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Lymph node (LN)-resident stromal cells play an essential role in the proper functioning of
LNs. The stromal compartment of the LN undergoes significant compensatory changes to
produce a milieu amenable for regulation of the immune response. We have identified a
distinct population of leptin receptor-expressing (LepR+) stromal cells, located in the
vicinity of the high endothelial venules (HEVs) and lymphatics. These LepR+ stromal cells
expressed markers for fibroblastic reticular cells (FRCs), but they lacked markers for
follicular dendritic cells (FDCs) and marginal reticular cells (MRCs). Leptin signaling
deficiency led to heightened inflammatory responses within the LNs of db/db mice,
leakiness of HEVs, and lymphatic fragmentation. Leptin signaling through the JAK/STAT
pathway supported LN stromal cell survival and promoted the anti-inflammatory
properties of these cells. Conditional knockout of the LepR+ stromal cells in LNs
resulted in HEV and extracellular matrix (ECM) abnormalities. Treatment of ob/ob mice
with an agonist leptin fusion protein restored the microarchitecture of LNs, reduced intra-
LN inflammatory responses, and corrected metabolic abnormalities. Future studies are
needed to study the importance of LN stomal cell dysfunction to the pathogenesis of
inflammatory responses in type 2 diabetes (T2D) in humans.

Keywords: lymph node, stromal cell, leptin receptor, type 2 diabetes, matrix structure
INTRODUCTION

LNs are highly specialized organs that monitor the incoming lymph continuously from organs via
afferent lymphatic ducts. Lymph first enters the subcapsular region of a LN, then progresses through
the medullary region of the LN, and leaves the LN via efferent lymphatic ducts (1). LNs monitor the
tissue fluid exudate as a method of surveying the immune milieu of organs (2, 3). Lymphatic
expansion in LNs is a cardinal manifestation of heightened inflammatory responses within the
organs that they drain (4).
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Key to the function of LNs is the presence of specialized
stromal cells that not only provide the scaffold for the LN, but
also perform a plethora of physiological functions (3, 5). The
majority of stromal cells within LNs are FRCs, which are a
podoplanin (PDPN)+CD31– populations. FRCs are thought to
originate from mesenchymal stem cells in adipose tissue. They
build a scaffold within the LN upon which incoming T cells that
have entered via HEVs can crawl to meet dendritic cells (DCs)
(6). The homing of immune cells to the LN is promoted by the
secretion of chemokines, such as CCL19, by FRCs (5). FRCs
possess various immunoregulatory molecules, which can amplify
or dampen immune responses (7, 8). Pericytes, which are
stromal cells, are critically important to the integrity of the
microvasculature (9, 10). Pericytes reside within the vicinity of
the basement membranes of endothelial cells (11, 12). Both the
lymphatics and HEVs of the LNs are among some of the most
active vasculatures in the body. On a daily basis, millions of T
cells home to the LNs via HEVs, requiring the presence of strong
supporting cells for the integrity of HEVs. Furthermore, the
lymphatic vessels in the LNs must be capable of expansion in
response to any ongoing injuries within the organs (13, 14).
Substantial progress has been made in deciphering more deeply
the stromal population within the LNs; however, many
unanswered questions remain. Despite the overwhelming body
of work on the cellular and humoral effector players of
inflammatory responses in T2D, these studies have not studied
LNs, critical sites for immune activation and regulation, in depth.

Multiple immune processes are involved in the pathogenesis
of T2D (15, 16). Pro-inflammatory cellular and humoral
responses have been shown to play key roles in the
pathogenesis of T2D (17). Elevated leptin levels are associated
with insulin resistance and T2D development (18). Leptin exerts
its biological functions through a cell-surface LepR that is a
member of the type I cytokine receptor family (19). Recognition
of the contribution of leptin to inflammation originated by
demonstrating extensive expression of LepR by leukocytes (20–23).
Leptin is known for its role regulating T cell immunity (24, 25).
However, the role of Leptin in regulating the function of stromal
cells and its potential implication in regulating the inflammatory
milieu of LN remain to be further examined. Furthermore,
lymphatic vessel dysfunction is an emerging component of
metabolic diseases implicated in obesity (26, 27). However, the
existence of lymphatic and HEV dysfunction in T2D has not
been investigated.

In this study, we identified leptin receptor-expressing (LepR+)
stromal cells, located predominantly in the vicinity of HEVs and
lymphatic vessels inside LNs. Our data showed that leptin
signaling plays a critical role in maintaining the integrity and
proper functioning of HEVs and lymphatic vessels in murine LNs.
Leptin signaling deficiency leads to lymphatic fragmentation, HEV
leakiness, and increased inflammatory responses within LNs.
Treatment with leptin fusion protein restored the anti-
inflammatory properties and microarchitecture of LNs in leptin-
deficient ob/ob mice. These studies shed new light on the potential
importance of LNs in regulation of inflammatory responses seen
in metabolic syndromes, such as T2D.
Frontiers in Immunology | www.frontiersin.org 2
RESULTS

Localization and Characterization of
LepR+ Cells in LNs
We sought initially to identify the location of the LepR+ cells in
mouse axillary LNs. LepRCre;tdTomato mice were generated by
crossing LepRcre mice with Cre-inducible Rosa26-driven
tdTomato mice. No tdTomato signal was found in the LNs
from Rosa26-tdTomato mice without LepR-Cre (Figure S1).
Sections of LepRCre;tdTomato mouse LNs were stained with
antibodies to FRC markers PDPN and ER-TR7, as well as to
HEVs (PNAd) and lymphatic vessels (Lyve-1). Figure 1A shows
that LepR+ cells (tdTomato+) were present in a circumferential
pattern around HEVs (PNAd+). To fully characterize these
LepR+ cells around HEVs, we used the pericyte markers NG2
and PDGFRb to stain the LepRCre;tdTomato LNs (Figure 1B).
However, LepR+ cells did not express NG2 or PDGFRb
(Figure 1B). Next, we investigated the distribution of LepR+

cells within the interstitium of the LNs. We assessed the
expression of LepR on PDPN+ FRCs and the ECM within the
LNs using ER-TR7 antibody. We found that the many PDPN+

cells expressed LepR in LepRCre;tdTomato mice (Figure 1A). ER-
TR7 antigen (green) also colocalized partially with LepR (red)
(Figure 1A). LepR+ cells were also found mostly adjacent to the
lymphatic vessels, and fewer cells co-expressed Lyve-1 and LepR
(Figure 1A). We also examined LepR expression by MRCs and
FDCs. LepR+ cells did not express RANKL (MRCs), CD35
(FDCs), or MAdCAM (MRCs and FDCs) (Figure 1C). We
performed flow cytometric (FACS) analysis of cells harvested
from LepRCre;tdTomato LNs. The results indicated that ~ 32% of
CD45-PDPN+CD31- FRCs expressed LepR (tdTomato positive,
n=3), and ~23% of CD45-PDPN-CD31- double negative cells
(DNs) expressed LepR (Figure 1D). To examine the cellular
characteristics of LepR+ cells with the LN further, we analyzed
the expression of stromal markers on LepR+ cells from LepRCre;
tdTomato LNs. LepR+Lin-CD31-cKit- (Figure 1E) cells from
LepRCre;tdTomato LNs were analyzed for the expression of
stromal markers, which including FRCs. Our data (Figure 1F)
showed co-expressionwith the stromal cell markers Sca1, CD29,
CD90, CD44, CD73, CD105, and CD106 on LepR+ cells (85.5%,
88.0%, 19.8%, 46.9%, 41.5%, 58.1% and 52.9%, respectively).

Next, we examined the development of LepR+ cells in the
postnatal (PND) period by staining sections of LNs retrieved on
PND day 1 (PND1) and day 14 (PND14) from LepRCre;
tdTomato mice. As shown in Figure 1G, much fewer LepR+

cells were found in the PND1 LNs as compared to the PND14
LNs. LepR+ cells in these young mice also colocalized with the
FRC markers PDPN and ER-TR7, a similar distribution as in the
LNs of adult mice (Figure 1G).

LN Abnormalities in LepR-Deficient Mice
(db/db Mice)
Next, we examined microanatomical changes within the LNs of
db/db mice. As shown in Figure 2A, the HEVs in the db/db LNs
were expanded and elongated, and the walls were thinner in
comparison to WT LNs. To visualize the HEVs more precisely,
January 2022 | Volume 12 | Article 730438
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FIGURE 1 | (A) Fluorescence micrographs show circumferential distribution of LepR+ cells (red) around HEVs and lymphatics in Leprcre;tdTomato mice LNs. LepR
(red) colocalized with PDPN and ER-TR7. Scale bar, 50mm. (B) Fluorescence micrographs of LNs from Leprcre;tdTomato mice showed no colocalization of LepR
(red) with NG2 and PDGFRb. Scale bar, 100mm. (C) Fluorescence micrographs of Leprcre;tdTomato mice LNs showed no colocalization of LepR (red) with RANKL,
CD35 and MAdCAM. Scale bar, 50mm. (D) LepR expression in CD45-PDPN+CD31-(FRCs) and CD45-PDPN-CD31-(DN) populations of LNs were evaluated by flow
cytometry. Data are representative of three independent experiments (n=3). (E) Gating strategy to exclude hematopoietic and endothelial cells for LepR+ cells in
LepRcre;tdTomato LNs. (F) The percentages of LepR+ cells of LNs in stromal marker panel Sca-1, CD29, CD90, CD44, CD73, CD105 and CD106 were evaluated
based on the gating strategy in (E). Data are representative of three independent experiments (n=3). (G) Fluorescence micrographs of PND1 and PND14 LNs
showed location of LepR+ cells (red) in relation to HEVs, lymphatics, PDPN and ER-TR7. Scale bar, 100mm.
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FIGURE 2 | (A) Immunofluorescence staining showed differences in the appearance of ER-TR7+ fibers, PDPN+ cells, Lyve-1+ lymphatics, and HEVs between the
LNs of WT mice and db/db mice. Scale bar, 50mm. Images are representative of five independent experiments (n=5). Quantification data from two independent
experiments with five mice/group (n=5) are summarized in bar chart. All the data are presented as mean ± SEM, Student’s t test, **p < 0.05, ***p < 0.001.
(B) Immunofluorescence staining showed differences between collagen I and fibronectin fibers in the LNs of db/db mice compared with WT mice. Scale bar, 50mm.
Images are representative of five independent experiments (n=5). Quantification data from two independent experiments with five mice/group (n=5) are summarized
in bar chart. All the data are presented as mean ± SEM, Student’s t test, **p < 0.05, ***p < 0.001. (C) Dextran injections were used to assess HEV and Lyve-1+

lymphatic vessel integrity. ZO-1 staining was used to assess the integrity of HEVs and lymphatic structures. Scale bar, 50mm. Images are representative of five
independent experiments (n=5). (D, E) Flow cytometry profiling of WT and db/db mouse LN cell populations. Changes in the surface expression of PD-L1 was
assessed in CD45-PDPN+CD31- FRCs, CD44 expression was assessed in CD8+ T cells, production of IFNg was assessed in CD8+ T cells, and CD4+CD25+FOXP3+

regulatory T cell populations were determined via intracellular staining followed by FACS analysis. Numbers in quadrants indicate cell percentages. Data from two
independent experiments with six mice/group (n=6) are summarized in bar chart. All the data are presented as mean ± SEM, Student’s t test, *p < 0.05, **p < 0.01,
***p < 0.001. (F) Quantitative RT-PCR analysis was performed to examine inflammatory response-related gene expression in WT and db/db LNs. Data from two
independent experiments with six mice/group (n=6). All the data are presented as mean ± SEM, Student’s t test, **p < 0.01, ***p < 0.001.
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we performed 3D imaging of solvent-cleared organs (iDISCO) of
WT LNs and db/db LNs, indicating a marked expansion of db/db
HEVs, as compared with WT LNs (Figure S2A). We also
investigated the changes in the Lyve-1+ lymphatic plexus. In
contrast to the linear lymphatics of the WT LNs, those of the
db/db LNs were discontinuous (Figure 2A). We examined
subsequently the ER-TR7+ reticular fibers and PDPN expression
in db/db mice, as compared with WT mice. The structure of the
ER-TR7+ reticular fibers and the microarchitecture formed by
PDPN+ cells in the LNs of the db/db mice showed dense clusters
that lacked the thin homogenous distribution of matrix seen in the
WT LNs (Figure 2A). Under physiological conditions, FRCs
secrete collagen fibers that form an elaborate ECM network. We
stained the LNs for collagen I and fibronectin, and we found that
the architectural framework was disorganized into dense clusters
of fibers in the db/db LNs (Figure 2B). Next, we determined
whether impaired barrier function leads to increased permeability
of HEVs and lymphatics. We injected dextran tagged with
fluorescein (dextran-FITC) intravenously or subcutaneously to
analyze the permeability of HEV and lymphatics by IF staining.
2000kDa Dextran-FITC was restricted to the lumens of the HEVs
and lymphatics of theWT LNs, while it leaked from the HEVs and
lymphatics into the tissue in the db/db LNs (Figure 2C).
Interestingly, the expression of the tight junction protein zonula
occludens-1 (ZO-1) was lower in the lymphatics and HEVs of the
db/db LNs (Figure 2C). We also assessed ZO-1 and two other
tight junction markers–claudin5 and occludin–with respect to
mRNA levels by RT-PCR, and all were reduced in the db/db
LNs (Figure S2B). Taken together, these data indicate that LepR
signaling plays a critical role in maintaining the integrity of HEVs
and lymphatic vessels in murine LNs.

We examined the FRC populations in db/db and WT LNs by
flow cytometric analysis, which revealed that the proportion of
FRCs and lymphatic endothelial cells (LECs) in the LNs of db/db
mice were significantly lower in comparison to those in WT mice
(21.13 ± 5.910% vs 29.83 ± 7.282%, 2.335 ± 0.6383% vs 5.06 ±
0.4224%, respectively, n=6/group) (Figures 2D, E). PD-L1 is an
anti-inflammatory mediator that is expressed constitutively by
FRCs (28). Flow cytometric analysis also indicated a
downregulation of PD-L1 expression in the FRCs of the db/db
LNs, as compared to theWT LNs (6.372 ± 2.06% vs 13.85 ± 2.77%,
n =6/group, respectively). Then, we analyzed the phenotypes of
the T cell population of the LNs in the db/db mice and compared
them to those in the WT LNs. We noted an upregulation of
activation marker CD44 (31.57 ± 3.173% vs 24.67 + 2.16%, n =6/
group) and pro-inflammatory cytokine IFNg (19.22 ± 5.852% vs
10.02 ± 1.89%, n =6/group) in CD8+ T cells of db/db mice. A
higher percentage of the CD4+CD25+FOXP3+ regulatory T cell
(Treg) population (23.86 ± 4.716% vs 17.23 ± 2.018%, n =6/group)
was also noted in the LNs of the db/db mice as compared to the
LNs of the WT mice (Figures 2D, E). Flow cytometric analysis
demonstrated that IFNg was upregulated by CD8+ T cells in the
db/db LNs, as compared to the WT LNs. Although the Treg
population was also increased in db/db LNs, the ratio between the
CD8+IFNg+ T cells and Treg populations was higher in the db/db
mice than the WT mice, indicating a shift towards a pro-
Frontiers in Immunology | www.frontiersin.org 5
inflammatory milieu in the LNs of the db/db mice. RT-PCR was
performed to confirm the expression of inflammatory cytokines
that play important roles in T2D in db/db mice LNs. As shown in
Figure 2F, gene expression levels of IL-2, IL-6, IL-7, IL-17, TNFa,
and IFNg were higher in db/db LNs than WT LNs.

Leptin Regulates the Survival and Function
of Cultured FRCs
LepR+ FRCs were sorted and cultured from LNs, as previously
described (29). First, we confirmed the presence of LepR in FRCs
from LepRCre;tdTomato mice LNs by IF staining andWestern blot
(Figures 3A, B). Leptin regulates cellular homeostasis by activating
multiple intracellular signaling cascades, including the JAK/STAT
pathway via LepR (30). As shown in Figure 3C, immunoblotting
analysis demonstrated that leptin increased the phosphorylation of
STAT3 (Tyr705) in FRCs (Figure 3C). To determine whether
leptin induces the production of anti-inflammatory molecules, we
examined the expression of PD-L1, iNOS and IDO at the
transcriptional level in FRCs treated with leptin. As shown in
Figure 3D, quantitative real-time PCR indicated that exposure to
leptin enhanced the expression of PD-L1 and IDO mRNA with no
difference in the expression of iNOS.

To further investigate differences in the activities of WT and
db/db FRCs, we cultured and assessed proliferation of WT and
db/db FRCs in vitro. The proliferation of db/db FRCs stalled after
Day 7, as the WT FRCs continued to grow (Figure 3E). We
exposedWT FRCs to 100 ng/ml of leptin for 0.5 hr, 2 hr, 6 hr, and
12 hr. The cell survival markers cyclinD1, survivin, and bcl-2 were
activated more highly after 6 hr in the leptin-treated FRCs in
comparison to the group that did not receive leptin (Figure 3F).
These data indicated that LepR signaling plays an important role
in the survival of FRCs, as substantiated by a reduction of the FRC
population in db/db mice. In addition, FRCs isolated from db/db
mice demonstrated higher levels of expression of CCL19 and
CCL21 genes than WT FRCs by qPCR (Figure 3G). CCL19 and
CCL21 are responsible for recruiting T cells and dendritic cells
via CCR7 (31). IL-7 is known for its critical role in the
development and homeostatic expansion of T cells in mice and
contributes to the survival of naïve T cells (32, 33). The mRNA
levels of IL-7 were higher in the db/db FRCs (Figure 3G). IL-6, an
inflammatory cytokine, also was present at a higher level in db/db
FRCs in comparison to WT FRCs (Figure 3G).

Leptin Treatment Restores the Structure
and Function of LNs in ob/ob Mice
We generated and purified a leptin-Fc fusion recombinant protein
(Figure 4A). Ob/ob mice were injected intraperitoneally each day
with recombinant leptin protein 0.25 mg/kg for 6 weeks (from 5
weeks through 11 weeks of age) and compared to a control group
of ob/ob mice that received daily PBS injections. Exogenous
administration of leptin decreased plasma glucose levels and
increased the expression of PD-L1 by FRCs in the treated group,
as compared to the control groups (Figures 4B, C, respectively).
The percentages of activated CD8+ T cells (CD8+CD44+) and
CD8+ IFNg+ T cells in the LNs of the leptin-treated group were
significantly lower than the untreated ob/ob control group.
January 2022 | Volume 12 | Article 730438
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As shown in Figures 4D, E, and S3B, treatment with leptin-Fc
fusion protein restored the PDPN+ cells and ER-TR7+ fiber network
to a more organized and uniformly distributed configuration in the
treated group, as compared to the controls. Consistent with these
findings, the typical structure of the HEVs and the Lyve-1+

lymphatics was restored in the LNs from the leptin-injected mice
(Figures 4D, E). We also examined the integrity of the HEVs and
lymphatics by dextran-FITC injection. Although leakiness was
observed in these vessels, the quantification analysis showed that
the vessels in the LNs of the leptin-treated group were significantly
Frontiers in Immunology | www.frontiersin.org 6
less leaky than the controls (Figure S3A). Examination of HEVs
and Lyve-1+ LECs provided evidence of a more organized support
structure composed of ER-TR7+ fibers secreted by FRCs that
surrounded the HEVs and Lyve-1+ lymphatic vessels in the LNs
of the leptin-treated mice in comparison to the control mice.

Assessment of LNs in CCL19cre;LepRfl

Conditional Knock Out Mice
To characterize the effects of leptin on the phenotype of the LNs
more deeply, we generated mice with conditional ablation of
A B

C

D

FE

G

FIGURE 3 | (A) Fluorescence micrographs show the expression of LepR (red) in FRCs from Leprcre;tdTomato mice LNs. Scale bar, 10mm. (B) The expression of
LepR in FRCs was confirmed by Western blot. (C) Immunoblot analysis of pSTAT3 (Y705) and STAT3 in FRCs exposed to 100 ng/ml leptin for 15 min and 30 min.
GAPDH was used as a loading control. (D) Quantitative RT-PCR analysis was performed on FRCs RNA to examine the expression of iNOS, IDO, and PD-L1 in
untreated FRCs and FRCs exposed to 100 ng/ml of leptin for 24 hrs. The data are representative of two independent experiments with five mice/group. All the data
are presented as mean ± SEM, Student’s t test, **p < 0.01, n.s., not significant. (E) Cell growth curve. Proliferation rate of FRCs from WT and db/db mice, as
measured by cell count. The values are expressed as three independent measurements. All the data are presented as mean ± SEM, Student’s t test, **p < 0.01.
(F) Immunoblotting analysis of the cell survival markers cyclinD1, survivin, and Bcl-2 in FRCs exposed to 100 ng/ml leptin for 0.5 hr, 2 hr, 6 hr, and 12 hr. GAPDH
was used as a loading control. (G) Quantitative RT-PCR analysis was performed to examine inflammatory response-related gene expression in WT and db/db FRCs.
The data are representative of three independent experiments. All the data are presented as mean ± SEM, Student’s t test, **p < 0.01, ***p < 0.001.
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FIGURE 4 | (A) Schematic of Leptin-Fc recombinant protein and HPLC purification curve. (B) Metabolic phenotype of ob/ob mice that were injected with 0.25 mg
leptin/kg body weight or Fc for 6 weeks, and blood glucose was measured. (C) Flow cytometry profiling of cell population changes in the LNs of ob/ob control,
leptin-treated ob/ob, and WT control mice. Changes in the surface expression of PD-L1 was assessed in CD45-PDPN+CD31- FRCs, CD44 expression was
assessed in CD8+ T cells, production of IFNg was assessed in CD8+ T cells. Data from two independent experiments with five mice/group (n=5) are summarized
in bar chart. All the data are presented as mean ± SEM, Student’s t test, *p < 0.05, n.s., not significant. (D) Fluorescence micrographs show restoration of
microarchitecture in leptin-treated ob/ob mouse LNs in comparison to control LNs, as demonstrated by expression of PDPN, ER-TR7, HEV and Lyve-1. Scale bar,
50mm. Images are representative of five independent experiments from five mice/group (n=5). (E) Quantification data from two independent experiments with five
mice/group (n=5) are summarized in bar chart. All the data are presented as mean ± SEM, Student’s t test, *p < 0.05, **p < 0.01.
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LepR, using an FRC-selective Cre (CCL19cre;LepRfl) (34, 35).
First, we examined the specificity and efficiency of deletion of the
target cell population in CCL19cre;LepRfl mice. LepR-expressing
FRCs were shown to be reduced in the LNs of these mice, as
compared to other cell types (Figure S4A). The percentage of
resident FRCs in the stromal cell population in the LNs from
CCL19cre;LepRfl mice was lower than the WT;LepRfl control
mice (26.0% vs 43.3%, Figure 5A). HEVs of CCL19cre;LepRfl

mice possessed thinner walls, as compared with the control mice
(Figure 5B). PDPN expression was less dense, and the ER-TR7+,
fibronectin, and collagen I fiber network was thinner in the
CCL19cre;LepRfl mice (Figure S4B, C). Nonetheless, the
populations of IL6+, IL7+, CD8+IFNg+, and CD4+CD25+FoxP3+

cells were not significantly different between the WT;LepRfl

control and CCL19cre;LepRfl mice (Figure S4D).
Then, we immunized these mice with Complete Freund’s

Adjuvant (CFA) to investigate the pattern of acute immune
responses. Seven days after subcutaneous CFA injection, the
draining LNs (DLNs) were significantly smaller in the CCL19cre;
LepRfl mice than the WT;LepRfl control mice (Figure S4E). As
shown in Figures 5C, D, HEVs and lymphatics were significantly
more expanded in the DLNs of the control groups, as compared to
the DLNs of CCL19cre;LepRfl mice. No significant leak of dextran-
FITC into the DLNs of either the control or CCL19cre;LepRfl mice
was found (data was not shown). Immunofluorescence staining
revealed that PDPN, ER-TR7, fibronectin, and collagen I were
significantly more upregulated in the DLNs of the control mice
than the CCL19cre;LepRfl mice after CFA stimulation (Figures 5F,
G). We also measured the percentages of PD-L1+ FRCs and
CD8+IFNg+ T cells in both groups, and no significant difference
was found (Figure S4F). To investigate more thoroughly the
importance of LepR cells in supporting the expansion of
lymphatics, we sorted LepR- and LepR+ FRCs and co-cultured
them with the murine LEC cell line SVEC4-10. As shown in
Figure 5E, LepR+ FRCs promoted tube formation and branch
elongation of SVEC cells in vitro.

Next, we performed CFA + OVA immunization to assess the
cell-mediated and humoral immune responses in CCL19Cre;
LepRfl and control mice. Fourteen days after subcutaneous
immunization, DLNs were collected for flow cytometry. No
difference in the percentages of T cells, follicular T cells
(CD4+CXCR5+ICOS+), Tfh cells (CD4+CXCR5+ICOS+FoxP3-),
and proliferating Tfh cells (CD4+CXCR5+ICOS+FoxP3-Ki67+)
was seen (Figure S4G). Moreover, no difference was observed
in total B cells, plasma cells, and antibody concentration
between the WT;LepRfl control and CCL19cre;LepRfl mice
(Figure S4H).
DISCUSSION

LNs are crucial to the maintenance of immune responses, both at
the steady-state and following activation (36). Takeuchi et al.
have reported that a fibroblastic stromal cells (FSC) subset
expressing LepR in the medullary cord, typically consisting of
lymphatics, was identified using a polyclonal antibody against
Frontiers in Immunology | www.frontiersin.org 8
LepR (37). LepR has different isoforms that could be recognized
by the LepR antibody. obRb is the sole functional form that can
transduce an extracellular signal to the cytoplasm (38). In this
study, we used LepRCre;tdTomato reporter mice and found that
LepR-expressing cells are also present within the vicinity of the
HEVs and the lymphatics. Quantification of the stromal cells
showed that ~30% of the PDPN+CD31- FRCs and ~20% of the
double negative cell population express LepR, which could be
representative of stromal progenitor cells in the LNs. LepR+ cells
expressed a high percentage of mesodermal markers, including
Sca1, CD29, CD90, CD44, CD73, CD105, and CD106. However,
MRCs and FDCs lacked expression of LepR. Morrison’s group
showed previously that LepR+ stromal cells are the important
cellular component of hematopoietic stem cells (39). These cells
share many features of mesenchymal stem cells (MSCs), which
are multipotent stromal cells with the capacity to differentiate
into various mesodermal lineages (38). Lineage tracing studies
can help to define the origin of LepR+ cells in the LN and the
trafficking dynamics of these cells to the LN.

The stroma of LNs plays a pivotal role in supporting their
structure and function (40). Many advances have been made in
characterizing stromal cells, according to their location within
discrete anatomical areas of the LNs and with specific markers
(41, 42). FRCs not only build the scaffolding of the LN; they also
support the integrity of its vasculature (7, 40, 43). The ECM
proteins collagen I, fibronectin, and ER-TR7, as well as the
PDPN+ cells were thinner and more disorganized in db/db
mice. Moreover, the permeability of HEVs and lymphatic
vessels was increased, as both were leaky in db/db LNs. Taken
together, these data show that leptin signaling is required for the
proper functioning of the FRC network in its maintenance of LN
stroma as well as the integrity of HEVs and lymphatics in LNs.

FRCs propagate immune responses through production
of ECM and homing of immune cells, but they also can
downregulate inflammatory responses by expressing
immunoregulatory molecules (44). FRC-derived chemokines
and cytokines recruit naive T cells and ensure T cell survival
within LNs (45). FRCs can also induce deletional T cell tolerance
directly and restrict the expansion of newly activated T cells (8).
Indeed, expression of immunosuppressive molecules, such as
PD-L1 and IDO, represents a key feature of FRCs. The PD-
L1 pathway delivers inhibitory signals that regulate peripheral T-
cell tolerance (46, 47). Our data show that the LNs of db/db mice
contained a lower percentage of PD-L1-expressing FRCs, as
compared to WT mice. The ratio of CD8+ IFNg+ T cells to
Treg cells was also much higher in db/db LNs. These findings
indicate a heightened pro-inflammatory milieu in the LNs of db/
db and suggest that LepR+ FRCs may have immunoregulatory
features. Treatment of FRCs cultured in vitro with leptin resulted
in the production of the anti-inflammatory molecules PD-L1 and
IDO. Therefore, leptin signaling may promote the population
of immunoregulatory FRCs that in turn determine the
inflammatory milieu of the LNs. These data derived from the
LNs of db/db mice open a new avenue of research to understand
the dysregulated inflammatory responses in the LNs of
T2D patients.
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FIGURE 5 | (A) Changes in CD45-PDPN+CD31-FRC populations between WT;LepRfl and CCL19cre;LepRfl mouse LNs, as determined by flow cytometric analysis. Data
from two independent experiments with five mice/group (n=5) are summarized in bar chart. All the data are presented as mean ± SEM, Student’s t test, **p < 0.01.
(B) Immunofluorescence staining shows thinner HEV walls in CCL19cre;LepRfl mouse LNs than WT;LepRfl mouse LNs. Quantification data of HEV wall thickness are
summarized in bar chart. Data from two independent experiments with five mice/group (n=5) are summarized in bar chart. All the data are presented as mean ± SEM,
Student’s t test, **p < 0.01. (C) Fluorescence micrographs showed HEV and lymphatic expansion induced by CFA in WT;LepRfl and CCL19cre;LepRfl mouse LNs. Scale
bar, 500mm. Images are representative of two independent experiments from five mice/group (n=5). (D) Quantification data from two independent experiments with five
mice/group (n=5) are summarized in bar chart. All the data are presented as mean ± SEM, Student’s t test, **p < 0.01. (E) Tube formation capacity of SVEC4-10 upon
leptin pretreated LepR+ FRCs supernatant, comparing with LepR- FRCs in vitro. Capillary-like structures within the Matrigel layer were photographed after 48 hrs. Scale
bar, 200mm. The area of tube-like formation, wall thickness and number of SVEC4-10 were evaluated by ImageJ software. Quantification data are presented as the
mean ± SEM (n=6), All the data are presented as mean ± SEM, Student’s t test, *p < 0.05, ***p < 0.001. (F) Immunofluorescence staining showed the microarchitecture
changes of ER-TR7, PDPN, collagen I and fibronectin in WT;LepRfl and CCL19cre;LepRfl mice LNs with CFA stimulation. Scale bar, 50mm. Images are representative of
two independent experiments from five mice/group (n=5). (G) Quantification data from two independent experiments with five mice/group (n=5) are summarized in bar
chart. All the data are presented as mean ± SEM, Student’s t test, **p < 0.01, ***p < 0.001.
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Leptin has been shown to regulate lymphatic homeostasis,
such as tube formation and cell proliferation (48, 49). Previous
studies demonstrated that leptin increases proliferation and
reduces apoptosis of human dermal LECs (50, 51). Here,
we showed that leptin activated the JAK/STAT pathway
downstream of LepR, which then increased survival-related
protein cyclinD1, survivin, and Bcl-2 expression. In contrast,
db/db FRCs displayed growth deficiency.

We also tested the immunoregulatory effect of leptin on the
LN stroma by generating a leptin fusion protein, which we
administered to leptin-deficient ob/ob mice. The treatment
with leptin fusion protein improved the structural integrity of
the HEVs and the Lyve-1+ lymphatic plexus as compared to the
controls. The PDPN+ and ER-TR7+ fiber network in leptin-
injected LNs was more contiguous, thicker, and more uniformly
distributed. Leptin fusion protein also increased the population
of PD-L1-expressing FRCs and reduced the population of
activated T cells in the LNs. These data suggest that future
studies should be directed towards the delivery of leptin agents to
the LNs. Along with others, we have previously shown that
targeted delivery of therapeutics to LNs represents an innovative
approach to suppress inflammatory conditions, such as
transplant rejection (52–54).

Global LepR-deficient db/db mice are obese and suffer a range
of systemic metabolic issues (55, 56), which could also affect the
LNs. To support our findings regarding the importance of LepR+

FRCs in the LNs, we generated a conditional ablation of LepR
using an FRC-selective Cre recombinase (CCL19cre;LepRfl).
CCL19cre;LepRfl mice contained fewer FRCs in the LNs as well
as thinner HEVs. The ECM of CCL19cre;LepRfl LNs was
disconnected from the network of PDPN+ cells and ER-TR7+

fibers, and these LNs contained a lower density of collagen I and
fibronectin fibers. Challenge of CCL19cre;LepRfl mice with the
inflammatory stimulus CFA showed a lower level of vascular and
stromal accommodation as compared to the controls. Co-
culturing LepR+ FRCs with the lymphatic cell line SVEC4-10
induced expansion of the SVEC4-10 cells, as they formed tubes
on the bottom of the flask.

The clinical impact of these data lies in the potential
importance of LN dysregulation and its implications in the
pathogenesis of metabolic syndromes, such as T2D (15, 57).
T2D affects millions of patients worldwide and is characterized
by heightened inflammatory responses (58–60). While future
studies are required to define mechanisms by which FRCs
control the development or progression of T2D at the level of
the pancreas or in peripheral organs, our data strongly suggest
that this line of research could yield highly clinically applicable
findings. These future studies could also lay the groundwork for
new LN-targeted therapies to treat the metabolic syndrome.
MATERIALS AND METHODS

Mice
BKS.Cg-Leprdb/J (JAX#000642, Homozygous, db/db), BKS.Cg-
Dock7m+/+/J (JAX#000642, Homozygous, WT), B6.Cg-Lepob/J
Frontiers in Immunology | www.frontiersin.org 10
(JAX#000632, Homozygous, ob/ob) B6.129(Cg)-Leprtm2(cre)Rck/J
( JAX#008320 , Homozygous , LepRc r e ) , B6 . 129P2 -
Leprtm1Rck/J (JAX#008327, Homozygous, lepRfl/fl) and B6.Cg-Gt
(ROSA)26Sortm14(CAG-tdTomato)Hze/J (JAX#007914, Homozygous,
Rosa26-CAG-loxp-stop-loxp-tdTomato) mice were obtained from
the Jackson Laboratory. CCL19Cre [Tg(Ccl19-cre)489Biat] mice
were a gift from Shannon Turley at Genentech, South San
Francisco, California, USA. All animal experiments and methods
were performed in accordance with the relevant guidelines and
regulations approved by the Institutional Animal Care and Use
Committee of Brigham and Women’s Hospital, Boston, MA.

Immunohistochemistry
Fresh LNs were embedded in tissue-freezing medium. Cryostat
sections (8 mm thick) were cut for imaging by fluorescence
confocal microscopy. The following primary Abs were used for
tissue staining: anti-HEVMECA79 (sc-19602, SCBT), anti-Lyve-1
(ab14917, Abcam), anti-PDPN (AF3244, R&D Systems), anti-ER-
TR7 (sc-73355, SCBT), anti-CD11b (101202, BioLegend), anti-
PDGFRb (136005, Biolegend), anti-NG2 (ab129051, Abcam),
anti-RANKL (510002 Biolegend), anti-CD35 (NBP2-52667,
Novus Biologicals), anti-MAdCAM (16-5997-85,eBioscience),
anti-ZO-1 (61-7300, Invitrogen), anti-Collagen I (ab34710,
Abcam), anti-Fibronectin (ab45688, Abcam), anti-LepR (L9536,
Sigma-Aldrich). The following secondary Abs were used: Alexa
Fluor 488-conjugated anti-rabbit IgG, Alexa Fluor 594-conjugated
anti-rabbit IgG, Alexa Fluor 488-conjugated anti-rat IgG, Alexa
Fluor 594-conjugated anti-rat IgG, Alexa Fluor 488-conjugated
anti-goat IgG, and Alexa Fluor 594-conjugated anti-goat IgG
(Jackson ImmunoResearch). The stained tissue sections were
imaged using EVOS FL Auto 2 Imaging System (Thermo Fisher
Scientific). For the quantification of images, all images were
automatically processed using ImageJ (NIH) and split into RGB
channels. Auto threshold was used to convert intensity values of
the immunofluorescent stain into numeric data. DAPI
(VECTASHIELD, Vector Laboratories) was used to stain the
cell nuclei.

Flow Cytometry Analysis
At given experimental time points, mice were killed, and LNs
were isolated for flow cytometry. Single-cell suspensions were
prepared using an enzyme mixture, comprised of RPMI-1640
medium containing 0.8 mg/ml Dispase, 0.2 mg/ml Collagenase P
(both from Roche), and 0.1 mg/ml DNase I (Invitrogen). LNs
were incubated at 37°C and gently mixed using a pipette at 5 to
15 min intervals to ensure the proper dissociation of cells. After
complete dissociation, the cell mixture was filtered through a 40-
mm cell strainer, counted, and used for surface and intracellular
staining. Then, cells were resuspended in FACS buffer (PBS
containing 2% FBS and 5 mM EDTA). Cells were incubated for
30 min with antibodies against the indicated markers: APC anti-
CD45, PerCP anti-CD31, PE/Cy7 anti-PDPN, PB anti-lineage
cocktail, APC anti-cKit, PE/Cy7 anti-Sca1, FITC anti-CD29,
Brilliant Violet 510 anti-CD90, FITC anti-CD44, PerCP anti-
CD73, APC anti-CD105, PE anti-CD106, Brilliant Violet 510
anti-CD4, PE anti-CD25, PE/Cy7 anti-CD44, APC/Cy7 anti-
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CD8, and PE/Cy7 anti-PD-L1 (Biolegend). The cells were
permeabilized using the eBioscience Intracellular Fixation and
Permeabilization Buffer Set (Thermo Fisher Scientific) for
30 min at 4°C. Then they were incubated with the following
intracellular antibodies: PerCP/Cy5.5 anti-FoxP3, APC anti-
IFNg (Biolegend). Cells were washed once with Permeabilization
Buffer and fixed in FACS buffer containing 1% formalin. For B and
Tcell analyses after immunization, cellswere stainedwithAPC/Cy7
or Brilliant Violet 510 anti-CD4, APC/Cy7 or Brilliant Violet 510
anti-CD19, Pacific Blue anti-CD38, FITC T and B cell activation
marker (GL-7), PE/Cy7 anti-Fas, APC anti-CD138, biotin anti-
CXCR5, and Brilliant Violet 421 Streptavidin, PE anti-ICOS, PE/
Cy7 anti-PD-1, and intracellularly stained with Alexa Fluor 488,
anti-Foxp3, and Alexa Fluor 647 anti-Ki67. Flow cytometry was
performed using a BD FACSCantoTM II flow cytometer (BD
Biosciences) or Aurora (Cytek). Analysis of flow cytometry
results was performed via FlowJo software (FlowJo LLC,
Ashland, OR).

Quantitative RT-PCR
RNA was isolated with TRIZOL (Invitrogen), and first strand
cDNA was synthesized using 2 mg of RNA and High-Capacity
Reverse Transcriptase (Invitrogen). RT-PCR was performed with
SYBR Green PCR reagents on a Bio-Rad detection system. RNA
levels were normalized to the level of GAPDH and calculated as
delta-delta threshold cycle (DDCT). Primers used for RT-PCR
are listed as follows: GAPDH-F:AGCCACATCGCTCAGACAC;
GAPDH-R:GCCCAATACGACCAAATCC; IL2-F:TGAGC
AGGATGGAGAATTACAGG ; I L 2 -R :GTCCAAGT
TCATCTTCTAGGCAC ; I L 6 - F : CTCTGGGAAAT
CGTGGAAAT; IL6-R:CCAGTTTGGTAGCATCCATC; IL7-F:
TCTGCTGCCTGTCACATCATC; IL7-R:CCTTTGTA
TCATCACATACAT; IL17-F:AAGGCAGCAGCGATCATCC;
IL17-R:GGAACGGTTGAGGTAGTCTGAG; CCL19-F:
TGTGTTCACCACACTAAGGGG, CCL19-R:CCTTTGTT
CTTGGCAGAAGACT; CCL21-F:CCCCTGGACCCA
AGGCAGTGA; CCL21-R:TTGCCGGGATGGGACAGCCT;
TNFa -F :ATGAGAAGTTCCCAAATGGC; TNFa -R :
CTCCACTTGGTGGTTTGCTA; IFNg-F:TTGAGGTCAA
CAACCCACAG; IFNg-R:TCAGCAGCGACTCCTTTTC;
iNOS - F :ACCTTGTTCAGCTACGCCTT ; iNOS -R :
CATTCCCAAATGTGCTTGTC; IDO-F:GTACATCAC
CATGGCGTATG; IDO-R:CGAGGAAGAAGCCCTTGTC;
PDL1-F:GACCAGCTTTTGAAGGGAAATG; PDL1-R:
CTGGTTGATTTTGCGGTATGG; Claudin5-F:CCTTC
CTGGACCACAACATC; Claudin5-R:GCCGGTCAA
GGTAACAAAGA; Occ lud in-F :CCTCCAATGGCAA
AGTGAAT; Occludin-R:CTCCCCACCTGTCGTGTAGT;
ZO 1 - F : C CACCTCTGTCCAGCTCTTC ; ZO 1 - R :
CACCGGAGTGATGGTTTTCT. All RT-PCR reactions were
performed in triplicate.

Immunoblotting
Whole lymph node cells or FRC lysates were measured using the
Bradford assay. Equal amounts of protein were separated by
SDS-PAGE and transferred to a PVDF membrane. The
membranes were immunoblotted with the following specific
Frontiers in Immunology | www.frontiersin.org 11
antibodies: anti-LepR (Sigma), anti-pSTAT3 (Cell Signaling),
anti-STAT3 (Cell Signaling), anti-GAPDH (Santa Cruz), anti-
cyclinD1 (Cell Signaling), anti-survivin (Cell Signaling), anti-
Bcl2 (Cell Signaling), anti-rabbit-HRP (Abcam), anti-mouse-
HRP (Jackson ImmunoResearch), and anti-goat-HRP (Abcam)
using standard protocols. The blots were developed with West
Dura chemiluminescent substrates using a Bio-Rad ChemiDoc
imaging system.

Purification of Leptin-Fc Recombinant
Protein
The full-length mouse leptin gene was constructed in a
mammalian expression vector with Fc fusion tag. HEK293T
cells were transiently transfected with the plasmid in the
presence of polyethylenimine (PEI). Media supernatants were
collected after 4 days and applied to protein G Sepharose 4 Fast
Flow (GE Healthcare). Leptin-Fc recombinant protein was eluted
with a low pH elution buffer.

Treatment With Leptin-Fc Recombinant
Protein
Either Leptin-Fc recombinant protein (0.25mg/kg) or Fc was
injected intraperitoneally into B6.Cg-Lepob/J (JAX#000632,
Homozygous, ob/ob) every 4 days for 6 weeks. Blood glucose
was checked three times per week and compared between groups.

Treatment With CFA
100ul CFA was injected subcutaneously. LNs were examined at 7
days post-injection. For NP-OVA immunization, mice were
injected subcutaneously in the flank with 100ug of NP-OVA in
100uL of CFA. Inguinal lymph nodes were collected for analysis
14 days after immunization.

SVEC Cell Culture and Tube Formation
SVEC4-10 cells were cultured in complete DMEM (containing
10% fetal bovine serum). LepR+ FRCs were sorted and pretreated
with leptin 100ng/ml. After 6 hours, supernatant was collected
and incubated with SVEC cells in Matrigel (BD Biosciences) for
24 hours in 37°C. The capillary tube structures were observed,
and representative images were captured with an EVOS FL Auto
2 Imaging System (Thermo Fisher Scientific). Tube area and wall
thickness were quantified by ImageJ software (http://rsbweb.nih.
gov/ij/; National Institutes of Health, Bethesda, MD). Briefly,
three randomly selected fields of view were photographed in each
treatment. Tube wall thickness was assessed by drawing a line
along each tube and measuring the length of the line in pixels.
The average of three fields was taken as the value for
each treatment.

Statistical Analysis
Statistical analysis was performed with Prism 5 (GraphPad
Software). Data are presented as mean ± SEM. Statistical
analysis was performed using the unpaired 2-tailed Student’s t
test to determine differences between 2 groups and analysis of
variance to compare data among groups. P values of less than
0.05 were considered statistically significant. Each experiment
was repeated at least twice with similar results.
January 2022 | Volume 12 | Article 730438

http://rsbweb.nih.gov/ij/
http://rsbweb.nih.gov/ij/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Jiang et al. Leptin Receptor+ Stromal Cells
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.
ETHICS STATEMENT

The animal study was reviewed and approved by Institutional
Animal Care and Use Committee of Brigham and Women’s
Hospital, Harvard Medical School.
AUTHOR CONTRIBUTIONS

LJ designed and performed experiments, analyzed data, wrote
the main text of the manuscript, and critically revised and
finalized the manuscript. MY performed experiments. MU
performed experiments, microsurgery, analyzed data, and
wrote parts of the methods. CBC, JZ, SMN, XL and NB
performed experiments. VK, PF, SRS, SGT, JSB and PTS
edited the manuscript. RA designed the study, interpreted,
analyzed data, and critically revised and finalized the
manuscript. All authors contributed to the article and
approved the submitted version.
FUNDING

This work was supported in part by the National Institute of
Allergy and Infectious Diseases and National Heart, Lung, and
Blood Institute of the National Institutes of Health (NIH) under
award numbers R01HL145813(RA), R01HL141815(RA),
R01AI126596 (RA), R01AI156084 (RA), P01AI153003 (RA),
and K24AI116925 (RA). This work was also supported by
Hundred-Talent Youth Program (Chinese Academy of
Sciences) under award numbers E1BDEDF6241.
Frontiers in Immunology | www.frontiersin.org 12
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2021.
730438/full#supplementary-material

Supplementary Figure 1 | No tdTomato signal in the LNs from Rosa26-
Tdtomato mice without LepR-Cre was found. Scale bar, 500mm.

Supplementary Figure 2 | (A) iDISCO HEV imaging video in the WT LNs and db/
db LNs. (B)Quantitative RT-PCR analysis was performed on whole LNs to examine
expression of the tight junction markers ZO-1, claudin-5 and occludin in WT and db/
db mice. The data are representative of two independent experiments with three
mice/group. All the data are presented as mean ± SEM, Student’s t test, *p < 0.05,
***p < 0.001.

Supplementary Figure 3 | (A) Dextran injections were used to assess HEV and
lymphatic integrity. Scale bar, 50mm. Images are representative of five independent
experiments (n=5). Quantification data with five mice/group (n=5) are summarized in
bar chart. All the data are presented as mean ± SEM, Student’s t test, **p < 0.01.
(B) ER-TR7 co-staining with HEVs and lymphatics to demonstrate differences in
ER-TR7 deposition between leptin-treated ob/ob mice and control. Scale bar,
20mm (HEV), 50mm (LYVE1).

Supplementary Figure 4 | (A) Flow cytometry profiling of LepR+ cell population
changes in the LNs of control and CCL19cre;LepRflmice. Data from two independent
experiments (n=5mice/group) are summarized in the bar chart. ***p < 0.001, n.s.: not
significant. (B) Fluorescence micrographs show differences in the microarchitecture
between the LNs ofWT;LepRfl andCCL19cre;LepRflmice, as indicated by expression
of ER-TR7, PDPN, collagen I and fibronectin. Scale bar, 50mm. Images are
representative of two independent experiments from five mice/group (n=5).
(C)Quantification data from two independent experiments with five mice/group (n=5)
are summarized in bar chart. All the data are presented as mean ± SEM, Student’s t
test, *p < 0.05, **p < 0.01. (D) Flow cytometric analysis of inflammatory parameters in
WT;LepRfl and CCL19cre;LepRflmouse LNs. Data from two independent experiments
(n=5 mice/group/experiment) are summarized in bar chart. n.s., not significant.
(E) Comparison of the size of DLNs in WT;LepRfl and CCL19cre;LepRfl mice LNs
with CFA stimulation. (F) Flow cytometry profiling of PD-L1+ FRCs and CD8+IFNg+

T cells in the LNs of WT;LepRfl and CCL19cre;LepRfl mice after CFA stimulation.
Data from two independent experiments with five mice/group (n=5) are summarized
in bar chart. All the data are presented as mean ± SEM, Student’s t test, n.s., not
significant. (G, H) Flow cytometric analysis of T cell and B cell responses in CCL19Cre;
LepRfl and control mice immunized with CFA + OVA. Percentages of follicular T cells
gated as CD4+CXCR5+ICOS+, Tfh cells as CD4+CXCR5+ICOS+FoxP3-, proliferating
Tfh cells gated as CD4+CXCR5+ICOS+FoxP3-Ki67+ and plasma cells as CD138hi

(4-5 mice/group) are summarized in bar chart. n.s., not significant.
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