. Instead, we use the
“leaky adiabatic law” of ref. 41:

dEp

Ep
= −dV

Vc
, [8]

where V (yb) is the phase space volume of the energy level
Ep = 1/2 in the phase space of the frozen billiard and Vc(yb)
is the phase space volume of the chaotic component for the
same energy level. For billiards, V is the area of the billiard
domain times 2π (the velocity circle). The effect of collisions
between the particle and the bar is averaged over the chaotic
component only. To account for this, V is replaced by Vc in
the denominator of Eq. 4 (with D = 2). The term dV is kept
in the numerator, because the work is done only by the bar
and is proportional to the change in volume of the entire bil-
liard table.

Expressions for the volumes in Eq. 8 can be found explic-
itly. Indeed, at the energy level Ep = 1/2 for the frozen billiard,
we get V (yb) =π2r2 + 2π

(
2r`− `2 tan θ

)
, where `= `0− yb

is the stem length. The chaotic component is the com-
plement of the integrable one. Thus, Vc =V −Visl, where
Visl is the volume of the integrable island. It can be
found by using the conservation of the angular momen-

tum, Visl(yb) = 2πr2
(

cos−1 w/r − w/r
√

1− (w/r)2
)
, where

w =w(yb) is the width of the cap throat. Ref. 41 has a detailed
derivation of these formulas.

When the particle is in the chaotic zone, it acts on the bar
with average force F =−dEp

/
dyb . However, when the particle

is in the cap, it does not collide with the bar. Using Eq. 8, we
conclude that the averaged equations for the bar motion are of
the form

ÿb +
dU (yb)

dyb
=

{Ep(yb ,ẏb)

Vc(yb)
dV (yb)

dyb
(particle in Vc),

0 (particle in Visl),
[9]

where we use energy conservation to express the particle energy
Ep(yb , ẏb) =E − 1/2ẏ2

b −U (yb) as a function of yb and ẏb .
The first of the equations conserves J =Ep(yb , ẏb)G(yb), where
G(yb) = exp

(∫ yb
0

dV (s)/dsds/Vc(s)
)
. Thus, the fast collisions

of the particle with the bar create, on average, an effective poten-
tial: Ueff(yb ; J0) =U (yb) + J0/G(yb), where J0 is the value of J
at the moment the particle enters the chaotic zone. While the
particle is in the chaotic component, the bar motion occurs along
the level line J = J0, which is also a level line of the Hamiltonian
defined by the effective potential Ueff(yb ; J0). Similarly, when the
particle is in the integrable component, the bar motion occurs
along the level lines of the Hamiltonian defined by the free spring
potential U (yb).

We conclude that, similar to the SBR case, the bar’s aver-
aged motion switches between level sets of different functions.
Numerical simulations of the bar–particle dynamics confirmed
this property for small mass ratios: Fig. 2B shows that trajecto-
ries of the springy mushroom follow a level set of J (Fig. 2B, red
circles) and then, by following a level set of the free motion (Fig.
2B, green circles), switch to follow another level set of J . Fig. 2B,
Lower Left Inset shows that J is approximately constant during
the time intervals in which the particle remains in the chaotic
zone, and Fig. 2B, Lower Right Inset shows the corresponding
oscillations of Eb .

To complete the derivation of the stochastic model for the
motion of the bar, we describe the transition rules between the
two possible states of the particle. A transition from the chaotic
component to the integrable one can be modeled by a random
process as follows. Suppose that the particle is in the chaotic
component at time t = tc . Then, the motion is ergodic, and the
probability of transfer during a time interval (tc , tc + dt) coin-
cides with the ratio of the transferred phase space volume to
the chaotic zone volume. The transferred volume is positive only
when the throat is shrinking (i.e., when ẇ < 0 at t = tc). In this
case, the probability is given by
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Pcha→isl(tc) =
V ′isl(yb)ẏb
Vc (yb)

dt = d ln
G(yb)

Vc(yb)
. [10]

If ẇ > 0, then Pcha→isl(tc) = 0.
The transition from the integrable component back to the

chaotic one is described by the following deterministic rule (41).
Suppose that the particle is captured in the integrable compo-
nent at time tc . While the particle is captured, the bar moves har-
monically. Therefore, the bar position and the throat size change
periodically with time. Let tr > tc be the first instance of time,
such that w(yb(tr )) =w(yb(tc)). Then, w(yb(t))>w(yb(tr )) for
tc < t < tr . Since typically, the particle trajectory in the inte-
grable zone densely fills a strip between the semicircle of radius
w(yb(tc)) and the cap boundary, the particle is released from
the cap at a time interval (tr , tr + dt). In the adiabatic limit, the
indeterminacy in the exit moment, dt , vanishes.

These arguments provide the transition rules for the stochastic
model of Eq. 9: when the throat shrinks, the particle can move
from the chaotic component to the integrable one at time tc with
probability Pcha→isl(tc) given by Eq. 10. If captured, the particle
is released at time tr when the throat restores its size [i.e., when
w(yb(tr )) =w(yb(tc)) for the first time].

Now we are ready to describe the mechanism for the ergodiza-
tion in the springy mushroom. Choosing a nonmonotonic func-
tion w(yb) allows for the possibility that the bar positions at the
moments of capture and release are different: yb(tc) 6= yb(tr ).
Then, the monotonicity of the function G(yb) implies that the
particle returns to the chaotic zone with a different value of the
adiabatic invariant J (yb(tr ), ẏb(tr )) 6= J (yb(tc), ẏb(tc)). Conse-
quently, this capture–release event moves the particle to a new
level line of the adiabatic invariant. The destruction of the adi-
abatic invariant enhances the energy transfer between the fast
and slow degrees of freedom, and therefore, repeated capture–
release events lead to faster equilibration.

For example, in our numerical experiments, we use the non-
monotonic function

w(yb) =

{
min

{
1, 0.7 + 0.6(yb − y0)2

}
for yb < y0,

min
{

1, 0.7 + 6.0(yb − y0)2
}

for yb ≥ y0,
[11]

where y0 =−0.2436. This choice of w eliminates some evident
obstacles for ergodicity in the springy mushroom and its random
model. In particular, we have 0≤w(y)≤ 1 for all y and w(y) = 1
for y ≥ 0. The latter property ensures that the integrable com-
ponent in the fast subspace disappears at yb ≥ 0, and therefore,
no initial condition can correspond to a particle trapped in the
cap forever. In addition, we require the function w to have a
unique minimum at a point y0, such that yf ≤ y0< 0 (where yf
is the pressure equilibrium for the energy level that we are study-
ing). One can check that this inequality ensures that, on every
level line of J , there exist capture moments, such that necessar-
ily yb(tc) 6= yb(tr ), the crucial condition for the destruction of the
adiabatic invariant. Finally, taking w(y0)≥ 0.7 eliminates verti-
cal parabolic orbits in the chaotic component. We expect that the
conclusions presented below will apply to other functions fulfill-
ing these requirements.

To test that the proposed mechanism correctly describes the
relaxation to the energy equipartition, we conducted a series
of numerical experiments with both the springy mushroom and
the corresponding stochastic model. Fig. 3B shows that the
kinetic energies of the springy mushroom equilibrate. Defining
∆KE(t) =

〈
M /2v2

b

〉
− 1/2 〈Ep〉, we find that, in all our simula-

tions, ∆KEt→+∞→ 0. Here, the ensembles with fixed bar energy
are chosen with a random initial phase of the bar motion, a ran-
dom position of the particle in the stem (we do not start in the
cap), and random direction of the particles velocity. Calculating
the equilibration rates using the procedure outlined for the SBR
model, we again find, as with the SBR model, the sensitivity to

the initial energy of the bar and the choice of fitting interval.
Nonetheless, for every fixed setting, we find that the rates are
well-defined and depend linearly on the square root of the mass
ratio,

√
m . Extrapolating these rates to m = 0, we obtain strictly

positive limits 1.75×10−4 for the ensemble with Eb(0) = 0.9 and
3.08× 10−4 for the ensemble with Eb(0) = 0.1.

Simulating the stochastic model for the corresponding ensem-
bles of initial conditions (fixed bar energy, random bar phase,
motion starting in the chaotic phase) (more details are in Numer-
ical Algorithms), we find that the random model equilibrates in a
similar fashion, with positive equilibration rates close to those
obtained by the springy billiard simulations when extrapolated
to m = 0 (Fig. 4B). Indeed, the rates for 10 runs of 104 parti-
cles each are (1.42± 0.03)× 10−4 and (2.71± 0.11)× 10−4 for
Eb(0) = 0.9 and Eb(0) = 0.1, respectively.

We conclude that the stochastic models, with no adaptable
parameters, provide a reasonable approximation of the bil-
liard dynamics observed in our numerical experiments. These
results support our claim that slow–fast VFS systems are well-
approximated by processes with random switching between sev-
eral different equations for the slow variables.

Springy Stadium
As a control, we examine the equilibration process in a springy
billiard, where the frozen billiard is chaotic for all positions of
the bar (an EFS system). Specifically, we consider a springy half-
stadium (Fig. 1B), which can be obtained from the springy mush-
room by removing the collar (i.e., by using w ≡ 1 instead of Eq.
11) and keeping the values of all other parameters. Ergodicity of
the frozen billiard is proven in ref. 26.

We show that, in such springy billiards, the presence of the
adiabatic invariant slows down the relaxation to energy equipar-
tition and that the equilibration rates approach zero as the mass
ratio is decreased.

Indeed, direct simulations of the springy stadium show that
the adiabatic invariant J defined by Eq. 3 remains approximately
constant and that the bar energy behaves approximately peri-
odically for long time intervals. However, these simulations also
show that, for finite m , small fluctuations ultimately destroy the
adiabatic conservation law. In particular, defining ∆KE(t) as
for the springy mushroom and repeating exactly the same direct
numerical simulations for the springy stadium case, we observe
again that, for all initial ensembles, ∆KE(t)→ 0 as t grows (Fig.
3B). For small values of m , we observe smaller equilibration
rates (but not much smaller) than in the springy mushrooms
with comparable parameters (Fig. 4B). Using the best fit line to
extrapolate the computed rates to m = 0, we see that the limit
rate vanishes within the accuracy of our computations. Repeat-
ing the computations with increased precision, larger ensem-
ble size, and smaller m , we obtain even smaller limit values for
the equilibration rates. We conclude that the limit equilibration
rates of the springy stadium are at least two orders of magni-
tude smaller than the corresponding limit rates for the springy
mushroom.

This is our main finding, as it reveals the profound difference
between EFS and VFS systems. In agreement with adiabatic the-
ory, the limit equilibration rates vanish in EFS systems. The pos-
itive limit rates achieved for VFS systems support our claim of
efficient mixing induced by the hopping between ergodic compo-
nents of the fast subsystem.

Discussion
Springy billiards show an important principle in slow–fast
Hamiltonian systems: ergodicity of the fast subsystem impedes
ergodization and equilibration of the whole slow–fast system,
whereas its violation can lead to equilibration and equipartition
of energies. For EFS systems, the averaged lower-dimensional
system is known to have an adiabatic invariant, and it is thus
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not ergodic and does not equilibrate. In contrast, for VFS sys-
tems, where the ergodicity of the fast subsystem is broken for a
range of values of the slow variables, we showed that the adia-
batic behavior is well-approximated by a random process. This
process is defined by random switching among several systems
that govern the evolution of the slow variables. Importantly, the
magnitude and probabilities of the jumps in the stochastic model
remain strictly positive in the adiabatic limit. Under mild condi-
tions, such random processes can lead to equilibration of ener-
gies with positive rates. We constructed both EFS- and VFS-type
springy billiard systems and derived the random models for the
VFS springy billiards. We computed the equilibration rates for
both the springy billiards and the random models. Extrapolat-
ing the rates found at decreasing m values, we showed that the
equilibration rate for the considered EFS system (springy sta-
dium) vanishes in the limit m = 0, whereas for the VFS systems
(SBR and springy mushroom), it remains positive and matches
the equilibration rate of the corresponding stochastic model
(Fig. 4).

Our equilibration mechanism is also expected to appear in
smooth slow–fast systems. The chaotization mechanism that we
propose for VFS systems is reminiscent of the phenomena of
adiabatic chaos—chaotization of smooth slow—fast systems in
which the fast dynamics is integrable, yet the structure of the fast-
phase space changes as the slow variables are changed (56–58).
We suggest that this mechanism is universal and not restricted
to fast subsystems that are integrable. In fact, if some of the
ergodic components of the fast system are chaotic and addi-
tionally, if there exists a range of slow variables for which the
chaotic ergodic component occupies a large portion of the fast
subsystem phase space, the equilibration process may be particu-
larly fast.

The proposed framework naturally opens several avenues of
research. (i) We saw that the EFS system can equilibrate, despite
the presence of an adiabatic invariant. Can a comprehensive the-
ory be built for the behavior beyond the adiabatic timescale?
(ii) In the stochastic model for a VFS system, we should typi-
cally have convergence to a stationary measure. What if the irre-
ducibility or aperiodicity conditions are violated? For example,
the fast subsystem can have a stability island, which persists for all
values of slow variables. This could create an invariant domain in
the phase space, which has to be excluded from the microcanon-
ical ensemble. (iii) In both EFS and VFS systems, we observe
ensemble-dependent rates of convergence to equilibrium. How
typical is this phenomenon, and how does it affect the equili-
bration? (iv) A slow–fast system ceases to be slow–fast near sta-
tionary points of the fast subsystem (the fast system freezes for
some time). How can one incorporate the freezing incidents into
the theory?

Finally, we propose a broader viewpoint on this work. Here,
our slow and fast systems were just two mechanical components,
and the timescale separation stemmed from the mass ratio. In
the broader statistical mechanics context, the fast system governs
the motion of many particles (and is, thus, high-dimensional),
and the slow macroscopic variables are defined as certain aver-
ages over the fast microscopic system. When the structure of
the fast system changes, for example, from a gas to a liquid
state, a phase transition occurs. Usually, for macroscopic val-
ues near the phase transition, the microscopic phase space struc-
ture is complex, with long-lasting structures in which the two
states coexist. We may say that, in this range of macroscopic
variables, the fast subsystem has chaotic (say, gas phase) and
ordered (say, liquid state) components. Therefore, we conjecture
that phase transitions play a central role in the equilibration pro-
cess between microscopic and macroscopic variables (e.g., con-
sider the analogue of the notorious piston problem in a multi-
phase gas).

Numerical Algorithms
Numerical simulations of smooth slow–fast systems are chal-
lenging; by considering springy billiards, we avoid the need for
numerical integration of stiff equations. Nevertheless, the small
mass ratio, m/M ∈ [10−7, 10−4], leads to a large number of bil-
liard reflections per unit time, and therefore, we have to deal with
long-time simulations of chaotic dynamics. Here, we describe the
algorithms used for simulations of the springy billiard dynam-
ics and the associated stochastic models. We also include a list
of various consistency checks used to verify the accuracy of the
computations.

Direct Simulations of Springy Billiards. We use an explicit formula
for the harmonic motion of the bar and the inertial motion of the
particle between collisions. The time and place of the collisions
are evaluated with the maximal precision allowed by the com-
puter (we use at least double precision). Most of the collisions
are with the static walls, and these are computed explicitly. To
compute a collision of the particle with the moving bar, we find
explicit expressions for the monotonicity intervals of the distance
between the particle and the bar as a function of time. Then, we
pick out the first monotonicity interval, such that the function
changes sign at its ends. This interval contains a single zero of
the distance function, which is found using a combination of the
bisection and Newton method.

In every series of numerical experiments, we investigate energy
equilibration on a fixed energy surface (typically E = 1) in a time
interval [0,T1]. We construct an ensemble of initial conditions
that share the same initial value of the bar energy Eb (the details
of the ensembles are in the relevant parts of the paper). For each
initial condition, we compute the trajectory of the springy billiard
for 0≤ t ≤T1, evaluating the energy components (kinetic and
potential energies) at equally spaced moments in time (typically
tk = kh with h = 10−3). Then, the ensemble-averaged values of
the energy components are computed for every tk and stored to
be used for the computation of the equilibration rate. The rate
is defined as the best fitted slope to log |∆KE | vs. t over a time
interval [0,T0], so that log |∆KE(0)/∆KE(T0)| ≈ 1.

Theoretically, for an infinitely large ensemble, T0 can be
precisely defined by setting it to be the first time where
log |∆KE(0)/∆KE(T0)|= 1. For finite ensembles, this defini-
tion leads to noisy T0 for different realizations with a small sys-
tematic underestimate of T0. In the case of the SBR, for all
m , we find that T0≈ 10.5, and its variations do not affect the
consistency of the results, as different realizations produce sim-
ilar rates (Fig. 4A). In the case of the springy mushroom and
stadium, a higher accuracy is needed to study the behavior of
the m-dependent rates in the limit m→ 0. Therefore, to help
reduce uncertainty in the definition of the rates, we choose an
ensemble-independent T0. To set T0 as a function of m only,
we first find the m-dependent rates using ensemble-dependent
fitting time intervals. Then, we define a linear function R(

√
m)

by the best linear fit for these rates as a function of m , and
let T0(m) = 1/R(

√
m). Finally, we recompute the rates using

T0 =T0(m). This procedure leads to only a small change in the
obtained rate values (the difference is about 2% of their first esti-
mate). Nevertheless, the extrapolation to m = 0 is improved; as
an example, for the stadium, the extrapolated rates get closer to
zero, which is the theoretical rate.

The computation of a trajectory segment for t ∈ [0,T1] (T1 =
21 for the SBR; T1(m) ∈ [200, 3,000] for the mushroom and
the stadium) includes 103–106 collisions. To maintain a high
level of accuracy, the following checks of the code are carried
out. (i) The total energy of the system for the full duration of
the simulations is conserved up to at least nine significant digits.
(ii) When the code is run for a static billiard (i.e., the position of
the bar is fixed), the particle energy is preserved with at least nine
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significant digits. (iii) For selected parameter values, the code is
run several times to estimate the size of the fluctuations caused
by the finite size of the ensemble (e.g., the reported SDs for the
equilibration rates). (iv) The experiments are repeated with dif-
ferent ensemble sizes.

Stochastic Model Simulations. In the stochastic models, the
motion of the bar is described by several explicitly defined Hamil-
tonian systems with one degree of freedom (Eqs. 7 and 9) and
a probabilistic law, which determines transitions between these
systems. The stochastic models correspond to the limit of m = 0
and are independent of the mass ratio.
Stochastic simulations for the SBR. In this case, the bar motion
is described by Eq. 7, which is integrated with the help of the
standard Runge–Kutta method of order 4 and a time step size
of h ≈ 10−4. When t = 0 (mod T ), a random choice of Fj is
made with the prescribed probabilities, and at t = τ (mod T ),
the right-hand side of Eq. 5 is reset to zero. The initial condi-
tions for the bar motion are set to reflect the properties of the
ensembles used in the simulations of the SBR: the initial energy
of the bar takes the same value, while its phase on the (yb , ẏb)
plane is random. To mimic the uniform distribution of the par-
ticle position in the box, a random phase is chosen from which
one starts the integration of Eq. 7. If the phase is in (0, τTp/T ),
a random choice of the up or down system is made with proba-
bilities β0 and 1− β0, respectively.
Stochastic simulations for the springy mushroom. In contrast to
the SBR model, the switching time between the two forces in Eq.
9 is stochastic and governed by the probabilistic law of Eq. 10.
We wrote two different numerical codes to carry out these simu-
lations. The rates obtained by these two methods coincide within
the accuracy determined by the size of the ensembles.

Algorithm 1—Direct integration and switching: We integrate
Eq. 9 in the interval [t , t + dt ] and find yb(t + dt) and ẏb(t + dt).
Then, we switch to the harmonic motion of the bar with proba-
bility P(t)dt given by Eq. 10, where yb is replaced by yb(t + dt)
and ẏbdt is replaced by dyb = yb(t + dt)− yb(t). After the par-
ticle is captured, the position and velocity of the bar at the time
of release are calculated explicitly using the equations of har-
monic motion.

The initial ensemble for the bar position is the same as in the
direct simulations, and since in the direct simulations, the par-
ticle always starts from the stem, the chaotic simulation always
starts with the nontrapped particle. To test the accuracy of our
code, we checked that the achieved rates converge as the inte-
gration step is decreased (we typically used dt =T1/2,000 in the
stochastic simulations). We also checked that repeated runs pro-
duce statistically similar results.

Algorithm 2—Switching without integration: We begin by
preparing tables, which provide, for each value of the adiabatic
invariant J , the period of the bar’s oscillation in the effective
potential of Eq. 9, the probability of the particle being captured
in the cap during one period, and when the particle is captured,
the cumulative distribution function (CDF) for the bar position
yb at the moment of capture. After that, for any initial condition
(yb , ẏb) (assuming that the particle is in the chaotic component),
we generate the number of completed rounds before capture and
the value of yb at the moment of capture as random variables,
with the CDFs obtained by interpolation of the precomputed
tables. After the capture point is generated, the time of release
and the new position and velocity of the bar are computed from
the harmonic motion law. Then, the process is repeated until the
time exceeds T1.

The outcome of this stochastic algorithm is a list of capture and
release points (time, bar position, and bar velocity). From this
list, we find the bar energy at fixed time intervals: it is constant
in the capture phase and found by using the adiabatic invari-
ance in the chaotic phase. This algorithm enables fast simula-
tion without integration. Agreement with the results of the sim-
ulations run using Algorithm 1 provides additional verification of
those results.
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