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Abstract: For the first time, by atomic force microscopy (AFM) methods, micro- and nanofragments of
micronized powder elastomeric modifier (PEM) formed at the short-term (3 min at 160 ◦C) interaction
of PEM with hot bitumen have been demonstrated. It is the technology of high-temperature shear-
induced grinding of a worn-out tire’s crumb rubber or its co-grinding with styrene–butadiene–styrene
(SBS) block copolymer which provides the creation of the PEM structure inclined to rapid degradation
in hot bitumen. The formation just after the preparation process of a new structure of a modified
binder, more resistant to external effects, is supported by the data of rheological tests. Performance
tests for a modified binder using Superpave standard adopted by the road industry for bituminous
binders showed an extended temperature range, resistance to rutting, and low-temperature and
fatigue cracking. The better resistance to low-temperature and fatigue cracking is certainly related to
energy absorption and crack growth stopping in the presence of micron and submicron resilient PEM
fragments in accordance with the mechanism of increasing impact toughness in plastics.

Keywords: powder elastomeric modifiers; hybrid powder; high-temperature shear-induced grinding;
bitumen; AFM; rheology; modification mechanism

1. Introduction

Crumb rubber, obtained using the technology of cryogenic grinding or mechanical
crushing at an ambient temperature of worn-out tires, is used in the road industry as a
modifier of bitumen and/or asphalt mixtures [1].

One of the main aims of bitumen modification is to extend the temperature range
of the bitumen and to increase the resistance to pavement defects (rutting, temperature,
and fatigue cracking), to the formation of which bitumen contributes significantly [2].
When using a modifier, it is important to understand whether it can increase the bitumen
resistance to permanent deformation (rutting) at high in-service pavement temperatures
and whether it has an enhancing or weakening effect on the structuring and cracking
processes of bitumen at intermediate and low temperatures. For example, there are AFM
data showing that when bitumen cools, rigid “bee-like” structures form, which can be
cracking concentrators, especially under cyclic loading [3]. Most modifiers increase the
resistance of bitumen to rutting at high in-service temperatures. The improvement in
pavement defect resistance at lower temperatures by modification is not so obvious [4].

When using crumb rubber (CR) as a modifier, the main features of the modification
process are: the number of technological stages, apparatus design, temperature, duration of
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the process, and the efficiency of modification, which are mainly determined by the method
of obtaining CR, its size, and morphology [5–8]. Two methods of modification are used in
the application of CR. The first method is the introduction of CR directly into the mixer
during asphalt mixture preparation. Most often in this case, CR replaces some fractions of
the mineral components of the asphalt mixture and does not give a noticeable result in terms
of improving the properties of bitumen, because the mixing time at high temperature (up to
1 min) is too short [5,8–10]. The second method aims to improve the rheological properties
of bitumen and is a separate technological step—the preparation of rubber–bitumen binder,
preceding the preparation of asphalt mixture. In this case, CR with an initial size of up to
1 mm, and in recent years up to 0.6 mm, is subjected to a sufficiently long mixing process
(at least 1 hr) with bitumen at relatively high temperatures (170÷200 ◦C). In long-term
contact with hot bitumen, some of the CR particles, mostly smaller than 200–300 µm in
size, noticeably swell and break down along the cracks formed in the crushing of the
worn-out tire. Nevertheless, many particles often do not undergo visible changes even
after prolonged agitation. Thus, micromechanical models are developed for the complex
shear modulus of rubber-modified binder, and swelled particles of the same size as the
original are considered [11]. However, there are available data showing that a significant
increase in the fatigue cracking resistance of modified bitumen is observed only when the
amount of CR particles smaller than 75 µm is increased by at least 5% compared to the
original amount. [9]. To increase the compatibility of CR with bitumen, various methods of
chemical or physical–mechanical treatment are used to change the surface structure of the
particles. In this case, a layer of partially regenerated rubber is formed on the surface of the
particles. However, the process of bitumen modification, even in this case, requires high
temperature and long mixing time [12–15].

The goal of this study was to investigate the degradation mechanism of micronized
powder elastomeric modifiers (PEM) particles during interaction with hot bitumen. Mi-
cronized PEMs are produced by the high-temperature shear-induced grinding (HTSG)
of CR or the co-grinding of CR and styrene–butadiene–styrene block copolymer (SBS).
Such modifiers are active powders of discretely devulcanized rubber (APDDR) and hybrid
(APDDR-SBS) powder. PEM is injected into the asphalt mixture during its preparation.
The process of PEM production is realized in specialized equipment: a rotary dispergator.
HTSG is intermediate in temperature of the grinding process (160–170 ◦C) among tire-
rubber-recycling methods between its mechanical crushing and obtaining the regenerated
rubber by devulcanization [16]. In the grinding zone of the rotary dispergator, due to high
temperature and significant shear forces applied to the compressed layer of material in
the modulated mode, along with a decrease in the size of the processed particles, discrete
devulcanization of the rubber occurs in the locations where optimal conditions are created.
It is assumed that the intermolecular bonds are disrupted and rearranged, and, in the case
of co-grinding, the components are combined on the micro- and nano level. It is also noted
that there is almost no change in molecular weight distribution of rubber molecules, since
at such temperatures, macromolecules usually have time to relax without breaking the
molecular chain. According to electron microscopy data, a PEM particle is an agglomerate
of micron- and submicron-size blocks, connected by strands of different thickness (from
several nanometers to several microns). According to atomic force microscopy data, the
structure of PEM particles can be defined as having a strong phase heterogeneity (at the
level of 0.1–0.2 µm or even less) [16,17].

Previously, the method of electron scanning microscopy (SEM) showed that after the
solvent washing of binders prepared by mixing bitumen with PEM for 1–40 min in the
temperature range 120–180 ◦C, fragments of PEM in the form of particles up to 100–200 nm
or in the form of micron-sized thin films were observed [17]. However, it is important to
test the presence of such fragments in the modified bitumen. In this study, comparative
research by atomic force microscopy (AFM) of the surface structure of the original bitumen
and PEM-modified binder prepared under temperature and time conditions close to the
preparation conditions of asphalt mixtures (3 min at 160 ◦C) was carried out. To estimate
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the effectiveness of modification after a short-term interaction of PEM with hot bitumen
for the original (no-aged) samples of bitumen and freshly prepared PEM-modified binders
(which were not subjected to additional temperature effects), comparative performance
tests in a wide temperature range by using Superpave standards adopted by the road
industry for bitumen binder were conducted [13,18,19].

2. Materials and Methods
2.1. Materials

The following materials were investigated in this work:
- Micronized powder elastomeric modifiers (PEM): APDDR and hybrid (APDDR-

SBS) powder, obtained by high-temperature shear-induced grinding of crumb rubber in a
rotary dispergator. APDDR was produced by grinding of CR of worn-out tires and hybrid
powder by co-grinding of CR and SBS L 30-01 (content of bound styrene, wt%—29-31;
molecular weight—around 78 KD). The APDDR and hybrid powder were homogeneous
black powders. The properties of PEM are listed in Table 1. The specific surface was
determined by the BET method at T = 77 K using the adsorption analyzer of surface area
“NOVA 1200e” (Quantachrome Instruments, Ltd.; Boynton Beach, FL, USA). Particle size
distribution parameters were determined using wet laser diffraction using “ANALYSETTE
22 NanoTec plus” (Fritsch GmbH – Mahlen und Messen, Idar-Oberstein, Germany).

Table 1. The PEM properties.

PEM
Particle Size Distribution Parameters, µm Specific Surface,

m2/gD10 D50 D90

APDDR 40 140 300 0.49
Hybrid (APDDR+SBS) 50 160 340 0.45

- Blown bitumen grade BND 60/90 was used as a basis for preparation of modified
binders for AFM research and performance testing.

- Blown bitumen grade BND 100/130 was used for preparation of modified binders
and performance testing.

The coding and properties of bitumen samples are shown in Table 2.

Table 2. Properties of bitumen.

Penetration Grade BND 60/90 BND 100/130

Bitumen code Bit-A Bit-B
Penetration@ 25 ◦C, dmm 60 110
Softening Point, R&B, ◦C 48 44
Fraass Breaking Point, ◦C −18 −25

Modified binders were prepared:
- For AFM research by mixing, 10÷20 wt.% APDDR or hybrid 80/20 powder (by

co-grinding of 80 wt.% CR and 20 wt.% SBS L 30-01) with 90÷80 wt.% bitumen Bit-A
heated to 160 ◦C with 180 rpm of paddle stirrer (IKA HB10 DIGITAL) for 1 min;

- For performance testing by mixing, APDDR or hybrid 80/20 or hybrid 95/5 powder
(cogrinding of 95 wt.% CR and 5 wt.% SBS L 30-01) with bitumen heated to 160 ◦C with
600 rpm of paddle stirrer for 3 min. The coding and composition of modified binder
samples are presented in Table 3.
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Table 3. The coding and composition of modified binder samples.

Modified Binder
Code

Modified Binder Composition,%

Bit-A Bit-B APDDR Hybrid80/20 Hybrid95/5

MB-A(0) 87.5 12.5
MB-A(20) 87.5 12.5
MB-B(0) 87.5 12.5
MB-B(5) 87.5 12.5

2.2. Research Methods
2.2.1. AFM Study

Research of structural and morphological features of the bitumen and MB sample’s
surface was carried out on an NtegraPrima AFM (NT-MDT Spectrum Instruments, LLC;
Moscow, Russia) in a semicontact mode. AFM topography and phase imaging were
obtained at room temperature at a scanning speed of 0.6÷1 Hz. Gold-plated silicon
cantilevers were used (rounding radius 10 nm; resonance frequency 150÷240 kHz).

2.2.2. Rheological Study

Rheological tests were carried out on a dynamic shear rheometer MCR 702e (Anton
Paar, GmbH, Gratz, Austria) using a parallel geometry measuring system:

- 25 mm for a multiple stress creep recovery (MSCR) test [20] (10 cycles, creep phase
1 s, recovery phase 9 s at different stress levels—0.1, 3.2, 6.5, 10, and 12 kPa at 64 ◦C) and
for a dynamic (oscillatory) shear test at an angular frequency of 10 rad/s and shear strain
12% according to [21];

- 8 mm diameter for a linear amplitude sweep (LAS) test [22] (at 0.1 Hz in oscillatory
mode in increasing strain: 0.1%, 1% and further up to 30% in steps of 1% (total 3100 cycles)
at 16 ◦C).

The measuring gap during the tests was 1 mm for the MSCR test and for the dynamic
shear test and 2 mm for the LAS test. The specimens were poured into silicone molds of 25
or 8 mm diameter. Rheological tests of the samples were carried out not earlier than 15 min
and not later than 2 h after placing them into the molds. The samples were deposited in a
rheometer at 58 ◦C.

Low-temperature-cracking parameters were determined on an Asphalt Binder Crack-
ing Device (ABCD) (Infratest, LLC; Moscow, Russia) under static conditions according to
the ABCD test [23] while cooling four parallel samples in a climatic chamber at a rate of
18÷20 ◦C/h.

3. Results and Discussion
3.1. AFM Study

Atomic force microscopy has been used for more than 25 years to study the mi-
crostructure of bitumen. Particular attention of the researchers was focused on the so-called
“bee-like” structure [24]. Creep measurements demonstrated that the microstructure of
the “bee-like” phase has 40–50% higher stiffness than the surrounding matrix phase [25].
Studies of the binders’ resistance to low-temperature cracking after applied load showed
the appearance of cracks at the “bee”-matrix phase interface [3], which allowed the visu-
alization of theoretical ideas justifying the possibility of binder cracking under climatic
factors and transport loading due to its inherent heterogeneity [26].

Figure 1a shows the surface topography of bitumen Bit-A, which illustrates the struc-
tural heterogeneity of bitumen and the presence of a pronounced microheterogeneity in
it. The surface of the bitumen sample examined 2 days after preparation showed the
presence of a “periphase” surrounded by “bee-like” structures with a maximum size of
5–7 µm, with a tendency to form “star bee-like” structures. Storage of this bitumen at
ambient temperature for 1.5 months led to an increase in the maximum size of the “bee-like”
structures by 1.5–2 times—up to 15–20 µm.
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Figure 1. AFM images of the surface topography of (a) the sample of Bit-A, obtained 2 days after
sample preparation (30 × 30 µm, Z-coordinate—130 nm); (b) the sample of MB of 90 wt.% Bit-A+
10 wt.% APDDR, obtained 2 days after sample preparation (8 × 8 µm, Z-coordinate—190 nm); (c) the
sample of MB of 80 wt.% Bit-A+ 20 wt.% APDDR obtained 1.5 months after sample preparation
(20 × 20 µm, Z-coordinate—70 nm).

The ©ntroduction of APDDR into bitumen primarily had an effect on the formation of
a “bee-like” structure.

For MB with 10 wt.% APDDR content, a significant decrease in the length of “bees” to
the maximum 2–3 µm was observed (Figure 1b). When the APDDR content in the MB was
increased to 15 wt.% and higher, no “bees” were observed even after 1.5 months of sample
storage (Figure 1c).

The structure of the fragmented PEM particles observed using AFM was compared
with the SEM data for the modified binder, where the APDDR content was 15 wt.%. The
measurements were carried out 2 days after MB preparation (3 minutes’ mixing at 160 ◦C).

In Figure 2a,b, one can see an elongated APDDR particle of the size of about 10 µm.
When the image is zoomed in (Figure 2c,d), it is clearly seen that the particle consists of
two different-sized fragments: the upper one is about 4÷5 µm long, and the lower one is
about 2 µm. These fragments are connected by strands up to 2µm-long and a few tenths
of a micron thick. We can also assume that the upper fragment of this APDDR particle
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consists of at least three parts. It can be hypothesized that this particle is the decay product
of a larger particle, whose fragments were interconnected by strands.
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Figure 2. AFM surface images of the MB sample of 85 wt.% Bit-A + 15 wt.% APDDR, obtained
2 days after sample preparation. Topography (left), phase image (right): (a,b)—30 × 30 µm, (a) Z-
coordinate—470 nm; (c,d)—12 × 12 µm, (c) Z-coordinate—470 nm.

Smaller fragments of the original APDDR particles of 100÷1000 nm are clearly visible
in Figure 3. Similar particles of the same size and similar (self-similar) agglomerative
structure were observed in SEM images after washing the MB with solvent [17].
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Figure 3. AFM surface images of the MB sample of 85 wt.% Bit-A + 15 wt.% APDDR, obtained 2 days
after sample preparation. Topography (left), phase image (right): (a,b)—8 × 8 µm, (a) Z-coordinate—
140 nm; (c,d)—8 × 8 µm, (c) Z-coordinate—110 nm; (e,f)—3 × 3 µm, © Z-coordinate—90 nm.

The images in Figure 4 illustrate the stage preceding the separation of the 50÷200 nm
APDDR fragments from a larger particle (Figure 4a,b) and the formation of the spatial
structure (Figure 4c,d). The data presented in Figures 3 and 4 indicate the formation of a
physical spatial network of rubber fragments. Since the distances between the fragments
are comparable to their fragment sizes, the percolation threshold’s conditions are satisfied.
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Figure 4. AFM images of the MB surface with the gel structure area. Topography (left), phase image
(right): (a,b)—3 × 3 µm, (a) Z-coordinate—85 nm; (c,d)—8 × 8 µm, (c) Z-coordinate—375 nm.

Figure 5 shows AFM images of the MB surface (the MB is based on Bit-A and hybrid
powder; the Bit-A/hybrid powder is 85/15 wt.%). The measurements were carried out
two days after sample preparation.

In a series of zoomed images, the different stages and mechanisms of hybrid particle
disintegration can be observed. In Figure 5a,b at the top left, a round-shaped hybrid
particle of 2–3 µm in size can be observed connected by strands with smaller fragments
up to 0.2 µm in size. One such fragment is shown in Figure 5c,d. The appearance of these
fragments correlates very well with SEM images of the APDDR fragments [17]. Elements
of an agglomerative structure are also traced.
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Figure 5. AFM images of the surface of the sample of the MB with composition of 85 wt.% Bit-A
+15 wt.% hybrid powder, obtained 2 days after sample preparation. Topography (left), phase image
(right): (a,b)—6 × 6 µm, (a) Z-coordinate—310 nm; (c,d)—1.4 × 1.4 µm, (c) Z-coordinate—50 nm.

The AFM images of thin films observed on the surface of the MB with a 90 wt.%
Bit-A+10 wt.% APDDR composition are shown in Figure 6. In our opinion, the separa-
tion of such films occurs as a result of multidirectional swelling forces from the surface
of microblocks with a denser structure than others. In our opinion, these images have
similarities with the fragments of APDDR particles in the form of films observed earlier
using electron scanning microscopy [17]. Figure 6b shows a three-dimensional image of the
MB surface, from which we can see that the film is partially located on the bee structure.
Thus, it is verified that the films were formed by the rapid decay of PEM particles, because
the formation of the “bee” takes longer.
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Figure 6. AFM surface images of the MB sample of composition 90 wt.% Bit-A + 10 wt.% APDDR,
obtained after 2 days after sample preparation. (a,c)—topography, (b)—AFM-3D image; (d)—phase
image. (a,b)—8 × 6 µm, (a) Z-coordinate—175 nm; (c,d)—8 × 8 µm, (c) Z-coordinate—195 nm. Thin
films are indicated by arrows.

The results of AFM studies confirm the main conclusions drawn based on SEM
studies [17]: already at the early stage of interaction, PEM particles break down into
micro- and nanofragments with an agglomerative structure, similar (self-similar) to that
of the original modifier particles given in [17], as well as present in the form of thin films.
Additional information obtained on the basis of AFM images concerns the formation of gel
structures on the basis of broken PEM particles. Additional information obtained on the
basis of AFM images concerns the formation of gel structures on the basis of the broken
PEM particles. Such a spatial network of nano- and microfragments should hinder the
processes of diffusion and crystallization of the waxes present in bitumen. The result is
the disappearance or a significant decrease in the size of “bee-like” formations, which is
observed at PEM concentrations above 10 wt.%. A more homogeneous structure of the
modified binder is created.
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3.2. Rheological Tests

The structure of binders resulting from the interaction of rubber particles (APDDR)
and hybrid particles (APDDR-SBS) obtained by high-temperature shear grinding with hot
bitumen determines the rheological and, therefore, the performance properties of such
binders. Rheological tests according to Superpave standards were performed on aged
binder specimens. The aging was carried out for 85 min at 163 ◦C in a rolling thin-film oven
(RTFO) [27] and 20 h at 100 ◦C in a pressure-aging vessel (PAV) [28]. This aging simulates
the processes of asphalt concrete mixture preparation and as well as the 7-year operation
service of the pavement. Earlier, it was shown that aged samples of PEM-modified bitumen
at a PEM concentration of 12–15 wt.% in the binder showed an improvement in bitumen
resistance to all types of pavement defects in the whole range of operating temperatures.
However, it was noted that reducing the PEM concentration to 10 wt.% and less led to some
improvement in low- and high-temperature parameters but worsened some parameters of
fatigue-cracking resistance of the modified samples compared to bitumen [29]. These data
justified the PEM concentration in bitumen for rheological tests as 12.5 wt.%. In this case,
rheological tests were conducted for unaged bitumen to see the change in binder properties
immediately after the introduction of the modifier.

Among the parameters of resistance to rutting the most promising for the characteristic
of bituminous binders is considered parameter Jnr (unrecoverable creep compliance), deter-
mined in the test for resilience to multiple cycles of creep–recovery [20]. The parameter Jnr
is calculated as the ratio of the average unrecovered creep strain over 10 test cycles to the
applied stress level. The second important parameter is the elastic recovery in percent at
a given load (R3.2) calculated as the average value of the elastic recovery for 10 cycles of
creep–recovery at a 3.2 kPa stress level.

Table 4 shows the data of unrecoverable creep compliance (Jnr) and elastic recovery at
a 3.2 kPa stress level (R3.2) of the MSCR test for two bitumen and modified binders, the
composition of which is given in Table 3. Additionally, in Table 4 are the data for the upper
operating temperature of the no-aged bitumen binders, which is defined from a dynamic
(oscillatory) shear test [21] as the temperature at which rutting parameter G*/sinδ equals
1 kPa.

Table 4. The data on unrecoverable creep compliance (Jnr) under different stress levels and elastic
recovery at 3.2 kPa stress level (R3.2) (MSCR@64 ◦C) and upper operating temperature of no-aged
bitumen binders (T@ G*/sinδ = 1 kPa).

Binder
Bit-A MB-A(0) MB-A(20) Bit-B MB-B(0) MB-B(5)

Jnr, kPa−1

Stress
level τ,

kPa

0.1 6.4 0.9 0.3 4.4 0.5 0.3

3.2 8.2 1.4 0.5 7.6 0.9 0.6

6.5 9.2 1.7 0.7 9.4 1.2 0.8

10 11.4 1.9 0.8 11.5 1.4 0.9

12 47.3 2.1 0.9 13.9 1.5 1.1

Elastic recovery R3.2,% 0 11 23 0 18 27

T@ G*/sinδ = 1 kPa 64.7 85.2 91.3 67.3 84.7 89.2

A test for multiple stress creep recovery was conducted to characterize the samples in
terms of resistance to rutting during the operation of the pavement in the summer under
the influence of moving traffic. The introduction into both bitumen samples of a 12.5%
powder elastic modifier (PEM) led to a sharp decrease in unrecoverable creep compliance
(Jnr) at almost all load levels. Increasing the SBS content of PEM reduced Jnr and increased
elastic recovery (R) (Table 4 shows the elastic recovery (R3.2) for the 3.2 kPa stress level) both
compared to bitumen and to SBS-free APDDR. MSCR tests carried out early (see [29], for
example) for RTFO-aged bitumen samples at 64 ◦C showed that the elastic response was no
more than 5–6%, whereas for modified binders, the elastic response exceeded 70%, which
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showed that the final formation of the spatial mesh occurs during the time the modified
asphalt mixture is brought to the paving site. Jnr values after RTFO aging ensure that the
modified binder can be used for pavements with maximum traffic. The good resistance to
multiple cycles of creep and recovery at a sufficiently high test temperature (64 ◦C) of Bit-B,
which has a much higher penetration compared to Bit-A, seems to be due to differences in
production technology and chemical composition.

The resistance to low-temperature cracking was determined by the ABCD method.
The results are presented in Table 5.

Table 5. ABCD test results.

Binder Bit-A MB-A(0) MB-A(20) Bit-B MB-B(0) MB-B(5)

TABCD,◦C −33.2 −37.1 −43 −38 −42.2 −42.7

σ, MPa 1.6 2.8 4.0 1.8 2.6 2.7

From Table 5, it can be seen that the specimen-cracking temperature (TABCD) decreased
with the introduction of PEM. The greatest decrease (9.8 ◦C) was observed for the hybrid-
modified binder with 20 wt.% SBS. Only a slight decrease in fracture temperature (up to
0.5 ◦C) was observed for the hybrid powder with 5 wt.% SBS compared to the SBS-free
APDDR-modified binder, which decreased the TABCD of both bitumens by about 4 ◦C. It
has previously been shown that the decrease in the fracture temperature in the ABCD test
using PEM compared to bitumen is also characteristic of aged samples [29]. At the same
time, the ABCD data show that at the moment of fracture, the modified samples have
a much higher fracture stress (σ) than the original bitumen. Thus, it is confirmed that a
sufficiently short mixing time (in this case, 3 min at 160 ◦C) already leads to the formation
of a new binder structure.

Data of Tables 4 and 5 show a significant expansion of the operating temperature
range, as well as an increase in resistance to rutting and low-temperature cracking.

The resistance of specimens to fatigue cracking was evaluated using a linear amplitude
sweep (LAS) test. Figure 7 shows the dependences of complex modulus (G*) versus shear
strain (γ) recorded during testing at 16 ◦C. It can be seen that for the modified binders,
there was no sharp drop in the complex modulus (G*), which was observed for both
bitumen samples at γ of 12–18%. This may indicate the formation of a spatial network in
the modified binders, the existence of which is most pronounced during fatigue tests.
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Figure 8 shows the dependence tangent of phase angle (tg¦Ä) versus shear strain (γ)
recorded during testing at 16 and 7 ◦C. As can be seen, the modified binders in all cases
show less sensitivity to cyclic deformation.
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Figure 8. Plots of the tgδ versus shear strain (γ) in the LAS test at temperature 16 (1, 2, and 3) and
7 ◦C (4, 5, and 6) for Bit-A (a—1 and 4); MB-A(0) (a—2 and 5); MB-A(20) (a—3 and 6); Bit-B (b—1 and
4); MB-B(0) (b—2 and 5); MB-B(5) (b—3 and 6).

Table 6 shows the number of cycles to failure (Nf) at strains of 2.5 and 5%, calculated
according to [22] based on LAS test data. As can be seen, the modification significantly
improved the resistance to cyclic strain. Recall that Table 6 shows the data obtained for
no-aged specimens of the modified binders. After RTFO and after PAV aging, the best
results were observed for the modified binder based on hybrid PEM particles.

Table 6. LAS test results at temperatures 16 and 7 ◦C: number of cycles to failure (Nf) (VECD analysis)
at 2.5 and 5% strain.

Binder Bit-A MB-A(0) MB-A(20) Bit-B MB-B(0) MB-B(5)

Nf2,5%
16 ◦C 54,000 353,500 257,500 68,600 3,480,000 1,840,000

7 ◦C 7350 47,500 28,700 7830 189,000 63,400

Nf5%
16 ◦C 4500 17,000 10,600 4600 110,900 56,500

7 ◦C 325 1200 780 290 3700 1300

The comparative rheological tests of bitumen samples and PEM-modified binder
produced in conditions close to the temperature–time conditions of road mixture production
(3 min mixing at T = 160 ◦C) and not subjected to additional temperature influence showed
that even such a short time of interaction of the hot bitumen and PEM provides an expansion
of the performance temperature range of modified bitumen and its increased resistance to
cyclic loads.
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The improvement in rheological indicators confirms that the rapid degradation of
micronized powders of elastic modifiers into micro- and nanofragments leads simultane-
ously to the formation of a new structure of the modified binder that is more resistant to
external influences. It can also be assumed that the improvement in low-temperature and
fatigue-cracking resistance may be due to energy absorption and crack growth stopping
in the presence of micron and submicron PEM elastic fragments in accordance with the
mechanism of increasing impact toughness in plastics [30–32].

The results obtained confirm the effective recycling of worn-out tire rubber by the
HTSG method in obtaining PEM for further use to modify bitumen directly in the produc-
tion of road asphalt mixtures or to reduce the time and energy costs for the preparation of
modified bitumen binder for road construction.

4. Conclusions

In this paper, the structure and performance properties of bitumen and modified
binders obtained as a result of the short-term interaction of hot bitumen and micronized
powder elastomeric modifiers (PEM) were investigated. PEM was produced by the high-
temperature shear-induced grinding of a worn-out tire’s crumb rubber or its co-grinding
with butadiene styrene thermoplastic elastomer.

Atomic force microscopy (AFM) studies have shown that a short-term interaction
between hot bitumen with PEM particles having a highly developed surface leads to their
degradation into numerous micro- and nanofragments. It is hypothesized that the rapid
degradation of PEM particles occurs under the action of multidirectional swelling forces in
locations of stressed-bond concentration or locations of rubber discrete devulcanization. An
agglomerative structure of fragments similar (self-similar) to the structure of the original
particles of the modifier (given in [17]) forms. The fragments in the form of thin films
apparently form when the swollen rubber peels off the surface of the particle.

AFM studies also showed the formation of a more homogeneous binder structure at
PEM concentrations greater than 10 wt.% by significantly reducing the length of the “bees”
up to the disappearance of “bee-like” units.

The results of rheological tests of bitumen and freshly prepared (not subjected to
additional temperature treatment) samples of modified binder showed an improvement in
binder performance at a wide range of temperatures and load levels, including:

- Expansion of the operating temperature range;
- Increased resistance to permanent deformation (rutting) at high temperature, includ-

ing high creep resistance, sensitivity to load increase, and elastic recovery;
- Improved resistance to low-temperature and fatigue cracking.
The improvement in rheological performance confirms that the rapid degradation of

micronized powders of elastic modifiers into micro- and nanofragments leads simultane-
ously to the formation of a new binder structure that is more resistant to external influences.
It can also be assumed that the improvement in cracking resistance in modified binders is
due to energy absorption and crack growth being stopped by the spatial network of micron
and submicron resilient PEM fragments.

The results obtained clarify the effectiveness of PEM in the most cost-effective way:
the injection of PEM into the asphalt mixture just at the time of its preparation.

Further work will be aimed at studying the structure and properties of mastics con-
taining PEM and assessing the PEM effect on the interfacial interaction between modified
binder and mineral filler.
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