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CRISPR/Cas9 is a hot genomic editing tool, but its success is limited by the widely varying target efficien-
cies among different single guide RNAs (sgRNAs). In this study, we proposed C-RNNCrispr, a hybrid con-
volutional neural networks (CNNs) and bidirectional gate recurrent unit network (BGRU) framework, to
predict CRISPR/Cas9 sgRNA on-target activity. C-RNNCrispr consists of two branches: sgRNA branch and
epigenetic branch. The network receives the encoded binary matrix of sgRNA sequence and four epige-
netic features as inputs, and produces a regression score. We introduced a transfer learning approach
by using small-size datasets to fine-tune C-RNNCrispr model that were pre-trained from benchmark
dataset, leading to substantially improved predictive performance. Experiments on commonly used data-
sets showed C-RNNCrispr outperforms the state-of-the-art methods in terms of prediction accuracy and
generalization. Source codes are available at https://github.com/Peppags/C_RNNCrispr.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

CRISPR/Cas9 originated from bacterial immune system has been
adopted for a promising genomic editing tool in recent years [1]. It
consists of two components: a nuclease activity-carrying Cas9 pro-
tein and a specificity-programming single guide RNA (sgRNA) [2,3].
Recognition and cleavage work via complementarity of a ~20-bp
sequence within the sgRNA to the genome target region flanked
by a 30 NGG protospacer adjacent motif (PAM) based on Watson-
Crick base pairing [1]. The success of CRISPR/Cas9 system for gen-
ome engineering of prokaryotic hosts largely depends on sgRNA
activity. However, different activities among various sgRNAs still
represent a significant limitation, leading to inconsistent target
efficiency [4]. Moreover, the specific features that determine
sgRNA activity remain largely unexplored. Therefore, accurate pre-
diction of sgRNA activity would facilitate the design of sgRNAs by
maximizing aimed activity at the desired target site while mini-
mizing off-target cleavage [5].
Numerous computational methods for sgRNA activity predic-
tion have been developed based on different rules. Existing tools
fall into three classes, namely alignment-based, hypothesis-
driven and learning-based methods [6]. Alignment-based tools
aligned the sgRNA from the given genome by locating PAM. For
example, CRISPRdirect performs sgRNA selection based on investi-
gating the entire genome for perfect matches with the candidate
target sequence and their seed sequence flanking the PAM [7].
Hypothesis driven-based tools score the sgRNA mainly considering
the contribution of specific genome context factors. For instance,
ECRISP ranks sgRNAs by taking into account on-target specificity
and the number of off-targets [8]. Machine learning-based meth-
ods predict the sgRNA cleavage efficacy based on training a model
by integrating different features affecting the efficiency. For exam-
ple, sgRNA Designer considers the position of the target site rela-
tive to the transcription start site and position within the protein
when evaluating the efficacy of candidate sgRNAs [9]. sgRNA
Scorer unravels both locus accessibility and sequence composition
of the sgRNA that are important in determining sgRNA target effi-
cacy [10]. However, the accuracy of machine learning-based tools
varies widely among the constructed features [11]. Moreover, the
hand-crafted features may result in redundancy, further leading
to the poor prediction results. Therefore, machine learning-based
methods have obvious drawbacks, e.g. requiring expert domain
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knowledge and showing low generalization. To learn more about
the computational methods used to facilitate the process of
CRISPR/Cas9 sgRNA target efficacy prediction, we refer readers to
[6] and [12] for a comprehensive reading.

More recently, deep learning [13] is another exciting and
promising approach being applied in the genomics field. It is a vari-
ation of machine learning that uses neural networks to automati-
cally extract novel features from input data. Deep learning has
made impressive advances in areas such as computer vision [14]
and natural language processing (NLP) [15]. Besides, deep
learning-based methods which are mainly based on convolutional
neural networks (CNNs) are attractive solutions for CRISPR sgRNA
target efficacy prediction problems. Currently, several attractive
strategies have been explored for this issue. To the best of our
knowledge, Seq-deepCpf1 is the first published deep learning
method to predict CRISPR/Cpf1 gRNA on-target activity. It used
CNN to extract features from the input gRNA sequence [16]. Deep-
CRISPR has been successfully applied for predicting CRISPR/Cas9
sgRNA on-target knockout efficiency and whole genome off-
target profiles by incorporating deep convolutionary neural net-
work (DCDNN)-based auto-encoder as well as CNN [5]. DeepCas9
used CNN to automatically learn the sequence determinants and
predict the activities of sgRNAs across multiple species genomes
[17]. These three models all used CNNs to extract features from
the input genomic sequence. Overall, they are superior to machine
learning-based tools in prediction accuracy.

CNNs are multilayer architectures where the successive layers
are designed to learn abstract features, until the last layer produces
an output value. They use weight-sharing strategy to capture local
patterns in data such as sequences, which is analogous to taking
the position weight matrix of a motif and scanning it across the
DNA sequence [18]. CNNs perform well when some spatially
invariant patterns of the inputs are expected. But they are
restricted to learn the local patterns. Recurrent neural networks
(RNN), particularly based on long short-term memory network
(LSTM) [19] and gated recurrent unit (GRU) [20], have been
designed for sequential or time-series data [21]. The hidden layers
of RNN are regarded as memory states which can retain informa-
tion from previous sequence and be updated at each step. Several
tools have been introduced in the literature to demonstrate the
synergistic improvements of CNN-RNN models due to the comple-
mentary in their modeling capability. SPEID achieved competitive
performance using types of epigenetic data for enhancer-
promoter interaction prediction in a unified CNN-RNN model
[22]. DeeperBind added a LSTM layer to learn the dependencies
between sequence features identified by CNN, further improving
the prediction of protein binding specificity [23]. DanQ, a CNN
combined bi-directional LSTM (BLSTM) framework, has recently
been introduced to quantify function of DNA sequences by incor-
porating the motifs and a complex regulatory grammar between
the motifs [24]. Pan et al. proposed a hybrid CNN-BLSTM based
iDeepS to concurrently identify the binding sequence and structure
motifs from RNA sequences [25].

The previous success of CNN-RNN in bioinformatics motivated
us to extend its applications to CRISPR/Cas9 sgRNA on-target activ-
ity prediction. In this work, we introduced C-RNNCrispr, a hybrid
architecture combining CNN with bidirectional GRU (BGRU), to
predict sgRNA cleavage efficacy. The intuition of this hybrid
architecture is to use CNN for feature extraction while using the
BGRU to model sequential dependencies of sgRNA features.
C-RNNCrispr contains two branches: sgRNA branch and epigenetic
branch, respectively being used to extract sgRNA and epigenetic
features. Particularly, we first represented sgRNA sequences and
its related epigenetic features by one-hot encoding, which trans-
forms the inputs into two 4 � 23 binary matrices for subsequent
convolution operations. Second, the encoded sgRNA and epigenetic
matrices were respectively fed into sgRNA branch and epigenetic
branch for abstract features extraction. Third, the outputs of these
two branches were integrated by element-wise multiplication.
Finally, the outputs of the merged layer were fed into a linear
regression layer to grade sgRNA cleavage efficiency. Besides, we
proposed a transfer learning strategy to address the small-size
sample problem. To be specific, we first pre-trained the proposed
C-RNNCrispr on the benchmark dataset. Subsequently, we fine-
tuned the pre-trained C-RNNCrispr on small-size cell-line datasets
to predict sgRNA on-target activity. Experiments results showed
that C-RNNCrispr consistently surpasses other available state-of-
the-art prediction methods.
2. Methods

2.1. Data resources

We utilized the publicly available datasets packaged by Chuai
et al. [5], available at https://github.com/bm2-lab/DeepCRISPR. It
contains a benchmark dataset and four cell-line independent data-
sets. For benchmark dataset, each observation in the data contains
a 23-nt sgRNA sequence and a binary class label indicating the
high-efficiency and low-efficiency sgRNAs. There are 180,512
unique sgRNA sequences in this dataset. We used this dataset to
build our C-RNNCrispr model. HCT116 and HELA datasets were
generated in human HCT116 and Hela cells [26], HEK293T dataset
generated in human Hek293t cell was original published in [10].
HL60 dataset generated in human Hl60 cell was original published
in [27]. Each observation contains a sgRNA sequence and the mea-
sured knockout efficacy. After removing the redundancy, the num-
ber of datasets HCT116, HEK293T, HELA and hl60 was 4239, 2333,
8101 and 2076, respectively.

The above datasets were processed by Chuai et al. [5]. In their
study, four epigenetic features of each sgRNA sequence was
obtained from ENCODE [28], including CTCF binding information
obtained from ChIP-Seq assay, H3K4me3 information from ChIP-
Seq assay, chromatin accessibility information from DNase-Seq
assay, and DNA methylation information from RRBS assay. Each
epigenetic feature was denoted by a symbolic sequence with
length of 23, with notations ‘‘A” and ‘‘N” meaning the present
and absent of the epigenetic feature at a particular base position
of DNA regions.

The binary cleavage efficacy was obtained by converting the
measured sgRNA efficacy using a log-fold change of 1 as the cutoff.
The high-activity sgRNAs were denoted by 1 and the low-activity
ones were represented by 0. Besides, numerical cleavage efficacy
was defined by applying a collaborative filtering-based data nor-
malization method [29]. To be specific, a matrix Y was formulated
where each row represented the experiments and each column
denoted one gRNA. Normalized numerical sgRNA cleavage efficacy
value was defined as

ynor ¼ ymn � mrow þmcol þmallð Þ=3 ð1Þ

where ymn denoted the n-th sgRNA in the m-th experiments. mrow,
mcol and mall represented the mean values for each row, the mean
values for each column and the mean values of Y, respectively.
For each sgRNA, the log2-fold change was calculated. Subsequently,
sgRNAs within each gene were ranked by carrying out the rank-
based normalization method proposed by Doench et al. [9]. The
resulting normalized ranks were averaged across cell types and
rescaled into 0–1. Here, 1 means the successful on-target cleavage
efficacy. Each observation in the above four cell-line datasets con-
tained the 23-nt sgRNA sequence, chromosome, start site, end site,
strand, four types of symbolic epigenetic features, normalized
numerical cleavage efficacy and the binary efficiency. We used
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these datasets to evaluate and compare the proposed C-RNNCrispr
with several current deep learning and existing machine learning
prediction methods.

2.2. Sequence encoding

The input sequence should be numerically encoded before being
fed into deep learningmodels. Severalmethods have been proposed
to represent the input sequence, such as one-hot encoding and k-
mer embedding computed by word2vec [30]. For one-hot encoding
representation, the input sequence is represented by a 4 � L matrix
where 4 is the size of nucleotides vocabulary (A, C, G and T) and L is
the length of the sequence. Each position in the sequence is related
to a vector of length four with a single non-zero element corre-
sponding to the nucleotide in that position. Specifically, the nucleo-
tides A, C, G and T are encoded as four one-hot vectors 1;0;0; 0½ �;
0;1;0;0½ �; 0;0;1;0½ �; and 0;0;0;1½ �. Notably, one-hot encoding sim-
ply transforms DNA sequences into images with binary values
rather than real continuous-values for each pixel with four channels
corresponding to A, C, G and T, which may lead to restrictive effects
on the performance. When using the k-mer embedding, the input
sequence is split into overlapped k-mers of length k using a sliding
window with stride s. Subsequently, each k-mer in the obtained
sequence is mapped into a d-dimensional vector using word2vec
method [30]. Word2vec is an unsupervised learning algorithm
which maps k-mers from the vocabulary to vectors of real numbers
in a low-dimensional space. The value of k-mer length and stride
can be determined by model training. We refer readers to the orig-
inal publication for details [30]. A recent study showed that using k-
mer embedding to represent input sequence gained superiority of
model performance than one-hot encoding [31]. However, the
improvement in performance comes at the cost of the training time
for sequence modeling. Overall, sequence representations denoted
by one-hot encoding are sparse, high-dimensional and hardcoded,
whereas k-mer embedding representations are dense, relatively
low-dimensional, and learned from data.

It is noteworthy that one-hot encoding has been adapted in sev-
eral previous methods on sgRNA on-target activity prediction
[5,16,17]. For fair comparison, we chose this approach to encode
sgRNA sequence with 23 nucleotides in length. Therefore, a 1-by-
23 nucleotide sequence was denoted by a 4 � 23 binary matrix.
Four kinds of epigenetic features (mentioned in Section 2.1) were
analyzed in this work. We used a one-dimensional binary vector
to encode each of epigenetic feature. The presence of the specific
epigenetic feature at a particular position is represented by 1 while
its absence is denoted by 0. As a consequence, four epigenetic
features are denoted by a 4 (types of epigenetic features) � 23
(sequence length) binary matrix. The encoded sgRNA and
epigenetic features binary matrices were subsequently fed into
C-RNNCrispr-based model for training and testing.

2.3. C-RNNCrispr model

A convolutional neural network (CNN) [32] is a type of deep,
feed-forward artificial neural network that can capture the hierar-
chical spatial representations, thus avoiding laborious manual fea-
ture engineering. Recurrent neural network (RNN) [33] is a
variation of deep neural networks. Unlike CNN, RNN has an inter-
nal state that is updated as the network reads the input sequence.
This internal memory allows RNN to capture interactions between
the elements along the sequence, and is thus widely used in the
field of NLP [34]. For details of CNN and RNN, see Supplementary
Note. CNN excels at capturing local patterns in sequence data by
using weight-sharing strategy but it fails at learning sequential
correlations. Inversely, RNN achieves excellent performance for
sequential modelling while fails to derive features in parallel.
Many studies support the idea that the combination of CNN and
RNN can achieve better performance [24,35,36]. To be specific,
the convolutional modules stage scans the sequence using a series
of 1D convolutional filter to capture sequence patterns. The follow-
ing RNN stage is used for learning complex high-level relationships
by considering the orientations and spatial relationships between
the motifs. Inspired by these studies, we proposed a unified
CNN-RNN framework to predict CRISPR/Cas9 sgRNA on-target
activity. Fig. 1 and the following description give a summary of
the basic architectural structure of C-RNNCrispr used.

As shown in Fig. 1, C-RNNCrispr consists of two branches, viz.
sgRNA branch and epigenetic branch. The sgRNA branch is applied
to extract the abstract features of sgRNA sequences, whereas epi-
genetic branch is necessary to reveal the hidden knowledge of epi-
genetic information. Note that, the structure of epigenetic branch
is similar to sgRNA branch except that a bidirectional gate recur-
rent unit network (BGRU, a special kind of variants for RNN) layer
is absent. For the example of sgRNA branch, it receives a 4 (size of
nucleotides vocabulary) � 23 (sequence length) binary matrix as
an input. The first layer of the sub-network is a one-dimensional
(1D) convolutional layer (conv_1), which consists of an array of
256 filters that convolves with the input sequence. Our rationale
for including a convolution layer before BGRU layer is that CNNs
achieve excellent performance for extracting sgRNA sequence fea-
tures while keeping the number of model parameters tractable by
applying convolutional operator. Rectified linear units (ReLU) [37]
is subsequently used to keep only positive filter values and set the
remaining to zeros, where ReLU xð Þ ¼ maxð0; xÞ.

The second layer is a local max-pooling layer (pool_1) with win-
dow size of 2. It connects with the outputs of previous layer by
propagating only the largest output of each kernel with each stride
for download sampling.

The third layer is a BGRU layer with dimension of 256. The
motivation for adding a BGRU layer is that it is apt at enhancing
the relevance between features of the sequences. The outputs of
two parallel GRUs are concatenated to obtain our final feature rep-
resentation containing both the forward and backward informa-
tion of sgRNA sequence.

Next, the obtained features are followed by four fully connected
layers (fc_1, fc_2, fc_3 and fc_4) with the sizes of 256, 128, 64 and
40 with ReLU activations, respectively. We used dropout for model
regularization to avoid overfitting. The dropout rate will be given
in Section 2.5.1.

The features of the last fully connected layer of sgRNA and epi-
genetic branches are integrated using element-wise multiplication
operator for features merging. Finally, the outputs of the merged
features are fed into a linear regression transformation to make a
prediction of sgRNA on-target activity.

2.4. Experimental settings

The proposed C-RNNCrispr model was implemented using
Python 3.6.4 and Keras 2.1.0 (http://keras.io) with TensorFlow
(1.4.0) as the backend. All experiments were carried out on a desk-
top computer with Intel (R) Core (TM) i7-7800X CPU @ 3.50 GHz,
Ubuntu 16.04.5 LTS and 32 GB RAM, as well as two NVIDIA GeForce
GTX 1080 Ti GPUs with 11 GB of memory per GPU. We used mean
square error (MSE) as the loss function for the regression task. Dur-
ing training process, we applied the RMSprop algorithm [38] for
stochastic optimization of the objective of the loss function.

2.5. Implementation of the C-RNNCrispr model

2.5.1. Model selection and pre-training
Model selection was performed by testing the variants of

C-RNNCrispr as summarized in Table 1 on the benchmark dataset.
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Fig. 1. An overview of C-RNNCrispr architecture. We trained the C-RNNCrispr from scratch on the benchmark dataset. Then, we fine-tuned the well-trained pre-trained C-
RNNCrispr model on small-size datasets.

Table 1
The variants of C-RNNCrispr models compared in this work.

Model Architecture

C-RNNCrispr_std Using one convolutional layer with 256 1D filtering kernels of length 5 with dropout layer
C-RNNCrispr_2conv Using two convolutional layers with 256 1D filtering kernels of length 5
C-RNNCrispr_len7 Using one convolutional layer with 256 1D filtering kernels of length 7
C-RNNCrispr_avepool2 Using average-pooling layer of window size 2
C-RNNCrispr_ndrop Using one convolutional layer with 256 1D filtering kernels of length 5 without using dropout layer

Note: The descriptions of four C-RNNCrispr variants are relative to C-RNNCrispr_std model descripted in Section 2.3.
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The dataset was randomly divided into a training dataset and an
independent testing dataset with 80% and 20% classes. Experi-
ments were performed under 5-fold cross-validation in the train-
ing phase. During each training test, the training data was
randomly split into equal five parts. Among them, four parts were
regarded as training dataset, while the remaining one part was
taken as testing dataset. Supplementary Table S1 summarizes the
number of the training samples, validation samples and testing
samples of all the experiments in our study.

It is worth noting that the number of BGRU (1), neurons per layer
of CNN (256) and BGRU (256) with recurrent dropout rate of 0.2 of
C-RNNCrispr weremanually set empirically. We constructed five C-
RNNCrispr variants by various parameters: the number of convolu-
tion layers, the window size of convolution filters, the window size
of pooling layer and the dropout rate. Fig. 1 depicts the standard
architecture of C-RNNCrispr (C-RNNCrispr_std). Mini-batch gradi-
ent descent was performed for optimization and further reduced
the gradient variance during training process. Each experiment
was run for 200 epochs, and batch size was set to 256.

Bayesian optimization [39] is an automatic tuning method for
optimizing the given learning algorithm via modeling the general-
ization performance. Hyperopt [40] and hyperas [41] (https://
github.com/maxpumperla/hyperas) were used to carry out the
Bayesian optimization created with Keras. We used the benchmark
data to train models with different hyperparameters (i.e., dropout
out rate, activation function, batch size and epoch) suggested iter-
atively by Bayesian optimization. The selection was applied over
the following set of parameters: dropout coefficient (0.2, 0.3, 0.4,
0.5), activation function (‘ReLU’, ‘ELU’, ‘LeakyReLU’), batch size
(128, 256, 512) and epoch (100, 200). The training data and test
data were generated in the same way in Section 2.5.1. After enough
iterations, we took the best hyperparameters that showed the min-
imum average validation loss as the final parameters of the model.
The hyperparameters were as follows: activation function: ‘ReLU’;
batch size: 256; epoch: 200. The dropout rates were 0.2 (keeping
80% of the connections) and 0.3 for specific layers of C-
RNNCrispr. Specifically, the dropout rate following the layers of
max_pooling layer, GBRU, and four fully connected layers of sgRNA
branch was set to 0.2, 0.3, 0.3, 0.2, 0.2 and 0.2, respectively. Simi-
larly, the dropout rate following the max_pooling layer and four
fully connected layers of epigenetic branch was set to 0.3, 0.2,
0.3, 0.3 and 0.2, respectively. The dropout rate following the mul-
tiply layer was 0.2. We then carried out the final hyperparameters
to pre-train C-RNNCrispr model again from scratch on benchmark
dataset under 5-fold cross-validation.

2.5.2. Transfer learning
Transfer learning is the process of migration of trained model

parameters to a new model to help train the new model. Previous
studies in computer vision have demonstrated that deep models
with better performance are learned via transfer learning from large
scale datasets to other datasets of limited scales [42,43]. Motivated
by these studies, we investigated four transfer learning strategies
(i.e., fine tune, frozen CNN, frozen BGRU and frozen FC) of borrowing
information from benchmark dataset, and determined the optimal
one for testing new cell line. For complete details see Table 2.

We compared C-RNNCrispr with these four transfer learning
strategies and determined the one which achieved the best perfor-
mance in terms of Spearman correlation and area under the ROC
curve (AUROC) as the final transfer learning strategy for the
following analysis. Four cell line datasets were used under 5-fold
cross-validation for performance evaluation. The training data
and testing data for each cell line were constructed in the same
way as described in Section 2.5.1. We first pre-trained
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Table 3
Performance comparisons amongst different architectures under 5-fold cross-valida-
tion on benchmark dataset.

Model Spearman correlation AUROC

C-RNNCrispr_std 0.877�0.062 0.976�0.002
C-RNNCrispr_2conv 0.833�0.000 0.972�0.003
C-RNNCrispr_len7 0.833�0.000 0.975�0.004

Table 2
Four transfer learning strategies for C-RNNCrispr model.

Strategy Transfer learning procedure

Fine tune Only the weights in the last two fully connected layers of sgRNA
and epigenetic branches as well as the last fully connected layer
of C-RNNCrispr are trainable

Frozen
CNN

Freeze the weights of CNN layers

Frozen
BGRU

Freeze the weights of BGRU layer

Frozen FC Freeze the weights of fully connected layers
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C-RNNCrispr from scratch on the benchmark dataset under 5-fold
cross-validation. Next, we applied the above transfer learning
strategies on small-size cell-line datasets to evaluate and compare
the predictive performance. Here, we provide a detailed descrip-
tion of fine tune strategy. Besides the last two fully connected lay-
ers of sgRNA branch and epigenetic branch as well as the element-
wise multiplication and the last fully connected layers of
C-RNNCrispr, all the layers of these two branches were frozen.
After borrowing weights of the pre-trained C-RNNCrispr base net-
work, we fine-tuned C-RNNCrispr to minimize the MSE loss func-
tion using the RMSprop optimizer for small-size cell lines.
Through fine tune, C-RNNCrispr could effectively prevent overfit-
ting when applying for small-size datasets. For any given cell line
of interest, the training process is described as below:

(1) Pre-train C-RNNCrispr from scratch on benchmark dataset
for 200 epochs.

(2) Freeze the convolution, BGRU, max-pooling layers, the first
two fully connected layers of sgRNA branch. On the other
hand, freeze the convolution, max-pooling layers and the
first two fully connected layers of the epigenetic branch.

(3) Train the last two fully connected layers of both the above
two branches, the element-wise multiplication layer and
the last fully connected layer of C-RNNCrispr with training
data from cell line of interest for another 200 epochs.

(4) Evaluate C-RNNCrispr model on the test data.

2.6. Settings of other methods

We ran the Python code of Seq_deepCpf1 (downloaded from
Github at https://github.com/MyungjaeSong/Paired-Library) using
the same data and training process. It is noteworthy that the input
of Seq_deepCpf1 is a 4-by-34 binary matrix. We changed the input
shape of Seq_deepCpf1 model into 4-by-23 into to match the size
of the data in this work. We used the benchmark dataset to pre-
train the model. For fair comparison, we only fine-tuned the
weights parameters in the last two layers (1681 free parameters)
for cell line-specific prediction.

The source R code of DeepCas9 can be downloaded from Github
at https://github.com/lje00006/DeepCas9. We constructed Deep-
Cas9 model following the description in [17] and trained it using
the same training and validation data in Python. For fair compared
with other deep learning-based methods, we also applied transfer
learning for DeepCas9 (DeepCas9 plus transfer learning). Specifi-
cally, we used fine tune by only training the top two fully con-
nected layers (80769 free parameters) of DeepCas9 architecture.
The source code of DeepCRISPR were run by getting from https://
github.com/bm2-lab/DeepCRISPR. The performance of sgRNA
Designer and sgRNA Scorer were taken from Chuai et al. [5].
C-RNNCrispr_avepool2 0.833�0.000 0.974�0.005
C-RNNCrispr_ndrop 0.833�0.001 0.969�0.001

Note: Performance is shown as mean ± standard deviation. This representation also
applies to Table 4. The best performance (as measured by each metric) across dif-
ferent architectures is highlighted in bold for clarification. These highlights also
apply to Tables 4 and 6, Supplementary Tables 2, 3 and 4.
2.7. Performance measures

In order to evaluate the performance of C-RNNCrispr, we used
Spearman correlation coefficient between efficiency scores and
predicted scores. We used Spearman correlation because it is more
robust to outliers compared with Pearson correlation coefficient
[44]. In addition, it was adopted in previous sgRNA activity
prediction studies [5,9,16,17]. We also calculated AUROC to com-
prehensively quantify the overall predictive model performance
of C-RNNCrispr. The value of AUROC is in [0, 1], where 1 equates
to a successful performance. In this study, we applied 0.5 AUROC
as the baseline.
3. Results

3.1. Performance comparisons for different architectures under 5-fold
cross-validation on benchmark dataset

We compared the performance of different model architectures
trained on benchmark dataset under 5-fold cross-validation in
Table 3. Some interesting conclusions can be extracted: first,
amongst the compared architectures, C-RNNCrispr_std achieved
the best performance for predicting sgRNA on-target activity
with mean Spearman correlation and AUROC values of 0.877
and 0.976, respectively. Second, CNN with one convolutional layer
(C-RNNCrispr_std) surpassed that with two convolutional layers
(C-RNNCrispr_2conv). Third, the performance of C-RNNCrispr_std
was a little superior than C-RNNCrispr_len7 and C-RNNCrispr_
avepool2. Finally, we noticed that C-RNNCrispr_std outperformed
C-RNNCrispr_ndrop,which is expected since dropout regularization
contributes to the prevention or mitigation of overfitting. Together,
these results demonstrated that C-RNNCrispr_std achieves the best
generalization performance amongst these architectures. Therefore,
we chose C-RNNCrispr_std for the following experiments.
3.2. Efficacy of CNN and BGRU

Next, we evaluated the effectiveness of CNN and BGRU for our
C-RNNCrispr on sgRNA activity prediction. First, we verified the
efficacy of the convolution stage by proposing a variant deep archi-
tecture (without CNN) getting rid of the convolutional layers and
max-pooling layers of sgRNA branch from full C-RNNCrispr model.
Then we compared this variant architecture with C-RNNCrispr
under 5-fold cross-validation on benchmark dataset. The training
data and test data were generated identically to the way described
in Section 2.5.1. As expected, we discovered that removing convo-
lutional layer of sgRNA branch leads to 0.046 and 0.001 decrease
on average of Spearman correlation and AUROC values, respec-
tively. Second, we performed experiments on another variant of
C-RNNCrispr by removing the BGRU layer in the sgRNA branch
(without BGRU). In this case, we observed Spearman correlation
and AUROC score became less compared with full C-RNNCrispr,
with 0.060 and 0.034 decline on average (Table 4). For the sake

https://github.com/MyungjaeSong/Paired-Library
https://github.com/lje00006/DeepCas9
https://github.com/bm2-lab/DeepCRISPR
https://github.com/bm2-lab/DeepCRISPR


Table 4
Performance comparison among C-RNNCrispr and its two variant architectures (i.e.,
without CNN and without BGRU) on benchmark dataset under 5-fold cross-validation.

Model Spearman correlation AUROC

C-RNNCrispr 0.877�0.062 0.976�0.002
without CNN 0.831�0.001 0.971�0.002
without BGRU 0.817�0.001 0.942�0.004
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of clarity, C-RNNCrispr achieved the highest Spearman correlation
and AUROC values amongst these architectures.

In view of the above two aspects, convolutional operations were
capable of extracting the abstract features of sgRNA and epigenetic
sequences. Besides, BGRU stage was indispensable in our architec-
ture for capturing the sequence dependencies of sgRNA. We con-
clude that combination of CNN and BGRU can boost the power of
C-RNNCrispr for sgRNA activity prediction.
Fig. 2. Performance comparison of different transfer learning strategies for sgRNA
activity prediction on four cell line-specific training data under 5-fold cross-
validation.

Fig. 3. Performance comparison of C-RNNCrispr training from scratch and trans
3.3. Effect of transfer learning on small-sample data learning

In this section, we focus on analyzing how the general feature
representations from the C-RNNCrispr base network can be trans-
ferred and help the small-sample cell lines data learning for sgRNA
target efficacy prediction. For this purpose, we compared the per-
formance of the above mentioned transfer learning schemes (the
basic training process was introduced in Section 2.5.2). The exper-
iments were performed under 5-fold cross-validation on the above
four small-size cell-line datasets. The training data and testing data
for each cell line were constructed identically to the way described
in Section 2.7. As shown in Fig. 2, it is clear that amongst the trans-
fer learning strategies, fine tune clearly outperformed others. For
example, using benchmark data to pre-train C-RNNCrispr, we
obtained the Spearman correlation of 0.727, 0.648, 0.672 and
0.630 on HCT116 dataset for fine tune, frozen CNN, frozen BGRU
and frozen FC, respectively. Supplementary Table S2 shows the
results of AUROC values based on these transfer learning schemes.
As can be seen, fine tune strategy performed as well as, or even
slightly better than the other transfer learning strategies on data-
sets HCT116 and HEK293T, with values of 0.937 and 0.976, respec-
tively. Therefore, we applied fine tune strategy on small-size cell
line datasets to boost the predictive performance.

In order to further verify the advantage of transfer learning (i.e.
via fine tune) with benchmark dataset on small-size cell line data,
we compared the results between using cell line-specific training
data to train from scratch and using fine-tune strategy. Intuitively,
there was a significant improvement for each cell line in terms of
these two evaluation criteria (Fig. 3). For example, the standard
training method yield Spearman correlation values of 0.285,
0.117, 0.287, 0.338, and 0.443 on HCT116, HEK293T, HELA, HL60
and total datasets, much smaller than 0.727, 0.806, 0.702, 0.624,
and 0.682 obtained from fine tune strategy. The superior perfor-
mance of fine tune for modeling power of C-RNNCrispr is clear.
3.4. Comparison with current algorithms

We next compared our C-RNNCrispr with current algorithms
using sgRNA and epigenetic data. Prior to this, we briefly comment
on some comparisons of C-RNNCrispr and other existing deep
learning-based methods for sgRNA on-target activity prediction
(see Table 5). First, both Seq_deepCpf1 and DeepCas9 performed
fer learning via fine tune for each cell line data by 5-fold cross-validation.



Table 5
Existing deep learning-based methods for sgRNA on-target activity prediction.

Model Model Sequence Training mode Reference

Seq_deepCpf1 1D CNN sgRNA Transfer learning [16]
DeepCRISPR 2D CNN sgRNA + Epi Transfer learning [5]
DeepCas9 1D CNN sgRNA From scratch [17]
C-RNNCrispr 1D CNN-BGRU sgRNA + Epi Transfer learning –

Note: sgRNA + Epi, sequence features and epigenetic features.

Fig. 4. Performance comparison of C-RNNCrispr and other learning-based prediction models on different testing cell line data under 5-fold cross-validation.
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based on 1D convolution model (1D CNN) considering only sgRNA
sequence composition. DeepCRISPR and C-RNNCrispr performed
by incorporating both sgRNA sequence and epigenetic data.
Second, DeepCRISPR used two dimensional CNN (2D CNN) while
C-RNNCrispr used hybrid 1D CNN and BGRU. Third, besides Deep-
Cas9, all methods used transfer learning technique. Thus, we only
compared with DeepCRISPR among these methods when consider-
ing both sgRNA and epigenetic data. Moreover, we also compared
C-RNNCrispr with two current machine learning-based tools,
including CRISPR Designer and sgRNA Scorer.

The above four cell line datasets were applied under 5-fold
cross-validation for performance evaluation. The training data
and testing data for each cell line were built in the same way as
described in Section 2.5.1. Fig. 4a shows the Spearman correlations
of compared methods and C-RNNCrispr. In general, deep learning-
based model outperformed the machine learning-based tools. To
be specific, our C-RNNCrispr gained superiority to other methods
in three cell lines and total dataset, whereas for dataset HEK293T,
it performed lower than DeepCRISPR. As depicted in Fig. 4b, it is
clear that C-RNNCrispr outperformed other methods in terms of
AUROC scores. Detailed Spearman correlation and AUROC scores
for individual datasets are provided in Supplementary Table S3.
We conclude that C-RNNCrispr is competitive against other exist-
ing methods.

To further evaluate the generalization capability of the pro-
posed method, we trained C-RNNCrispr using leave-one-cell-line-
out procedure and made comparisons with the above mentioned
methods. The training and testing data for each cell line were con-
structed followed the procedure illustrated in Section 2.5.1. In the
training stage, for a cell line of interest to be predicted, we used the
training data from other three cell lines. In the testing stage, we
evaluated the model on the test data of the given cell line of
interest. Taking leave-HCT116-out as an example, we trained the
model by incorporating training data from HEK293T, HELA, and
HL60 cell lines (lacking training data from HCT116), and evaluated
the model on HCT116 test data. Intuitively, we observed that our
C-RNNCrispr achieve the best performance (Fig. 5). Specifically,
compared with the next-best DeepCRISPR, C-RNNCrispr showed
the superior performance in all cell line datasets except for
HCT116. C-RNNCrispr achieved mean Spearman correlation of
0.692, which was 0.286 higher than DeepCRISPR. In addition, C-
RNNCrispr clearly outperformed other models in all cell line data-
sets in terms of AUROC. For more details, see Supplementary
Table S4. These observations suggest that C-RNNCrispr gained
the superiority of generalizability for sgRNA activity prediction.
3.5. Case studies

From the above investigation, we have observed that our C-
RNNCrispr showed satisfactory performance for sgRNA activity
prediction. Previous machine learning-based methods demon-
strated that sgRNA sequence composition is critical for the cleav-
age efficiency [45,46]. The first case study was conducted to
investigate whether C-RNNCrispr can effectively predict sgRNA
activity using sgRNA sequence composition features. For this pur-
pose, we evaluated the prediction ability of C-RNNCrispr by incor-
porating only sgRNA sequence features. We only used the sgRNA
branch to evaluate the sgRNA activity. We compared C-
RNNCrispr with three deep learning-based models (i.e., Deep-
CRISPR, Seq_deepCpf1 and DeepCas9) for predicting sgRNA activity
on four cell line datasets. Notably, the inputs of Seq_deepCpf1 and
DeepCas9 only include the sgRNA sequence. For fair comparison,
we applied DeepCRISPR using sgRNA sequence only. In addition,
Seq_deepCpf1, DeepCRISPR and C-RNNCrispr applied fine-tuning



Fig. 5. Performance comparison of C-RNNCrispr and other learning-based prediction models on different testing cell line data with a leave-one-cell-out procedure.
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of the benchmark dataset pre-trained model on cell line of interest
dataset (see Table 5). More concretely, Seq_deepCpf1 only updated
the weights parameters in the last two layers of a benchmark data-
set pre-trained CNN model on small sample cell line of interest
datasets. Analogously, DeepCRISPR used the encoder part of the
DCDNN-based model as the pre-trained model. C-RNNCrispr
applied the fine-tune strategy (Section 2.5.3) for improving the
performance. DeepCas9 trained the model from scratch. To make
a fair comparison, we retrained it by applying transfer learning,
namely DeepCas9 + transfer learning. Specifically, all layers except
the last two fully connected layers were fine tune on small sample
cell line of interest. The training data and test data for each cell line
were generated in the same way as described in Section 3.4.

We note that our C-RNNCrispr consistently outperforms the
other methods in terms of Spearman correlation (see Table 6).
On average, C-RNNCrispr shows a Spearman correlation value of
0.663, with 0.026 higher than the second best Seq_deepCpf1.
Besides, C-RNNCrispr also presents better performance in terms
of AUROC than other models except for dataset HCT116, convinc-
ing us that C-RNNCrispr is more powerful for sgRNA activity pre-
diction. We also note that, with the help of transfer learning,
DeepCas9 plus fine tune surpasses DeepCas9 training from scratch.
This observation is in accordancewith the conclusion of Section 3.3.
Taken together, our C-RNNCrispr can effectively predict sgRNA
activity using sequence composition information only.
Table 6
Performance comparisons amongst five deep learning models based on target sequence co

Model HCT116 HEK293T

(a) Spearman correlation
C-RNNCrispr 0.724 0.665
Seq_deepCpf1 0.672 0.665
DeepCRISPR 0.650 0.035
DeepCas9 0.603 �0.116
DeepCas9 + TF 0.683 0.572

(b) AUROC
C-RNNCrispr 0.934 0.978
Seq_deepCpf1 0.939 0.978
DeepCRISPR 0.887 0.474
DeepCas9 0.784 0.470
DeepCas9 + TF 0.902 0.905

Note: The top table records Spearman correlation values while the bottom one records
DeepCRISPR is take from [5].
The second case study was conducted to reveal the biological
insights into the sgRNA on-target activity prediction. Using the
method in a previous study [47], we developed a heuristic to inter-
pret our C-RNNCrispr network by visualizing the importance of all
possible nucleotides and their corresponding epigenetic features at
different locations. Briefly, we generated special sequences denot-
ing the presence of the nucleotide and epigenetic features at a
specific position and respectively fed them into the sgRNA branch
and epigenetic branch of the well trained C-RNNCrispr model, sub-
sequently took the outputs for visualization. For complete details
see Supplementary Note. Fig. 6 shows the importance of all four
nucleotides and epigenetic features at different positions. This
allowed us to reveal general patterns of CRISPR-mediated DNA
editing and make a number of observations. The positions adjacent
to the PAM are more crucial than the PAM-distal region for sgRNA
activity prediction. This is consistent with previous observations
that perfect base-pairing with 10–12 bp immediately upstream
the PAM (PAM-proximal) determines Cas9 specificity, whereas
multiple PAM-distal mismatches can be tolerated [48]. In agree-
ment with previous studies that presence of an A or T nucleotide
at position 20 (1 bp adjacent to PAM) increased the proportion of
indel [49], we found the presence of A or T is favored at this posi-
tion. We also noted that position 17 (immediately 50 of the cleav-
age site) is the most important. The presence of a C nucleotide is
informative at this position since the cut site usually resides 3 bp
mposition on four cell line datasets under 5-fold cross-validation.

HELA HL60 Average

0.685 0.577 0.663
0.651 0.558 0.637
0.510 0.200 0.349
0.418 0.118 0.256
0.675 0.495 0.606

0.925 0.936 0.943
0.921 0.928 0.942
0.788 0.584 0.683
0.677 0.535 0.617
0.902 0.887 0.899

AUROC values. DeepCas9 + TF: DeepCas9 + transfer learning. The performance of



Fig. 6. Visualization of the importance of different nucleotides and epigenetic features at different positions for our C-RNNCrispr. The colors represent the contribution of the
position-specific nucleotide and epigenetic features to determining an efficient sgRNA. The nucleotides and epigenetic features are arranged vertically, whereas the positions
of the sequence are placed horizontally.
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upstream the PAM. The homopolymers (a run of two or more iden-
tical nucleotides) are found to be favored at position 17–19, which
coincides with a previous finding that the presence of homopoly-
mers adjacent to the cut site increased the proportion of deletions
[49]. Most of the top epigenetic features were obtained by convolv-
ing the middle region of the input matrix. Opening-chromatin
information of Dnase is found to be favored at 3 bp upstream of
the PAM, which is in accord with a previous study that considering
the target site accessibility can boost the predictive performance of
gRNA activity [16]. It has a general preference for Dnase while rel-
ative avoidance of DNA methylation (H3K4me3) for high sgRNA
efficiency. The same observation was also obtained by Chuai
et al. [5].
4. Discussion

In this study, we introduced C-RNNCrispr, a hybrid CNN-BGRU
based model for CRISPR/Cas9 sgRNA activity prediction. An intu-
ition of using a combination of CNN and BGRU is to use CNN for
feature extraction and apply BGRU for modeling sequential depen-
dencies of sgRNA features. Experimental results on publicly avail-
able datasets show C-RNNCrispr can adaptively learn sequence
characteristics of sgRNA and epigenetic features; thereby avoiding
manual feature extraction.

Numerous studies have demonstrated the synergistic improve-
ments of unified CNN-RNN models in virtue of the complementary
in their modeling capability, such as DeeperBind [23] and DanQ
[24]. However, there is no consensus on the relative superiority
between CNNs and RNNs for sequential data. Though RNNs are
popular for natural language data with strong long-range depen-
dencies, there are some studies reported that CNNs perform as well
as RNNs [50,51]. For instance, Zhuang et al. proposed a simple CNN
for predicting enhancer-promoter interactions with DNA sequence
data, which performs equally well with hybrid CNN-RNN model
[52]. They used only moderately large sample sizes of the training
data. It is perhaps that there is no strong long-range dependency in
DNA sequence data in their study, possibly too subtle to be
detected. If so, it would suggest unnecessary to use RNNs.

Previous studies in computer vision have demonstrated that
CNN transfer learning from ImageNet to other datasets of limited
scales contributed to better performing deep models [43,53]. We
have explored four transfer learning strategies (Section 3.3) to
fine-tune the benchmark dataset pre-trained C-RNNCrispr model
on small sample cell line datasets. Each model gained clearly better
predictive results than the naive way. This result is expected given
that there may be commonalities among cell line-specific sequence
features. Therefore, fine tune is ideal for borrowing information
from other cell lines for the task of predicting sgRNA activity when
training data was limited.

Compared with several state-of-the-art learning-based tools,
we found that our C-RNNCrispr coupled with a fine tune strategy
integrating data from benchmark dataset would perform competi-
tively against other methods. Moreover, we noticed that even
given the sgRNA sequence only, C-RNNCrispr still surpassed
amongst the compared deep learning-based models. This result
implies that C-RNNCrispr can represent and capture nontrivial pat-
terns or relationship between sequence information of sgRNA
sequences, it is due to the proposed CNN-BGRU based model com-
bines the advantages of CNN for capturing local patterns of
sequences and BGRU for modeling sequential dependencies. Note
that, the architectures that combine CNN with BGRU indeed pro-
vide performance over the CNN model. However, the improvement
in accuracy comes at the expense of the increased computational
cost. We ran our experiments on an Ubuntu server with two NVI-
DIA GeForce GTX 1080 Ti GPUs with 11 GB of memory per GPU.
Typical running time of each experiment for model training was
1 h for the variant without BGRU (see Section 3.2), 9.8 h for the
variant without CNN and almost 5.5 h for the C-RNNCrispr network
including CNN and GBRU modules (see details in Supplementary
Table S5). Because BGRU are expensive for processing long
sequence, but 1D converts are cheap, it can be a good idea to use
1D convert as a preprocessing step before a BGRU, shortening the
sequence and extracting useful representations for the BGRU to
process. Considering that sgRNA sequence is more important than
its corresponding epigenetic features, thus, we used no BGRU for
the epigenetic branch to reduce the computational cost.

Although C-RNNCrispr has improved the performance for
sgRNA activity prediction and become an advantageous approach,
there are still several avenues of interest to investigate. Our future
work will focus on three areas. One area is about exploring other
deep learning-based frameworks and exploiting methods for opti-
mal hyperparameters selection, which may yield better perfor-
mance. Notably, there are certain characteristic differences
between biological sequence and image data of computer vision,
the technical details of optimizing parameters determination
may differ. The second area is about expanding the feature space.
Currently, we only use sgRNA sequence data and four epigenetic
features including CTCF binding, H3K4me3, chromatin accessibility
as well as DNA methylation. Other informative features such as
cutting positions, physicochemical property and RNA fold score
can be exploited to boost the predictive power. The third area is
sgRNA off-target site prediction. The limitation of the current study
is that C-RNNCrispr can only be used for sgRNA on-target activity
prediction. Note that, CRISPR can tolerate mismatches in sgRNA-
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DNA at various positions in a sequence-dependent manner, leading
to off-target mutations [54,55]. Therefore, this issue should be crit-
ically resolved and completely avoided when applying CRISPR/
Cas9 gene editing to clinical applications. Various tools have been
proposed to predict off-target score by considering the positions of
the mismatches to the guide sequence (MIT score [54] and CFD
score [9], etc.). Subsequently, two machine learning-based
methods Elevation [56] and CRISTA [57] expand the feature set,
including features such as sgRNA secondary structure, genomic
location for off-target prediction. Zhang et al. proposed an ensem-
ble learning framework to predict the off-target activities. It found
ensemble learning using AdaBoost outperformed other individual
off-target predictive tools and adding PhyloP can enhance the
predictive capabilities [58]. It was not until 2018 that deep
learning-based methods have been integrated for CRISPR off-
target prediction, such as DeepCRISPR and CNN_std [59]. The above
two CNN-based models showed good performance in off-target
activity prediction. To learn more about the computational meth-
ods used to facilitate the process of CRISPR/Cas9 sgRNA off-target
activity prediction, we refer readers to [12], [60] and [61] for
details. Integrating the sgRNA off-target site prediction and our
on-target activity prediction is worth of generating for providing
more comprehensive guidance for optimal sgRNAs selection. These
are interesting topics deserve to be explored in the future.

5. Conclusion

In this study, we present C-RNNCrispr, a unified CNN-BGRU
architecture for CRISPR/Cas9 sgRNA on-target activity prediction.
We applied a CNN to automatically learn the abstract features of
sgRNA and four epigenetic features (i.e., CTCF binding, H3K4me3,
chromatin accessibility and DNA methylation). On the other hand,
we used BGRU to model the sequential dependencies of sgRNA
features. Compared with three deep learning based models
(i.e., Seq_deepCpf1, DeepCRISPR and DeepCas9) and two machine
learning-based models (e.g. sgRNA Designer and sgRNA Scorer),
C-RNNCrispr can effectively learn the features of sgRNA sequence
and epigenetic features. We also introduced a transfer learning
strategy to boost the predictive power of C-RNNCrispr in dealing
with small-size datasets. Experimental results on the published
datasets indicated that the effectiveness of our C-RNNCrispr for
CRISPR/Cas9 sgRNA cleavage efficacy prediction.
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