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The membrane guanylate cyclase family has been branched into three subfamilies:
natriuretic peptide hormone surface receptors, Ca2+-modulated neuronal ROS-GC, and
Ca2+-modulated odorant surface receptor ONE-GC. The first subfamily is solely modulated
by the extracellularly generated hormonal signals; the second, by the intracellularly
generated sensory and sensory-linked signals; and the third, by combination of these
two. The present study defines a new paradigm and a new mechanism of Ca2+ signaling.
(1) It demonstrates for the first time that ANF-RGC, the prototype member of the surface
receptor subfamily, is stimulated by free [Ca2+]i. The stimulation occurs via myristoylated
form of neurocalcin δ, and both the guanylate cyclase and the calcium sensor neurocalcin δ

are present in the glomerulosa region of the adrenal gland. (2) The EF-2, EF-3 and
EF-4 hands of GCAP1 sense the progressive increment of [Ca2+]i and with a K1/2 of
100 nM turn ROS-GC1 “OFF.” In total reversal, the same EF hands upon sensing the
progressive increment of [Ca2+]i with K1/2 turn ONE-GC “ON.” The findings suggest a
universal Ca2+-modulated signal transduction theme of the membrane guanylate cyclase
family; demonstrate that signaling of ANF-RGC occurs by the peptide hormones and
also by [Ca2+]i signals; that for the Ca2+ signal transduction, ANF-RGC functions as a
two-component transduction system consisting of the Ca2+ sensor neurocalcin δ and
the transducer ANF-RGC; and that the neurocalcin δ in this case expands beyond its
NCS family. Furthermore, the study shows a novel mechanism of the [Ca2+]i sensor
GCAP1 where it acts as an antithetical NCS for the signaling mechanisms of ROS-GC1
and ONE-GC.

Keywords: calcium, GCAP1, neurocalcin δ, neuronal calcium sensors, membrane guanylate cyclase, cyclic GMP,
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INTRODUCTION
Ca2+ sensor proteins form a group of Ca2+ binding proteins
that, in defined concentrations of free intracellular Ca2+, function
as modulators of the activities of specific target proteins. They
acquire these modulatory abilities by binding Ca2+ through spe-
cific helix-loop-helix structural motifs called EF hands. Binding
of Ca2+ to the EF hand motif triggers conformational changes
in the respective Ca2+ sensor protein that enable it to per-
form Ca2+-dependent functions ranging from regulation of ion
channels permeability to gene expression, cellular survival and
apoptosis (reviewed in Bhattacharya et al., 2004; Braunewell,
2005). Neuronal Ca2+ sensor (NCS) proteins constitute a sub-
family of Ca2+ sensor proteins and were initially considered to
be expressed exclusively in neurons, but now are found in other
tissues as well. NCS proteins are subclassified into five groups
based on their sequence similarities. In mammals, 14 conserved
NCS proteins exist (reviewed in Burgoyne, 2007) and all of them
have 4 EF hand Ca2+ binding motifs but inactivating amino
acid substitutions make the first EF hand non-functional for
Ca2+ binding. In addition to the first inactive EF hand, recov-
erin and K+-channel interacting protein type1 (KChIP1) harbor
another non-functional EF hand. Except for KChIP2, 3 and 4 all

mammalian NCS proteins contain a consensus sequence for N-
terminal myristoylation (reviewed in Burgoyne and Weiss, 2001;
Burgoyne et al., 2004). Some isoforms of KChIP2 and 3 are
possibly palmitoylated (Takimoto et al., 2002). Both myristoy-
lation and palmitoylation of NCS proteins allows for some of
them membrane association, either permanently or transiently in
response to changes in the intracellular Ca2+ concentration. For
GCAP1 and NCS-1, however, Ca2+ plays no role in membrane
attachment of the protein (Hwang and Koch, 2002; O’Callaghan
et al., 2002; Orban et al., 2010).

Neurocalcin δ together with visinin-like proteins (VILIPs) and
hippocalcin form a distinct subfamily of NCS proteins. It is acy-
lated at the N-terminus by myristic acid and undergoes a classical
calcium-myristoyl switch (Ladant, 1995) e.g. it buries the myris-
toyl group in a hydrophobic pocket in a Ca2+-free form and
expose it in Ca2+-bound form as it is observed for recoverin
(Zozulya and Stryer, 1992). However, once it binds in a Ca2+-
dependent fashion to the membrane phospholipids part of it
remains membrane bound even after removing Ca2+ by the addi-
tion of EGTA (Krishnan et al., 2004). Although the highest level
of neurocalcin δ has been detected in neuronal tissues, its expres-
sion level in peripheral tissues is also significant. Functionally,

Frontiers in Molecular Neuroscience www.frontiersin.org April 2012 | Volume 5 | Article 44 | 1

MOLECULAR NEUROSCIENCE 9

http://www.frontiersin.org/Molecular_Neuroscience/editorialboard
http://www.frontiersin.org/Molecular_Neuroscience/editorialboard
http://www.frontiersin.org/Molecular_Neuroscience/editorialboard
http://www.frontiersin.org/Molecular_Neuroscience/about
http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org/Molecular_Neuroscience/10.3389/fnmol.2012.00044/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=TeresaDuda&UID=46032
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=Karl_WilhelmKoch&UID=38726
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=Rameshwar_K_Sharma&UID=48297
http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Duda et al. Neurocalcin δ and GCAP1-modulated guanylate cyclase

neurocalcin δ has been linked to receptor endocytosis through
interaction with α- and β-clathrin and β-adaptin (Ivings et al.,
2002), trafficking and membrane delivery of glutamate receptors
of the kainate type (Coussen and Mulle, 2006), and due to its
Ca2+-dependent affinity for S100B protein and tubulin β-chain
(Okazaki et al., 1995), with microtubule assembly (Iino et al.,
1995). In the sensory and sensory-linked neurons, the presence
of neurocalcin δ has been found in the inner plexiform layer
of the retina, e.g. in the amacrine and ganglion cells (Krishnan
et al., 2004), olfactory sensory neurons (Duda et al., 2001, 2004)
and very recently, it has been identified in type II cells of mouse
circumvallate taste papillae, indicating its possible role in the
gustatory transduction (Rebello et al., 2011).

Further, neurocalcin δ can act as Ca2+-dependent modulator
of membrane guanylate cyclase ROS-GC1 in the retina and ONE-
GC, in the olfactory neuroepithelium. There, it co-localizes with
its respective target guanylate cyclases (Duda et al., 2001, 2004;
Krishnan et al., 2004). The exact physiological significance of the
ROS-GC1-neurocalcin δ signaling system in the retinal neurons
is not known yet, it has, however, been proposed that the sys-
tem may be involved in synaptic processes (Krishnan et al., 2004).
In the olfactory neuroepithelium neurocalcin δ serves as a Ca2+
sensor component of the two-step odorant uroguanylin signaling
machinery (Duda and Sharma, 2009).

Guanylate cyclase activating protein type 1 (GCAP1) is a well
characterized member of the NCS proteins subfamily (reviewed
in Palczewski et al., 2004; Sharma et al., 2004; Behnen et al.,
2010; Koch et al., 2010). Like other homologs and orthologs of
the subfamily, it harbors four EF hand Ca2+ binding motifs,
of which the first one is inactive. GCAP1 is acylated at the N-
terminus by myristic acid that is buried in a hydrophobic pocket
(Stephen et al., 2007) and changing Ca2+ concentrations do not
trigger exposure of the myristoyl group (Orban et al., 2010).
Instead the myristoyl group remains buried in a hydrophobic
cavity. Thus, GCAP1 does not interact with the membranes in
a Ca2+-dependent fashion (Hwang and Koch, 2002; Haynes and
Burgoyne, 2008) and does not undergo a classical calcium myris-
toyl switch. Identified first in the retinal photoreceptors (Gorczyca
et al., 1994; Frins et al., 1996), GCAP1 transmits Ca2+ signals to
and controls the activity of rod outer segment guanylate cyclase,
ROS-GC. It activates ROS-GC in the absence of Ca2+, when
immediately after illumination the cytoplasmic Ca2+ drops in
a photoreceptor cell. GCAPs are thought to switch to a Ca2+-
free but Mg2+-bound state, which represents the activating form
(Peshenko and Dizhoor, 2006). Increasing concentrations of free
Ca2+ diminish the activation process leading even to an inhi-
bition below the basal cyclase activity level (Duda et al., 1996).
This regulatory process of ROS-GC is essential for the photo-
response recovery of visual cells (Mendez et al., 2001; Howes et al.,
2002).

Here, new observations on Ca2+-dependent modes of neuro-
calcin δ and GCAP1 in modulating membrane guanylate cyclase
signaling are presented. The results disclose a new model of
Ca2+-neurocalcin δ signaling of ANF-RGC and a new signal-
ing mechanism of GCAP1 in which it serves as an antithetical
Ca2+ sensor in the phototransduction and the olfactory sen-
sory neurons. Thus, they indicate an increasing complexity in

the regulatory modes of membrane guanylate cyclases and this
enables them to perform multiple cellular functions.

MATERIALS AND METHODS
Mutagenesis. Point mutations in ONE-GC and GCAP1 cDNA
were introduced using Quick Change mutagenesis kit (Stratagene)
and appropriate mutagenic primers. ONE-GC F585S mutation-
Forward primer 5′-TGGCTGAAGAAGTCTGAGGCAGGC ACG-
3′; Reverse primer 5′-CGTGCCTGCCTCAGACTTCTTCAG
CCA-3′ (the mutated sequence is underlined). Construction
of the GCAP1(D100E) mutant is described in detail in
(Kitiratschky et al., 2009). The mutants were verified by
sequencing. To construct the ANF-RGC Ext− mutant two
Hpa1 restriction sites were introduced at nucleotide posi-
tions 437–442 (Forward primer 5′-GTGGTGCTGCCGCTG
GTAAACAACACCTCGTACCCG-3′, Reverse primer 5′-CGG
GTACGAGGTGTTTACCAGCGGCAGCACCAC-3′; Hpa1 re-
cognition sequence is underlined) and at nucleotide posi-
tions 1697–1702 (Forward primer 5′-AATGAGGACCCAG
CCGTAAACCAAGACCACTTT-3′ ; Reverse primer 5′-AAAGTG
GTCTTGGTTTACGGCTGGGTCCTCATT-3′; Hpa1 recognition
sequence is underlined). The 1242 bp fragment was excised and
the remaining part was religated.

Expression in COS cells. COS7 cells (simian virus 40-
transformed African green monkey kidney cells) were maintained
in DMEM medium supplemented with 10% fetal bovine serum
and penicillin, streptomycin antibiotics on 10 cm diameter cell
culture dishes in humidified atmosphere of 95% O2/5% CO2.
At approximately 65% confluency the cells were transfected with
25 μg of appropriate plasmid cDNA using calcium phosphate
co-precipitation technique (Sambrook et al., 1989). In control
experiments the cells were transfected with 25 μg of empty
expression vector. 64 h after transfection cells were washed with
50 mM Tris-HCl pH 7.4/10 mM Mg2+ buffer, homogenized and
the particulate fraction pelleted by centrifugation.

Guanylate cyclase activity assay. The membranes were incu-
bated on ice-bath with or without GCAP1 or neurocalcin δ

in the assay system containing 10 mM theophylline, 15 mM
phosphocreatine, 20 μg creatine kinase and 50 mM Tris-HCl,
pH 7.5. Appropriate Ca2+ concentrations were adjusted with pre-
calibrated Ca2+/EGTA solutions (Molecular Probes). The total
assay volume was 25 μl. The reaction was initiated by addition of
the substrate solution (4 mM MgCl2 and 1 mM GTP, final con-
centration) and maintained by incubation at 37◦C for 10 min.
The reaction was terminated by the addition of 225 μl of 50 mM
sodium acetate buffer, pH 6.2 followed by heating on a boiling
water bath for 3 min. The amount of cyclic GMP formed was
determined by radioimmunoassay (Nambi et al., 1982).

Expression and purification of GCAP1, GCAP1(D100E) and
neurocalcin δ. GCAP1 was expressed and purified as in (Duda
et al., 1999), GCAP1(D100E) as in (Kitiratschky et al., 2009), and
neurocalcin δ as in (Duda et al., 2004).

Antibodies. The specificity of antibody against neurocalcin
δ has been described previously (Duda et al., 2004). Antibody
against ANF-RGC was raised against the kinase homology
domain in rabbits. Specificity of the antibody was tested through
Western blot using membranes of COS cells expressing all three
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receptor guanylate cyclases, ANF-RGC, CNP-receptor guanylate
cyclase (CNP-RGC) and enterotoxin receptor guanylate cyclase
(STa-RGC). The antibody recognized only ANF-RGC (data
not shown). The antibodies were affinity purified. Secondary
antibodies conjugated to a fluorescent dye (DyLight 488 and
DyLight 549) were purchased from Jackson ImmunoResearch
Laboratories, Inc., West Grove, PA.

Immunohistochemistry. Mice were sacrificed by lethal injec-
tion of ketamine/xylazine (the protocol approved by the Salus
University IUCAC) and perfused through the heart, first with a
standard Tris-buffered saline (TBS) and then with freshly pre-
pared 4% paraformaldehyde in TBS. The adrenal glands were
removed and fixed for 1–4 h in 4% paraformaldehyde with TBS
at 4◦C, cryoprotected in 30% sucrose overnight at 4◦C and cut
into 20 μm sections using Hacker-Bright OTF5000 microtome
cryostat (HACKER Instruments and Industries Inc., Winnsboro,
SC). The sections were washed with TBS, blocked in 10% normal
serum in TBS/0.5% Triton X-100 (TTBS) for 1 h at room tem-
perature, washed with TTBS, incubated with respective antibody
in blocking solution overnight at 4◦C, washed with TTBS for and
then incubated with DyLight conjugated donkey anti-rabbit anti-
body (200:1) for 1 h, washed with TTBS. Images were acquired
using an inverted Olympus IX81 microscope/FV1000 Spectral
laser confocal system, and analyzed using Olympus FluoView
FV10-ASW software. Digital images were processed using Adobe
Photoshop software.

Western blot. After boiling in a gel-loading buffer
[62.5 mM Tris-HCl, (pH 7.5), 2% SDS, 5% glycerol, 1 mM
β-mercaptoethanol (βME), and 0.005% bromophenol blue] the
proteins (membranes of transfected COS cells or mouse adrenal
gland homogenate) were subjected to SDS-polyacrylamide gel
electrophoresis in a buffer (pH 8.3) containing 0.025 M Tris,
0.192 M glycine, and 0.1% SDS. The proteins were transferred
to immobilon membranes (Millipore) in the same buffer but
containing 5% methanol. The blot was incubated in (TBS pH 7.5)
containing 100 mM Tris-HCl, 0.9% NaCl, and 0.05% Tween-20
(TBS-T) with 5% powdered non-fat Carnation milk (blocking
buffer) overnight at 4◦C and rinsed with TBS-T. The antibodies
were added to the solution and the incubation continued for 1 h
at room temperature. After the blot was rinsed with with TBS-T,
the incubation was continued with the secondary antibody con-
jugated to horseradish peroxidase in blocking buffer for another
hour. Finally, the blot was treated with SuperSignalR West Pico
chemiluminescent substrate (Thermo Scienitifc; according to
the manufacturer’s protocol). The immunoreactive band was
visualized by exposing the blot to Kodak X-ray film.

RESULTS AND DISCUSSION
ANF RECEPTOR GUANYLATE CYCLASE, ANF-RGC, IS MODULATED
BY Ca2+ SIGNALS
Neurocalcin δ transmits Ca 2+ signal to ANF-RGC
Based on almost three decades of research the family of mam-
malian membrane guanylate cyclases has been firmly divided
into two subfamilies, receptor guanylate cyclases and intracellular
Ca2+ regulated guanylate cyclases. The first group included the
receptor for natriuretic factor type A (ANF) and type B (BNP)
guanylate cyclase ANF-RGC, the receptor for type C natriuretic

peptide guanylate cyclase CNP-RGC, and heat-stable enterotoxin
(and also guanylin and uroguanylin) receptor guanylate cyclase
STa-RGC; the second group is comprised of the photoreceptor
guanylate cyclases ROS-GC1 and ROS-GC2 and the olfactory
neuroepithelium guanylate cyclase ONE-GC.

To determine whether a receptor guanylate cyclase could also
respond to Ca2+ signals transmitted to it through a calcium sen-
sor protein, the prototype receptor cyclase ANF-RGC and NCS
protein neurocalcin δ were chosen. A clue for selecting neurocal-
cin δ was the observation that it targets the conserved membrane
guanylate cyclase catalytic domain of ROS-GC1.

Membranes of COS cells expressing recombinant ANF-RGC
were incubated with series of increasing concentrations of puri-
fied myristoylated neurocalcin δ at a fixed 10 μM Ca2+. No
extracellular ligand of ANF-RGC, ANF or BNP, was added to
the reaction mixture. ANF-RGC activity was stimulated in the
neurocalcin δ concentration-dependent manner; half-maximal
activation of the cyclase occurred at ∼0.5 μM and the maxi-
mal activation of 4.8-fold above the basal value was observed
at 2 μM myristoylated neurocalcin δ (Figure 1: closed circles).
The calculated Hill’s coefficient for the stimulatory effect was
2.1 ± 0.5. In the membranes of cells transfected with the vec-
tor alone the cyclase activity was negligible, 0.2 pmol cyclic GMP
min−1(mg protein)−1 (Figure 1: closed diamonds) and was unaf-
fected by neurocalcin δ in the presence of Ca2+. To verify that
the observed effect of Ca2+-neurocalcin δ is specific the cyclase
activity was measured in the presence of neurocalcin δ but in the
absence of Ca2+ (1 mM EGTA was added to the reaction mix-
ture). The absence of Ca2+ did not affect the basal ANF-RGC
activity; it was 12 ± 2 pmol cyclic GMP min−1(mg protein)−1

FIGURE 1 | Ca2+-bound neurocalcin δ stimulates ANF-RGC activity.

COS cells were transfected with ANF-RGC cDNA and their membrane
fraction was analyzed for neurocalcin δ-dependent cyclase activity in the
absence (open circles) and presence of 10 μM Ca2+ (closed circles). COS
cells transfected with an empty vector were analyzed identically (closed
diamonds). The extracellular hormone ligand of ANF-RGC, the atrial
natriuretic factor (ANF) was absent from the reaction mixture. The
experiment was done in triplicate and repeated four times. The results
shown are average ± SD from these experiments. The EC50 value was
determined graphically. Neurocalcin δ used was myristoylated. The
myristoylated form of neurocalcin δ was expressed and purified as
described in Krishnan et al. (2004).
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in the presence of 10 μM Ca2+ and 11.9 ± 1.8 pmol cyclic GMP
min−1(mg protein)−1 in the presence of 1 mM EGTA. In the
absence of Ca2+ neurocalcin δ, however, did not stimulate ANF-
RGC activity (Figure 1: open circles). Thus, ANF-RGC activity is
not only regulated by ANF or BNP; in vitro it is also regulated by
myristoylated neurocalcin δ in the presence of Ca2+.

Neurocalcin δ targets the intracellular domain of ANF-RGC
It is well established that ANF and BNP, the hormone-ligands
of ANF-RGC, signal through the cyclase’s extracellular domain
(Duda et al., 1991; Ogawa et al., 2004; reviewed in Sharma,
2002, 2010). Neurocalcin δ, on the other hand, is an intracellu-
lar protein, therefore the respective target sites of these two types
of ligand, ANF/BNP and neurocalcin δ, reside on the opposite
sites of the transmembrane domain of ANF-RGC. To determine
the biochemical requirements for neurocalcin δ effect on ANF-
RGC activity namely, whether the isolated intracellular portion
of ANF-RGC is sufficient for neurocalcin δ to exhibit its stimula-
tory effect or whether the intact ANF-RGC protein is necessary,
an ANF-RGC deletion mutant was prepared in which the extra-
cellular receptor domain (aa 12–433) was deleted. The mutant,
however, had retained the leader sequence to ensure its proper
membrane targeting. This mutant was transiently expressed in
COS cells and their membranes were appropriately treated with
ANF or myristoylated neurocalcin δ and 10 μM Ca2+. Both pro-
teins had comparable basal guanylate cyclase activities, 13 and
12.2 pmol cyclic GMP min−1(mg protein)−1 for the full-length
ANF-RGC and the deletion mutant, respectively. As expected, the
mutant was unresponsive to ANF (Figure 2: open circles), how-
ever, neurocalcin δ stimulated its activity in a dose-dependent

FIGURE 2 | The intracellular portion of ANF-RGC is sufficient for

neurocalcin δ and Ca2+ to stimulate ANF-RGC activity. The ANF-RGC
deletion mutant lacking the extracellular receptor domain aa12–433, was
constructed and expressed in COS cells. The particulate fraction of these
cells was assayed for guanylate cyclase activity in the presence of
increasing concentrations of myristoylated neurocalcin δ and 10 μM Ca2+ or
0.5 mM ATP and increasing concentrations of ANF. Membranes of COS
cells expressing full-length ANF-RGC were processed in parallel as positive
control. The experiment was performed in triplicate and repeated two
times. The results shown are mean ± SD from these experiments.

fashion (Figure 2: closed diamonds). The stimulatory profile
was indistinguishable from that of the full-length ANF-RGC
(Figure 2: closed circles). Also the Hill’s coefficients for the neu-
rocalcin δ effect on both cyclases were identical 2.1 ± 0.5 and
2.05 ± 0.4 for the full-length ANF-RGC and for the deletion
mutant, respectively. It is, therefore, concluded that the extra-
cellular domain has no structural role in ANF-RGC ability to
respond to and be stimulated by myristoylated neurocalcin δ.

ANF-RGC and neurocalcin δ co-exist in the glomerulosa cells of the
adrenal gland
Are these in vitro biochemical findings on ANF-RGC activity
modulation by Ca2+ via neurocalcin δ of physiological rele-
vance? A first hint could be the co-expression of both proteins
in the same tissue, organ or cell type. Guided by intuition the
mouse adrenal gland was analyzed for the presence of ANF-
RGC and neurocalcin δ, first by Western blot and then through
immunocytochemistry.

The gland was homogenized and the homogenate after SDS-
polyacrylamide gel electrophoresis was analyzed for the presence
of ANF-RGC or neurocalcin δ by Western blot. As shown in
Figure 3, with antibody against ANF-RGC as a probe (panel
“ANF-RGC”) an intense immunoreactive band was observed at
expected molecular weight of ∼130 kDa. With neurocalcin δ

antibody as a probe (Figure 3: panel “NCδ”) the presence of an
immunoreactive protein with mobility of ∼23 kDa correspond-
ing to the molecular weight of neurocalcin δ was observed. These
results show that both ANF-RGC and neurocalcin δ are expressed
in the mouse adrenal, they, however, do not provide information
whether these proteins are expressed in the same type of adrenal
gland cells. To determine whether these proteins co-localize in the

FIGURE 3 | ANF-RGC and neurocalcin δ are expressed in the mouse

adrenal gland. Mouse adrenal gland was homogenized in 50 mM
Tri-HCl/10 mM MgCl2 buffer (pH 7.5) containing protease inhibitor cocktail
(Sigma). The proteins (∼40 μg/lane) were subject to SDS-polyacrylamide
gel electrophoresis and analyzed by Western blot using antibody against
ANF-RGC or neurocalcin δ as described in the “Materials and Methods”
section. (A) immunoreactivity with ANF-RGC antibody.
(B) immunoreactivity with neurocalcin δ antibody.

Frontiers in Molecular Neuroscience www.frontiersin.org April 2012 | Volume 5 | Article 44 | 4

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Duda et al. Neurocalcin δ and GCAP1-modulated guanylate cyclase

FIGURE 4 | ANF-RGC and neurocalcin δ are co-expressed in the

glomerulosa cells of mouse adrenal gland. (A) Serial cryosections of the
mouse adrenal gland were immunostained with neurocalcin δ (panel “NCδ”)
or ANF-RGC (panel “ANF-RGC”) antibodies. The DIC image showing the
integrity of the adrenal gland sections are presented at the left (“DIC”).
“Z.G.” and “Z.F-R.” denote zona glomerulosa and zona fasciculata-reticularis,
respectively. Intense staining with either antibody was observed

in the zona glomerulosa. (B) The immunostaining with the primary
antibodies is specific. The mouse adrenal gland cryosections were
processed identically as in (A) except that the primary antibody for ANF-RGC
or neurocalcin δ was omitted in the respective incubation mixture but
incubation with fluorescently labeled secondary antibody was carried out as
in (A). The DIC image showing the integrity of the sections are presented
(“DIC”).

adrenal gland immunocytochemical analyzes were carried out.
Sections of the adrenal gland were immunostained with specific
antibodies against ANF-RGC and neurocalcin δ. Because both
antibodies used were raised in rabbits, co-immunostaining was
not feasible, therefore, staining of consecutive sections was per-
formed. The results are shown in Figure 4A. Intense staining
with anti neurocalcin δ antibody was observed in the adrenal
zona glomerulosa (Figure 4A: panel “NCδ” Z.G.). Also, strong
immunoreactivity with ANF-RGC antibodies was observed in
zona glomerulosa (Figure 4A: panel “ANF-RGC” Z.G.). This
localization of ANF-RGC within the mouse adrenal gland is
consistent with the protein’s localization in the bovine adrenal
gland (Meloche et al., 1988). To verify the specificity of the
staining, in control reactions the primary antibodies were omit-
ted but secondary antibody was added. Without the primary
antibodies there was no specific staining in the sections ana-
lyzed (Figure 4B: control). It was therefore concluded that both
ANF-RGC and neurocalcin δ co-exist in the adrenal glomeru-
losa cells. Although some faint staining in both sections was
observed for the fasciculate-reticularis cells (Z.F-R. region in both
“NCδ” and “ANF-RGC” panels), without detailed co-localization
experiments it is not possible to conclude on ANF-RGC and
neurocalcin δ co-existence there.

The second question asked was: are ANF-RGC and neurocal-
cin δ co-existing in the adrenal gland functionally linked? Mouse
adrenal gland was homogenized in the presence of 1 mM EGTA
or 10 μM Ca2+, the particulate fraction was prepared and ana-
lyzed for guanylate cyclase activity. In the absence of Ca2+ the
activity was 70 ± 9 pmol cyclic GMP min−1 (mg protein)−1

and in the presence of Ca2+, 245 ± 28 pmol cyclic GMP

FIGURE 5 | Neurocalcin δ stimulates ANF-RGC in membranes of mouse

adrenal gland. Mouse adrenal gland was homogenized in Tris-Mg2+ buffer
pH 7.4 with or without 10 μM Ca2+. The particulate fractions were prepared
from each homogenate and assayed for guanylate cyclase activity. The
experiment was done in triplicate and repeated two times. The results
shown are average ± SD from these experiments.

min−1(mg protein)−1 (Figure 5). At this stage it is not possible
to conclude with certainty, however, if native neurocalcin δ in
the adrenal gland is pre-bound to ANF-RGC or if it is under-
going a Ca2+ mirystoyl switch and interacts with ANF-RGC
in a reversible manner, the guanylate cyclase activity measured
at 10 μM Ca2+ reflects the neurocalcin δ-stimulated ANF-RGC
activity.
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What is the physiological significance of neurocalcin δ mod-
ulation of ANF-RGC activity in the adrenal zona glomerulosa?
At this moment there is no definite answer to this question. A
clue, however, may be provided by the facts that the adrenal
glomerulosa cells are the site of aldosterone synthesis, that aldos-
terone synthesis is triggered by the increase in cytosolic Ca2+
concentration, and that the ANF-RGC activity offsets the renin-
angiotensin-aldosterone system and inhibits aldosterone synthe-
sis (Burnett et al., 1984; Brenner et al., 1990; Aoki et al., 2000;
Shi et al., 2001). Because a measurable time is necessary for hor-
monal (ANF) turning “ON” the ANF-RGC signal transduction
system resulting in the inhibition of aldosterone synthesis, it is
tempting to hypothesize that before the hormonal ANF signal
is activated, Ca2+-bound neurocalcin δ stimulates ANF-RGC.
In this situation ANF-RGC response will be very rapid and the
cyclic GMP produced will start to inhibit aldosterone synthesis
almost immediately. Cyclic GMP synthesized by ANF-RGC affects
number of effectors of aldosterone synthesis. They include cyclic
GMP-gated channels, cyclic GMP-dependent protein kinases, and
cyclic GMP-regulated phosphodiesterases (reviewed in Lohmann
et al., 1997; Pfeifer et al., 1999). Several reports indicate that
cyclic GMP-driven inhibition of aldosterone synthesis is, at least
in part, mediated by cyclic GMP-stimulated phosphodiesterase
(PDE 2) that is expressed at high levels in adrenal glomerulosa
cells (MacFarland et al., 1991; Côté et al., 1999). This hypothesis
needs now experimental validation.

GCAP1 - ANTITHETICAL CALCIUM SENSOR
Since its discovery, GCAP1 has been exclusively regarded as the
component of the phototransduction machinery sensing the fall
in Ca2+ concentration after illumination, transmitting this infor-
mation to photoreceptor guanylate cyclase ROS-GC and stimu-
lating it to synthesize cyclic GMP at a faster rate (reviewed in
Pugh et al., 1997; Koch et al., 2010). With the ensuing raise
of Ca2+ concentration, Ca2+-bound GCAP1 inhibits ROS-GC
activity bringing it to the basal level. This activator/inhibitor
mode of GCAP1 operation is well established both in vivo and
in vitro.

Recent work, however, indicated that GCAP1 could target to
another sensory membrane guanylate cyclase, an odorant recep-
tor ONE-GC [alternatively termed GC-D (Fülle et al., 1995)]
expressed in a subpopulation of olfactory sensory neurons (Duda
et al., 2006; Pertzev et al., 2010).

GCAP1 transmits the Ca 2+-stimulatory signal to the odorant
receptor guanylate cyclase, ONE-GC
Recombinant ONE-GC expressed in COS cell was exposed to
increasing Ca2+ concentrations and constant, 4 μM, GCAP1
concentration. As a positive control, recombinant ROS-GC1
was treated identically. Both cyclases were expressed in COS to
approximately the same level as verified by Western blot (Figure 6
inset). As expected, based on previous reports (Duda et al., 1996),
at or below 10 nM Ca2+, GCAP1 maximally stimulated ROS-
GC1 (Figure 6: closed circles). The stimulation decreased with
increasing free Ca2+ concentration and the half-maximal inhibi-
tion was at about 100 nM Ca2+. Contrary to that, at about 100 nM
Ca2+ there was practically no effect on GCAP1-dependent ONE-
GC activity (Figure 6: open circles). However, with the Ca2+

FIGURE 6 | Antithetical Ca2+ modulated GCAP1 effect on ONE-GC and

ROS-GC1 activities. Membranes of COS cells expressing ONE-GC or
ROS-GC1 (control) were individually assayed for guanylate cyclase activity
in the presence of 4 μM GCAP1 and indicated concentrations of Ca2+. The
experiment was carried out in triplicate and repeated three times. The
results shown are shown are average ± SD from these experiments. The
IC50 and EC50 values were determined graphically. Inset: Expression levels
of ROS-GC1 and ONE-GC in COS cells were monitored by Western blot
using antibodies against ROS-GC1 or ONE-GC.

concentrations increasing beyond 100 nM there was a dose-
dependent increase in ONE-GC activity. The half-maximal acti-
vation of the cyclase occurred at 0.7 μM Ca2+ and the maximal
activation at about 2.5 μM. At Ca2+ concentrations above 2.5 μM
there was no statistically significant increase in the cyclase activity.
The expression levels of ROS-GC1 and ONE-GC in COS cells was
comparable (Figure 6: inset). These results essentially confirm
the previous published in Duda et al. (2006). The main conclu-
sion is that GCAP1 can function as calcium-dependent regulator
of guanylate cyclase activity, but depending on the target it can
activate the cyclase in a Ca2+-dependent manner with reverse
premise making it an antithetical modulator.

How can GCAP1 exhibit these opposite modulatory effects?
To answer this question GCAP1 and ONE-GC mutants were
employed.

Several mutations in the GCAP1 gene have been found in
patients suffering from autosomal dominant cone-rod dystro-
phies (Behnen et al., 2010). All these mutations except one are
located within the regions coding for EF hands 3 and 4. The
D100E mutation is within EF hand 3; it causes perturbation in
Ca2+ coordination, and leads to a dramatic decrease in affinity for
Ca2+. As a consequence, the D100E mutant remains in an active
conformation at 10 μM Ca2+. The activation is half-maximal at
20 μM Ca2+ and the cyclase activity returns to the basal level only
at approx. 60 μM free Ca2+ (Behnen et al., 2010; Dell’Orco et al.,
2010). This mutant was tested for its effect on ONE-GC activity
in the presence of two Ca2+ concentrations, 10 nM and 10 μM.
For comparison, in parallel experiment, the effect of the D100E
mutant on ROS-GC1 activity at the same Ca2+ concentrations
was determined. The results are shown in Figure 7. The mutant
stimulated ROS-GC1 activity at both tested Ca2+ concentrations.
It, however, had no effect on ONE-GC activity at 10 nM Ca2+
but stimulated its activity at 10 μM Ca2+. Thus, dysfunctional EF
hand 3 does not have any effect on Ca2+-dependent GCAP1 stim-
ulation of ONE-GC. Because the third EF hand has the highest
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FIGURE 7 | The D100E GCAP1 mutant stimulates both ONE-GC and

ROS-GC1 at high Ca2+ concentration but only ROS-GC1 in the

absence of Ca2+. The membrane fraction of COS cells expressing ONE-GC
or ROS-GC1 (control) were assayed for guanylate cyclase activity in the
presence (2 μM) or absence of D100E GCAP1 mutant and 1 mM EGTA
(10 μM Ca2+) or 10 μM Ca2+. The experiment was done in triplicate and
repeated two times for reproducibility. The results shown are average ± SD
from these experiments.

affinity for Ca2+ (Lim et al., 2009) these results indicated that
low affinity Ca2+ binding to GCAP1 is sufficient for ONE-GC
stimulation. These results further showed that the D100E muta-
tion in GCAP1 leads to a protein conformation that can act
as a constitutive activator with Ca2+-sensing properties that are
significantly shifted to higher free Ca2+. One can deduce from
these results that the interaction sites of GCAP1 in ROS-GC1
and ONE-GC are different, i.e., are not located in correspond-
ing homologous regions. This hypothesis was tested by creating a
mutant of ONE-GC with a point mutation in a region that is con-
served among sensory guanylate cyclases and that is critical for
GCAP1-dependent regulation of ROS-GC1.

GCAP1 signaling modes in its Ca 2+-free and Ca 2+-bound states
are different
The first ROS-GC1 gene mutation linked with visual disorder
was the F514S mutation identified in cases of Leber’s congenital
amaurosis type 1 (LCA1) (Perrault et al., 1996). Studies aimed
at explaining the molecular basis of LCA1 demonstrated that
this mutation totally disables GCAP1 modulation of ROS-GC1
activity (Duda et al., 1999). Because phenylalanine in this posi-
tion is conserved in all membrane guanylate cyclases, the obvious
question to ask was: would a similar mutation in ONE-GC dis-
able GCAP1-mediated Ca2+ signaling of its activity? ONE-GC
F585S mutant (corresponding to the F514S in ROS-GC1) was con-
structed and its activity was determined in the presence of 10 μM
Ca2+ and increasing concentrations of GCAP1 (Figure 8A: closed
circles). The results show that contrary to ROS-GC1 and its F514S
mutant (Figure 8A: open and closed triangles, respectively; the
activity was measured in the absence of Ca2+), the F→S mutation
in ONE-GC does not affect the Ca2+-GCAP1-dependent activa-
tion of the cyclase (Figure 8A: compare the profiles with closed
and open circles). The Hill’s coefficients calculated for the GCAP1
stimulation of wt ONE-GC and of its F585S mutant were virtually
identical, 1.83 ± 0.3. The mutation also does not affect the Ca2+
sensitivity of the mutant (Figure 8B: compare the closed and

FIGURE 8 | F585S mutation does not affect Ca2+-GCAP1 signaling of

ONE-GC activity. (A) Membranes of COS cells expressing ONE-GC or its
F585S mutant were assayed for guanylate cyclase activity in the presence
of increasing concentrations of GCAP1 and constant 10 μM Ca2+;
Membranes of COS cells expressing ROS-GC1 or its F514S mutant were
analyzed for GCAP1 effect in the absence of Ca2+ (1 mM EGTA was
present in the assay mixture). (B) Membranes of COS cells expressing
ONE-GC and its F585S mutant or ROS-GC1 and its F514S mutant were
analyzed by Western blot using antibodies against ROS-GC1 and ONE-GC.
Approx 20 μg of membrane protein was applied on each lane of the gel.
Lane 1, ONE-GC; Lane 2, ONE-GC F585S; Lane 3, ROS-GC1; Lane 4,
ROS-GC1 F514S. (C) Membranes of COS cells expressing ONE-GC or its
F585S mutant were assayed for guanylate cyclase activity in the presence
of increasing concentrations of Ca2+ and constant, 4 μM GCAP1. The
experiments were done in triplicate and repeated for reproducibility with
different preparations of transfected COS cells. The results presented
(mean ± SD) are from one representative experiment.

open circles). It is, therefore, concluded that Ca2+-free and Ca2+-
bound GCAP1 exert different signals for activation of membrane
guanylate cyclase. They probably do so by acting on different
target regions, since the mutation F514S is located in a previ-
ously identified interaction and/or regulatory region of ROS-GC1
(Lange et al., 1999). Finally, while the F514S mutation in ROS-
GC1 results in blindness at birth or soon thereafter (Perrault et al.,
1996), the corresponding F585S mutation in ONE-GC would not
result in anosmia.
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