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The sustainability of animal production relies on the judicious use of phosphorus

(P). Phosphate, the mined source of agricultural phosphorus supplements, is a

non-renewable resource, but phosphorus is essential for animal growth, health, and

well-being. P must be provided by efficient and sustainable means that minimize the

phosphorus footprint of livestock production by developing precise assessment of the

bioavailability of dietary P using robust models. About 60% of the phosphorus in an

animal’s body occurs in bone at a fixed ratio with calcium (Ca) and the rest is found

in muscle. The P and Ca requirements must be estimated together; they cannot be

dissociated. While precise assessment of P and Ca requirements is important for

animal well-being, it can also help to mitigate the environmental effects of pig farming.

These strategies refer to multicriteria approaches of modeling, efficient use of the new

generations of phytase, depletion and repletion strategies to prime the animal to be

more efficient, and finally combining these strategies into a precision feeding model that

provides daily tailored diets for individuals. The industry will need to use strategies such

as these to ensure a sustainable plant–animal–soil system and an efficient P cycle.

Keywords: phosphorus, calcium, mitigation, requirements, environment, swine

1. INTRODUCTION

Phosphorus (P) is an essential element for all living beings, as it is a key component of nucleic
acids and energy transfer molecules (adenosine triphosphate, creatine phosphate) and a major
mineral component of bone (1). The element P is found in animals as orthophosphates. This
is the circulating form of P. Adequate amounts must be provided in livestock diets to ensure
animal growth and health. To date, producers have used inorganic phosphate, a limited and
non-renewable resource that will be depleted within 100–200 years at current rates of extraction
(2). As a commodity mineral, its price is volatile (3). Of greater concern is that P is not absorbed
completely from any diet, and in the case of monogastric livestock farming, phosphorus-laden
run-off can pollute and cause eutrophication of waterways, which can lead to growth of toxic
nitrogen-fixing algae or cyanobacteria (4). This compromises the sustainability of pig farming,
which has become highly concentrated in certain regions of several pork-producing countries. In
swine production, to avoid an excess of P, the cost of transporting P-rich manure for use as crop
field fertilizer can be high and the cost of treating it can be prohibitive; rational and efficient use of
P is therefore essential.
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Calcium (Ca) is the most abundant mineral in the body (1, 5)
and is indispensable for bonemineralization, muscle contraction,
and nerve impulse propagation. It is not an expensive element in
livestock feed, it is abundant, and it does not represent a threat to
the environment. However, as absorption and utilization of P in
growing pigs is related to that of Ca, P and Ca requirements must
be studied together. Insoluble and indigestible Ca–P complexes
can form in the intestines (6, 7). Ca and P deposits in bone are
co-dependent. If discharges of phosphorus are to be minimal
and its efficiency of utilization must be maximized, its supply
must be matched as closely as possible to the requirements of the
animals. To achieve this, the actual usable P content of feedstuffs
and the animal physiological requirement bothmust be estimated
accurately and precisely. Both global and factorial methods have
been used to estimate the Ca and P requirement.

P and Ca requirements can be estimated to maximize
growth performance, keep P rejection minimal and/or maximize
bone mineralization. Novel approaches in development aim to
improve the digestive and/or metabolic utilization of P, thereby
decreasing P excretion. The best-known example is the use of
phytases, which facilitate the digestion of plant P as phytic acid,
the phosphoric ester of inositol, a compound found in many
plants and poorly absorbable by pigs. The new generation of
phytases makes this strategy evenmore attractive. The depletion–
repletion, a strategy less well known, consists of reducing P and
Ca input below the animal’s requirements over some period
of growth and then increasing the supply as needed (8). This
strategy can increase the animal’s P digestive efficiency and
metabolic utilization in growing pigs; thus it overall decreases
in P intake and excretion while maintaining growth and bone
mineralization (9, 10). Finally, a mechanistic model approach
predicts bone ash and then P and Ca requirement (11, 12) and
does not estimate the P and Ca requirement for bone directly
from protein. This is an interesting multicriteria approach to
mitigate P impact that will be essential for P precision feeding
(13). The objective of this paper is to review the latest P and
Ca assessment of bioavailability methods for evaluating the
nutritional values of feed ingredients for pigs and estimating
precisely P requirements, as well as, describing innovations and
promising strategies to decrease the P excretions by growing pigs.

2. PRECISELY ASSESS BIOAVAILABILITY
AND EVALUATING THE NUTRITIONAL
VALUES OF FEED INGREDIENTS

2.1. Dietary Forms of Phosphorus and
Calcium
2.1.1. Plant Phosphorus and Calcium
Phytic acid is synthesized in plants by phosphorylating inositol
in any or all possible positions. It can thus bear 6 phosphate
groups (IP6) as shown in Figure 1, or a smaller number (IP5-
IP1). The main form found in feed ingredients of plant origin is
IP6 (15, 16). Phytic acid plays a key role in plant metabolism by
constituting a reserve of P and chelating other minerals, whereas
inositol is used in cell wall formation (17). Phytic acid is present

in all plant-based ingredients (18), in which it accounts for 50–
80% of the P content (19, 20) and is found almost entirely in the
form of salts called phytates, primarily with Ca, Fe, Zn, Mg, K,
andMn. Phytates are solubilized at gastric pH, whereas the higher
pH of the small intestine is conducive to their re-formation or
de novo complexation thus decreasing the absorption of minerals
and trace elements (21, 22). In vitro, phytic acid forms its
most stable salts with Cu, Zn, Ni, Co, Mn, Fe, and then Ca
(23, 24). Ca rarely makes up more than 1% of plant dry matter
(20) and its absorption is decreased by phytate formation, but
this can be countered somewhat by using phytases (see section
4.2), which break down phytates that are in solution (25–27).
The cation-binding ability of phytic acid declines as phosphate
groups are removed (21). Phytates form insoluble complexes
also with proteins, amino acids, and starch and thereby decrease
the digestibility in the small intestine and utilization of these
nutrients (18).

2.1.2. Mineral Phosphorus and Calcium
P is usually added to pig diets as dicalcium phosphate, which
represents 60% of the feed phosphates used in the European
Union; monocalcium and monodicalcium phosphates are also
used (28). Magnesium, calcium-magnesium, ammonium, and
sodium phosphates are also available for use in livestock feed (28–
30). To minimize excreted phosphate, which becomes pollution,
the most digestible phosphates are preferred, although price
also is considered. The first and foremost criterion is to meet
narrow technical specifications in terms of composition and
physicochemical stability. Phosphates can be classified according
to their solubility in 2% citric acid solution. This test does not
indicate real digestibility but makes it possible to rank different
products (29). A feed-grade phosphate must be at least 95%
soluble in 2% citric acid and in alkaline ammonium citrate (28,
31). For monocalcium phosphates, the solubility in water must
be greater than 80%, and for monodicalcium phosphate, greater
than 50% (28). Monocalcium phosphate is more digestible
than monodicalcium phosphate, which is more digestible than
dicalcium phosphate (28, 29). Dicalcium phosphate dihydrate
is more digestible than the anhydrous form. The final criterion
for judging the quality of a feed-grade phosphate is its level of
undesirable substances such as arsenic, cadmium, lead, fluorine,
or mercury, and dioxins (28, 29).

The inorganic Ca supplements most used in pig farming are
calcium phosphates (32) and carbonates supplied in the form
of limestone, a mineral that contains calcium carbonate and
dolomite and which varies in Ca content (35–38% Ca; (19)).
The bioavailability of the Ca in these sources is in the 90–
100% range of calcium carbonate (CaCO3) used as reference
(19, 20, 30). Unlike in poultry, carbonate particle size appears
to have no significant effect on apparent or standardized Ca
digestibility in growing pigs, based on tests with animals in the
10–20 kg live weight range (33, 34). Calcified red algae has
been studied due to its solubility at gastric pH. It is 32% more
soluble than calcareous Ca at pH 6.7 and 34% more soluble at
pH 3.0 (35). Limestone is 100% calcite, whereas CeltiCal (Celtic
Sea Minerals) is 65% calcite, 23% aragonite, and 12% valterite
(polymorphs of calcite). The greater solubility does not make
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FIGURE 1 | (A) Structure of phytic acid at neutral pH (14); (B) phytate chelate with different cations. (14).

the Celtic Sea product more digestible than calcium carbonate.
Its digestibility in pigs is at best equivalent to that of calcium
carbonate [apparent total tract digestibility [ATTD] Ca of 46.7%
and 51.2% for calcium carbonate and CeltiCal, respectively (36),
64% for both sources (37), and may be lower: 46.9% of ATTD
Ca and 30.5% for calcium carbonate and CeltiCal (38)]. Marine
Ca is absorbed poorly in the upper parts of the gut (38); the
higher concentration of dissolved cations moreover makes it
precipitate more with phosphate or phytic acids, decreasing
P digestibility, bone mineralization, and animal growth (35,
36). A highly soluble Ca to P ratio makes precipitation more
likely. Nevertheless, adding marine Ca in smaller amounts and
using phytase allows proper balancing of the soluble Ca:P ratio
and growth performance equivalent to the control group, and
quantitatively superior bone mineralization, at least in broiler
chicken studies (35). These results show, above all, that Ca and
P interact strongly in the digestive system, and howmuch further
study, especially of the soluble Ca:P ratio, is needed to optimize
their utilization.

2.1.3. Phosphorus and Calcium of Animal Origin
In addition to inorganic phosphates, meat and bone meal from
the rendering industry is also used as a source of P and Ca. Except
in Europe, where it is prohibited in livestock feed other than for
fish, these by-products are commonly included in poultry diets.
Meat and bone meal can be made up of bones and soft tissues but
not blood, hair, hoof, horn, skin/leather, stomach and ruminal
contents, or excrement. Most meat and bone meal in North
America is a mixture of cattle, pig, and poultry by-products (39).
It must contain at least 4.0% of P, and the Ca:P ratio must not
exceed 2.2 [AAFCO 2011, cited in Sulabo and Stein (40)]. Meat

and bone meal is a source of highly available Ca and P (41, 42)
but has unpredictable quality and Ca:P ratios, due to differences
in raw materials and processes (39). Depending on the source,
the P and Ca contents may vary 2–4 times as much as the protein
content, the coefficients of variance being, respectively, 20, 22,
and 6.2% (40). A negative correlation exists between protein
concentration and P and Ca concentration, due to variations in
the proportions of soft tissue and bone (40). The most important
sources of variation in the composition of meat and bone meal
are therefore the origin of the by-products used and the ratio of
soft tissue to bone.

When meat and bone meal is fed to pigs, it provides much
of the Ca and P in the diet. It is therefore necessary to have a
supplier that uses controlled processes and can guarantee Ca and
P content. The standardized digestibility of P in meat and bone
meal ranges from 55 to 84% and averages 70% (20, 40), falling
between the values for inorganic P and materials of plant origin.
Standardized Ca digestibility in meat and bone meal is estimated
at 77% but can be 82% for poultry meal (43). The apparent Ca
digestibility ranges from 55 to 84% (40). The digestibility of P
and Ca in meat and bone meal does vary somewhat, due mostly
to the P concentration: the higher the P concentration, the lower
the Ca and P digestibility. Since the P concentration depends
mainly on the proportion of bone in themeal, it may be presumed
that the higher the bone-to-meat ratio, the lower the Ca and P
digestibility. The apparent digestibility of P in bone meal is in
fact about 68 vs. 80% in meat-and-bone meal and 85% in meat
meal (44). Hydroxyapatite, therefore, seems to be a less digestible
form of P and Ca. This has been validated for P by comparing
diets containing different forms of bone meal. The pre-cecal
digestibility of P in chickens is lower when it is still in the form
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of hydroxyapatite than when it has been previously dissolved
(45). Although its composition may vary widely, meat and bone
meal offers the possibility of recycling, providing sufficient P to
livestock without inorganic P from non-renewable sources. At
least one study suggests that heat and pressure treatment of bone
meal and removal of gelatin may improve P digestibility (45).

2.2. Precisely Estimates of Dietary
Phosphorus and Calcium Values of
Feedstuffs
2.2.1. Total Analyzable Value
Total dietary Ca and P content in feed ingredients are routinely
measured by chemical analysis. However, these numbers do not
indicate what portion the animals digest or retain or how much
will be excreted. Although this method has its drawbacks, it is
still the preferred method for Ca, mainly because of the lack
of knowledge on Ca bioavailability. Recent work underway is
expected to provide amore accurate Ca bioavailability assessment
method with standardized digestibility measurements (46). The
P system is more precise with different expression modes, which
will be described in the following sections.

2.2.2. Relative Bioavailability
Bioavailability, also called availability, was added in the ninth
edition of NRC (47). Availability is an indicator of the use
of a nutrient based on a predefined criterion, for example, in
the case of P and Ca, bone mineralization measured in terms
of mineral (ash) content or a biomechanical property such as
breaking strength (48, 49). The value is obtained by comparison
with a reference that is considered 100% bioavailable, usually
monocalcium phosphate. The relative bioavailability of a nutrient
in an ingredient is generally expressed as the slope ratio, which
is obtained from linear regressions of the criterion vs. nutrient
ingested (48). The main disadvantage of this method is that it
is not standardized and thus the bone and parameter measured
(e.g., ash content and break strength) may differ between studies,
so studies are not comparable (46).

2.2.3. Digestibility
The digestibility concept was first used to assess P content of
feedstuffs as ATTD in the Netherlands (50) and then in France
(19). In 2012, the National Research Council (NRC) proposed
another method, like the one used for amino acid and that should
be more precise, the standardized total tract digestibility (STTD).
Digestibility refers to the quantity of nutrient that is not found
in the feces and therefore must have been digested, or, at least,
has disappeared from the digestive tract, a definition that must be
nuanced according to whether endogenous losses are considered.
Unlike other nutrients, the digestibility of P (and of Ca to a
lesser extent) is estimated over the entire digestive tract as fecal
digestibility. Two reasonable assumptions justify this: (1) P and
Ca are absorbed in the cecum and the colon, respectively (51).
These play a homeostatic role in maintaining serum P and Ca
under conditions of low intake, and (2) for P and Ca in most
dietary supplies, there are no difference between fecal and ileal
digestibility for true and apparent P digestibility (52, 53), or
apparent and standardized Ca digestibility (38) and therefore

no interest in estimating ileal digestibility, which is much more
difficult and expensive than measuring fecal digestibility (20).

Apparent total tract digestibility (ATTD) of a nutrient in a
feed is the difference between the total intake of the nutrient in
question and the amount found in the feces (54, 55):

ATTDCa or P(%) = [(Ca or Pintake − Ca or Pfeces)/Ca or Pintake]

× 100 (1)

The methods most used to determine apparent digestibility are
total feces collection or partial collection in conjunction with an
indigestible marker. Apparent P digestibility is still used widely
but has the disadvantage of not being additive in feeds composed
of several ingredients (55, 56).

STTD considers basal endogenous losses, which represent the
minimal loss of a nutrient, independent of feed composition
but influenced by dry matter intake (49, 54). These losses
were first estimated by regression with extrapolation to zero
ingestion of the studied mineral (57). They are now measured
by analyzing feces of animals fed a diet free of P or Ca (34, 37,
58–60). Critics of this method point out that Ca metabolism
is well known to be regulated through absorption and thus
reabsorption of endogenous losses, leading to underestimation of
basal endogenous losses (61). Likewise, a P imbalance due to a P-
free but Ca-containing feed would probably affect endogenous
P losses (62). Further trials are needed to determine whether
endogenous P losses should be measured with a P-free and
Ca-free diet, or if it is better to measure P losses with some Ca
to minimize interference by regulation. Basal endogenous losses
of P and Ca fall, respectively, into the ranges of 139–252 mg and
123–670 mg/kg of dry matter intake (DMI) (37, 38, 63, 64). Basal
endogenous P losses in pigs have been estimated at 190 mg/kg of
DMI by (20) and 6 mg/kg of live bodyweight (BW) by Bikker and
Blok (65). Standardized digestibility can then be calculated using
the following equation (55):

STTDCa or P(%) = [(Ca or Pintake − (Ca or Pfeces
− Basal endogenous losses))/Ca or Pintake]

× 100 (2)

Standardized digestibility values are considered additive in feeds
composed of several raw materials (20, 46). According to this
equation and the use of a constant basal P loss of 190 mg/kg of
DMI, it is simple to convert values of ATTD digestibility values
into STTD values.

True digestibility accounts for total endogenous losses,
which include basal and specific endogenous losses. The latter
represents the losses above basal endogenous ones, due to specific
characteristics of the feed, such as the level of anti-nutritional
factors and fiber content (54). No method of direct measurement
of true digestibility exists, except the use of radioisotopes that
are now banned in many countries. It is therefore determined by
regression, using apparent digestibility and ingested quantity of
the nutrient (46, 49):

Ca or Pabsorbed = (TTTD×Ca or Pintake)−Total endogenous losses
(3)
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The negative intercept corresponds to total endogenous loss,
while the slope of the regression represents true digestibility.
Critics of this method point out that for P and Ca, estimates
are highly variable, dependent on individuals, often intercept is
not different from 0 (53, 66, 67) and influenced by the amount
ingested, in violation of the basic assumption of the regression
method (66, 67).

Although several studies about Ca digestibility have been
completed (34, 37, 40, 52, 59, 66, 68), the Ca requirement
continues to be generally expressed as a total requirement
(20, 46) due to the lack of data on digestibility in specific
feed ingredients. To overcome the non-additivity of apparent
digestibility in a mixed feed, most recent studies have focused
on standardized digestibility (59). However, basal endogenous
Ca losses measured so far are highly variable and appear to
depend on feed composition (59). In addition, components such
as fiber may have a direct and proportionate positive effect on
standardized Ca digestibility (59), as shown in rat studies (69).
These last considerations show the interest in evaluating the Ca
digestibility of raw materials under the specific conditions in
which they will be used, as recommended in chicken for P (70).

2.2.4. Mechanistic Modeling and Meta-Analysis

Approach
All the methods described earlier give a unique P and Ca
value for each feedstuff regardless of the interactions with
other components of the diet. With the objective of precisely
estimate the digestibility of dietary P in a complete diet, two
approaches have been used by Létourneau-Montminy et al. (71,
72) based on available literature. First, a mechanistic research
mathematical model that simulates the fate of dietary P forms,
phytate P (PP) and non-phytate P (NPP) from plant, mineral
and animal origin, in the gastro-intestinal-tract was developed
and evaluated by Létourneau-Montminy et al. (71). The proposed
model integrates and predicts the impact of the most relevant
physiological processes involved in P digestion and absorption,
including P dietary forms, the presence of exogenous phytase,
and the dietary concentration of Ca. It also predicts the impact
of transit time and pH of the different dietary sections. The
output is the standardized P and Ca absorbed. It can be used as
a prospective tool to study P digestibility for different feedstuffs
and feeding strategies, as well as the effect of specific digestive
processes on P digestive utilization. Second, given the large
number of publications on P digestibility in pigs, meta-analysis,
a statistical method relevant for summarizing and quantifying
knowledge acquired through previously published research (73,
74), was chosen to predict P digestibility considering dietary
P forms, Ca, and exogenous phytases. Dietary forms are PP
and NPP from plant, mineral, and animal (72). This study
provided a generic response of ATTD P (g/kg) to variation
of PP, NPP, and phytase. Results showed a linear relationship
between NPP and digestible P. Both NPP from mineral and
animal feedstuffs and NPP from plant are highly digestible (78
and 73%, respectively). A digestibility coefficient of 21% was
also found for PP showed that part of the PP is available for
absorption without any exogenous phytase supply (75–77). Then
microbial phytase improved digestible P given hydrolysis was

simulated with a classic enzyme equation, theMichaelis–Menten.
Its response depends on PP quantity, its substrate. The addition
of 500 FTU of microbial phytase per kg of feed to a diet with 2
g of PP/kg, increased the amount of digestible P by 0.60 g/kg.
With 3 g of PP/kg, the amount of digestible P increased by
0.67 g/kg. It is worthy to note that the amount of PP varies
little in swine ingredients. Finally, dietary Ca linearly decreases
digestible P independently of phytase supply as previously shown
when testing different concentrations of dietary Ca crossed with
different levels of phytase (78, 79). This simple method allows a
prediction of true P digestibility based on chemical analysis of
the diet in total P, PP, Ca, and microbial phytase, while NPP is the
difference between total P and PP as used in broilers (80).

3. PRECISELY ASSESS PHOSPHORUS
AND CALCIUM REQUIREMENTS

According to the FAO and WHO (81), a nutrient requirement
is defined as the intake level that will meet specified criteria of
adequacy without risking deficit or excess. These criteria include
an array of biological effects associated with the nutrient. In
livestock production, a requirement is defined as the quantity
necessary to maximize a production factor such as body growth
or bone mineralization. In practice, growth alone is often a
poor indicator of mineral status. Tissue analyses should always
accompany growth and feed intake data when evaluating mineral
adequacy (82). Bone mineralization has long been the standard,
but environmental issues have led several countries to review this,
giving rise to the notion of growth performance (20). Ca and
P requirements may be defined as facilitating growth according
to genetic potential while ensuring optimal bone mineralization
and keeping environmental risks minimal. In other words, a
multicriteria approach to setting nutrient requirements is needed.
To respond to these different objectives, global and factorial
approaches, and increasingly mechanistic models simultaneously
consider the most important variables, including genetics, live
weight, and sex.

3.1. Global Approach
This method consists of measuring different performance criteria
(growth rate, feed conversion ratio, etc.) in herds that have
been fed with increasing levels of the tested nutrient. If all the
criteria are not satisfied simultaneously, the proper intake is then
considered to be the one that optimizes the most important
criterion (83). At this time, the digestibility of nutrients was
not considered. This approach presents two main disadvantages.
The first one is that it is difficult to compare the estimation of
nutrient requirements by this approach with the availability or
digestibility of the raw material. The second is that, like nutrient
availability, the approach does not consider the portions of P and
Ca effectively used and does not allow differentiation between
the portions released in feces and urine. Global approaches were
replaced by factorial approaches in the 1990s.

3.2. Factorial Approaches
A more advanced method is the factorial approach, which
consists of quantification and the addition of the requirements
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TABLE 1 | Estimates of P and Ca requirements for growing pigs according to different models.

Bodyweight 30 kg 50 kg 70 kg 100 kg

ADG 0.96 kg 1.11 kg 1.17 kg 1.12 kg

Feed intake 1.36 kg 2.14 kg 2.71 kg 3.22 kg

Body protein 4.68 kg 7.08 kg 11.09 kg 15.03 kg

CVBa NRCb INRAec Lautroud CVBa NRCb INRAec Lautroud CVBa NRCb INRAec Lautroud CVBa NRCb INRAec Lautroud

STTD P (g/kg) 3.77 4.2 - 4.07 2.83 3.07 - 2.85 2.39 2.45 - 2.38 2.01 1.83 - 2.12

ATTD P (g/kg) - - 4.0 3.9 - - 2.98 2.68 - - 2.5 2.21 - - 2.1 1.95

Total Ca (g/kg) 9.96 9.03 11.61 8.16 7.53 6.6 8.65 5.9 6.38 5.27 7.26 5.2 5.4 3.93 6.09 5.06

Total Ca:STTD P 2.64 2.15 - 2.00 2.66 2.15 - 2.07 2.67 2.15 - 2.18 2.69 2.15 - 2.39

Total Ca:ATTD P - - 2.90 2.09 - - 2.90 2.20 - - 2.90 2.35 - - 2.90 2.59

aEstimated according to Bikker and Blok (65).
bEstimated according to NRC (20).
cEstimated according to Jondreville and Dourmad (84).
destimated according to Lautrou et al. (12).

for each physiological function (e.g., for maintenance and
growth). With the emergence of this method came the
consideration of the intestinal absorption of minerals. Several
factorial methods estimating P and Ca requirements had been
proposed such as Jondreville and Dourmad (84), NRC (20),
and Bikker and Blok (65). The first of these methods is based
partly on studies conducted years ago in France (83, 85) and the
Netherlands (86) and is applied widely in France and Europe.
The second one is popular in North America. The third one is
in fact an update of the Jongbloed et al. (86) method based on
data published since then. The P requirements estimated by these
methods are presented in Table 1.

In Jondreville and Dourmad (84)’s model, estimation of P
and Ca requirements aims for a bone mineralization of 100%.
The maintenance requirement corresponds to obligatory urinary
losses, because the P requirements are expressed on an ATTD
basis, and endogenous fecal losses are already considered. The
maintenance P requirements are estimated at 10 mg/kg of BW
(85). The requirement for growth is assessed based on the
average daily gain. Finally, the total Ca requirement is estimated
according to a fix ratio of 2.9 with the ATTD P requirement.

The NRC (20) considers that P and N retention are highly
correlated, and that this correlation is affected little by animal
genetics or sex. According to their model, maximal P retention
in growing pigs is dependent on body protein. Endogenous basal
losses in the gastrointestinal tract are estimated at 190 mg/kg
of DMI, to express the P requirements in STTD, and minimal
urinary loss at 7 mg/kg of BW. Finally, growth performance
is maximized by considering the standardized digestible P
requirement to be 85% of the level that maximizes body P
retention. The total Ca requirement is set at 2.15 times the
standardized P requirement.

In Bikker and Blok (65), Ca and P requirements are estimated
independently and aim for a bone mineralization of 100%.
The requirement is the sum of the Ca or P retention and the
maintenance requirement. An allometric relationship links body
Ca and P retention to animal empty body weight gain. The
maintenance requirement includes the obligatory urinary loss

FIGURE 2 | Evolution of protein and bone mineral content deposit as a

function of average weight (89).

and the minimal endogenous loss. Basal fecal endogenous losses
of P and Ca are set at 6 mg and 8 mg/kg of BW, respectively, and
obligatory urinary losses are estimated to be 1 mg and 2 mg/kg
of BW. These unavoidable losses are low under conditions of
low P or Ca supply, and become greater as the supply increases.
The utilization efficiency of the absorbed P and Ca is therefore
set at 98%. The Ca and P requirements are first estimated as
standardized before applying a digestibility coefficient of 58% to
the Ca requirement for expression as total Ca. In this model, as
in Sauveur and Perez (83) Ca requirement is estimated according
to a factorial approach based on digestible Ca and expressed
on a total basis assuming 45–50% Ca digestibility. This permits
adaptation of the Ca:digestible P requirement according to
animal weight and performance. The same approach was recently
used for sows by Gauthier et al. (87) and Gaillard et al. (88).

In all these models, ash deposition strongly correlates with soft
tissue gain. However, recent feed trials have shown that this is
not the case in growing pigs (Figure 2; 89). Protein deposition
increases linearly up to a body weight of about 60 kg, then
decreases while bone mineral content deposition increases until
the pigs reach slaughter weight (120 kg). These two variables
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are, therefore, measurements of different physiological processes.
In the Jondreville and Dourmad (84) and NRC (20) models,
the Ca requirement and the digestible P requirement form a
fixed ratio throughout the life of the pig. However, as seen
previously, bone growth and soft tissue growth are dissociated,
which logically results in a Ca:P requirement ratio that is not the
same throughout the life of the animal.

4. STRATEGIES TO REDUCE
PHOSPHORUS EXCRETION

4.1. Improved Mechanistic Models to
Assess Phosphorus and Calcium
Requirements
The factorial approach can be integrated in a mechanistic model.
The mechanistic models aim to represent the mechanisms of a
system. In fact, they connect the underlying mechanisms that
control operation of a system. It is, therefore, a matter to meet
the conventional notion of requirements (homeorhesis, long-
term response) with the response of the animals to inputs
[homeostasis, short time scales, (90)]. In a more recent model
(11), because of a lack of data, the potential Ca and P
depositions were driven by potential protein deposition. But
as seen previously, the protein and ash bone depositions are
not correlated (89). Consequently, the assessment of Ca and
P requirements must consider the fact that changes in skeletal
tissue are not directly proportional to lean growth. This is clear
when looking at the capacity of P- and Ca-depleted pigs to rapidly
replace bone mass through compensatory bone mineralization
(see section 4.3). This model has been revised (12) to rectify
the no dependency of bone mineral deposition on protein gain
by establishing a potential for Ca deposition independent of
soft tissue gain, thus allowing P and Ca requirements for soft
tissue growth and bone growth to be predicted independently
(Figure 3).

This new model estimates apparent digestible Ca and P
requirements, which can be converted to STTD or total
requirements. The only input required is the initial body weight,
from which body protein, lipid, water, and ash (soft tissue and
bone) are estimated. Soft tissue growth is currently estimated
by applying the principles of van Milgen et al. (91), although
other models such as NRC (20) or even user-specific equations
tailored to animal growth in a specific setting may be adequate.
Estimated protein and lipid gains can be used to assess P and
Ca retention in soft tissues (92). In parallel, the Ca requirement
for bone is estimated with the bone Ca potential deposition
curve presented by the same authors (12). The deposition of P
in bone is estimated at a fixed ratio of 2.16 to Ca deposition. The
maintenance requirements, equivalent to the obligatory urinary
losses, are set at 0.5 mg for P and 2 mg for Ca, per kg of body
weight. The sum of the maintenance and growth requirements
(of soft tissue and bone) thus provides apparent digestible P and
Ca requirements. In fact, the ratio increased with body weight
because protein deposition that represents about 30–40% of the
body P decreases while bones continue to grow after 70 kg of BW.
These can be converted to standardized or total requirements.

FIGURE 3 | General layout of the proposed mechanistic model predicting total

calcium (Ca) and apparent and standardized digestible phosphorus (ATTD and

STTD P) requirements of growing pigs (12).

Results confirm the need for a non-fixed Ca:P requirement
ratio (Table 1). This model has the additional advantage of being
adaptable to different production objectives such as 100% or 85%
mineralization, without decreasing the share of Ca or P destined
for soft tissues. Although a single deposition potential has been
established, it will become necessary to consider animal genetics
(93, 94) and/or sex in further validations of the model. The
sensitivity analysis of the model showed that protein deposition
influenced ATTD-P variance by 15% for pigs at 30 kg, 6% at
60 kg, and 1% at 120 kg based on protein deposition variation
in previous trials (12). The decrease in the influence of protein
deposition on P with BW increase coincides with the linear
increase in bone deposition. Moreover, the ATTD-P variance
associated with protein deposition at 30 kg shows that animal
growth will have a major impact on P recommendations.

4.2. Toward More Efficient Degradation of
Phytate Phosphorus
4.2.1. Description of Phytases
Phytases, or myo-inositol hexaphosphate phosphohydrolases, are
enzymes that hydrolyze phytic acids and release the phosphate
groups (55). In growing pigs, there are 4 sources of phytase:
(1) the mucosa of the small intestine, (2) microorganisms in
the large intestine, (3) ingested plant matter, and (4) exogenous
phytase added to the feed. A unit of phytase activity is defined
as the release of 1 µmol of inorganic P per minute in a solution
containing 5.1 mmol of sodium phytate per liter at pH 5.5 and
37◦C (95). Low endogenous phytase activity is observed in the
proximal part of the pig intestine, but about 20% of the phytic P
would nevertheless be potentially absorbable (72, 76, 77). Some
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TABLE 2 | Characteristics of some commercial microbial phytases.

Product Origin Expression Typea pH optima IP6 degradationb Yearc

Natuphos® A. Niger A. Niger 3 2; 5–5.5 503 1990

Allzyme® SSF A. Niger A. Niger, 3 6

Finase® P/L A. Niger Trichoderma reesei 3 2.5

Ronozyme® P Peniophora lycii Aspergillus oryzae 6 4–4.5 480 2002

Phyzyme® XP Escherichia coli Schizosaccharomyces pombe (ATCC 5233) 6 4.5 140 2003

OptiPhos® Escherichia coli Pichia pastoris 6 3.4; 5.0 2006

QuantumTM Escherichia coli Pichia pastoris 6 4.5 148 2007

Ronozyme® Hiphos Citrobacter braakii Aspergillus oryzae 6 4–5 269 2010

Quantum® Blue Escherichia coli Trichoderma reesei 6 4–5 211 2012

Axtra® PHY Buttiauxella sp. Trichoderma reesei 6 3.5–4.5 129 2013

Natuphos® E Hybrid phytase (Hafnia sp., Yersinia sp. et

Buttiauxella sp)

A. Niger 6 4–5 2016

Table 2 is not an exhaustive list and represents only a few of the currently available commercial phytases, adapted from Dersjant-Li et al. (95, 97), and Lei et al. (98).
a3 or 6 phytase.
bPhytase activity needed to achieve 50% reduction in IP6, with high buffer volume.
cYear of the commercial launch.

plant raw materials have their own phytasic activity. This one
is more or less important according to the ingredient and the
part used (14, 84). Phytasic activity is higher in some cereals
such as rye, triticale, wheat, or barley than in cereals richer
in proteins (19). Plant phytase is sensitive to heat (more than
microbial phytases), since its activity is partially or completely
inactivated after high temperature treatment (>70◦C) such as
those for pelleting (18, 84, 96). It is why in INRA-AFZ feed
tables (19) two values are given for P digestibility, one which
takes account of the effect of endogenous phytase to be used
when feed is given as meal, and a second without considering
the effect of endogenous phytase to be used when the feed is
pelleted. Therefore, the most promising phytase sources remains
the exogenous phytase.

4.2.2. New Generations of Exogenous Phytases
The first exogenous phytase was marketed in 1991 in the
Netherlands, the first country to introduce strict regulations
intended to limit P discharges from pig and poultry farming.
The use of phytases then accelerated following the introduction
of similar legislation in other countries and the ban on the
use of animal byproducts in Europe (18). These enzymes
were isolated first from fungi (Table 2), then new techniques
allowed the production of phytases by bacteria and yeast,
leading to the second generation of phytases. The common
commercial phytases are obtained from cultures of Aspergillus
niger, Peniophora lycii (fungi, 3-phytase), and Escherichia coli
(bacteria, 6-phytase). In pigs, bacterial phytase has been found to
be more effective than fungal phytase (78, 99). This explains why
fungial phytases were supplanted in the early 2000s by 6-phytases
produced by Escherichia coli. Other second-generation phytases
obtained from cultures of Citrobacter braakii, Buttiauxella spp.
and even hybrid forms soon followed (Table 2). Third generation
phytases with up to 8 amino acid substitutions in the E. coli
enzyme have better thermostability (100). The presence of plant
phytase reduces the response to added exogenous phytase (18).

New generation phytases developed through genetic engineering
release more P (101). Exogenous phytases also increase Ca
availability (32) but the underlying mechanism remains to be
determined. P and Ca digestion in pigs has been modeled,
integrating interactions, the different chemical forms, and the
effect of phytase (71). Dissociation of Ca phytates at gastric pH is
presumed in this model has showed in vitro (102). By increasing
the proportion of phytate degraded by phytase in the upper
digestive tract, less Ca should form insoluble complexes with
phytate in the small intestine where pH is favorable and therefore
more should remain available for absorption. However, we have
not seen validation of this hypothesis in vivo and the exact mode
of action of phytase on Ca remains unclear, but undoubtedly have
an impact in vivo. Phytases preferentially release the position 5
and 6 phosphates, which have the highest affinity for cations such
as Ca, rather than dephosphorylating phytate completely (103).
As a result, the phytase doses that are now commonly used would
increase Ca availabilitymore than P availability, at a ratio of about
2, whereas high doses would sustain P release while Ca release
reached an asymptote (103).

4.2.3. Factors Influencing the Efficiency of

Exogenous Phytases
For optimal action, phytic acid must be hydrolyzed upstream
from the sites of absorption of P and other minerals such as Ca,
Zn, and Fe. P is absorbed mostly in the upper small intestine
(5, 51). Hydrolysis in the stomach is therefore ideal, meaning
that the enzyme must be sufficiently active at gastric pH (3.5 in
young pigs and lower in older animals (104)). Phytase from A.
niger works well at pH 2 or 5–5.5, but poorly at porcine gastric
pH. The optimal pH range of new generation phytases has been
lowered and in some cases broadened [Figure 4; (105–107)].

To limit the loss of activity, phytases must be made resistant
to digestive proteases. Second-generation phytases were better in
this sense (P. Lycii vs. E. coli, Figure 5, 106). After 2 h in contact
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FIGURE 4 | Effect of pH on phytase activity of the phytase products used in the in vitro degradation model with EC1: Quantum (AB Vista), EC2: Quantum Blue (AB

Vista), EC3: Phyzyme XP (Danisco), CB: Ronozyme Hiphos (DSM), PL: Ronozyme NP (DSM), AN: Natuphos (BASF), BSP: AxtraPHY (Danisco). Reprinted with

permission from (105). Copyright 2015 American Chemical Society.

with pepsin, E. coli phytases retained 77% of their initial activity
compared to 31% for an A. niger phytase (95).

The ideal temperature of activation of the phytase is between
50 and 60◦C. On the other hand, high temperature treatments
(> 70◦C) decrease the phytase activity of the feed (108–110). The
second-generation E. coli phytases lost thermostability compared
to the fungal phytases (98), except for a third-generation phytase
from E. coli (Phy9X), which is resistant to higher temperatures,
up to 75◦C (108, 111). On the other hand, increasing the
resistance temperature of phytases can lead to a higher optimal
temperature and thus potentially decrease their efficacy at normal
pig body temperature (around 39◦C) (112).

To be the most useful, phytases must preferentially degrade
IP6 and IP5 phytates as quickly as possible. They must, therefore,
have a high affinity for the preferred substrate. Second-generation
phytases were improved in this sense (112), at least in terms
of initial reaction velocity (Vmax) in vitro with IP6 and IP5
substrates (105).

Despite the improvement in phytases, it is important to
understand that they act on soluble phytates. Therefore, the
factors that influenced phytate solubility must be control. Certain
minerals interfere with phytates. Cations have an inhibitory
power related to their affinities for phytic acid but also the
insolubility of the complexes they formed. This is measurable
as the amount of mineral that causes phytates hydrolysis to
drop by 50% at a given pH (102). The smaller the amount,
the more inhibitory. On this basis, the following ranking has
been established (102): at pH 6: Fe2+ > Zn2+= Fe3+ >Mn2+

>> Ca2+>Mg2+ At pH 5: Fe3+ > Fe2+> Zn2+ >> Mn2+ >
Ca2+ >> Mg2+, representatives of the gut pH in pigs. This
inhibitory power represents the affinities of the minerals for
phytic acid but also the insolubility of the complexes formed.
Reducing the pH to 4, which corresponds to gastric pH, strongly
reduces the power of all minerals tested. Iron has the greatest
potential for inhibition, but to our knowledge, no study of its
effect on phytase effectiveness in animal feed has been published.
Regarding Zn and Cu, their supply can be high in piglets with
so-called pharmacological levels (2,500 ppm) when used as a

FIGURE 5 | Residual phytase activity of E. coli and P. lycii phytase after pepsin

or gastric crude extract from trout stomach hydrolysis throughout incubation

time (0, 60, 120, 180, and 240 min). The incubation was performed by adding

1 FTU phytase to a protease solution with 5000 U from porcine pepsin or

gastric crude extract from fish, performed at pH 2.0 (HCl), 16 ◦C. The results

are plotted as the mean ± SE (triplicates). Different letters, for each time,

indicate significant differences (P<0.05) between phytases (106).

growth factor to reduce diarrhea. Zn has a high complexing
power, a single Zn cation being capable of binding to two phytic
acid molecules (113). The effect of Zn on phytase efficiency has
been studied in weaned pigs (6–20 kg). With 1,000 and 3,000
FTU in the diet, zinc oxide at 3,000 mg/kg decreased the Ca
ATTD by 6 and 9%, respectively, and the P ATTD by 10 and
16% in pigs weighing 15–20 kg (114). In young pigs weighing
7–13 kg, P release by phytase was reduced by 30% when the
dietary Zn content was 1,500 mg/kg (115). The effect of Cu
on phytase is less clear. Cu phytates appear to be soluble at
neutral pH (113), suggesting no effect. An in vitro study of Cu
at 62.5 mg/kg and pH 5.5 suggests that P release from phytase
may decrease by 2–30% depending on the source of the Cu
(116). At 500 mg/kg, the decreases ranged from 5 to 75%. At
pH 6.5, the decreases were even more marked but were almost
non-existent at pH 2.5. The most likely explanation for these
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FIGURE 6 | Theoretical relationship between P release from phytate and

associated Ca value showing disproportionate extra phosphoric effect with

initial destruction of the higher esters (103).

observations would be formation of insoluble phytic acid–Cu
complexes at higher pH, which is of some concern given the
pH of the porcine gut (116–118). In pigs weighing 6–22 kg, P
digestibility was greater with methionine-chelated Cu than with
Cu sulfate (118). Chelated Cu would be more stable in the upper
gastrointestinal tract and less available to form complexes with
phytic acid; thus there would be a better release of absorbable
phosphate (116, 119). Tests of the effect of Zn and Cu form and
concentration on Ca and P digestibility in pigs weighing 6–22 kg
showed that the form of Cu had no effect, while the form of Zn
did (117).

Ca is ranked as less inhibitory but is incorporated into feed at
much higher concentrations than Zn, Cu, or Fe. As a result, Ca
forms a significant proportion of insoluble phytates, frequently
with Zn (120). Because the recent phytases have a higher affinity
for IP6 and IP5, which have higher affinities for Ca, the ratio
of Ca:P released using second and third generation phytases is
around 2 at 500 FTU/kg (Figure 6) and decreases as phytase
activity increases (103, 121, 122). The phytase levels practiced
in the field may therefore lead to an increase in the digestible
Ca:P ratio. Trials have shown phytase effectiveness to decrease
as the Ca:P ratio increases in the feed (123–125) albeit without
comparison to phytase-free diets, making it impossible to know
whether the effect of Ca was on phytase or on P absorption
(126). When the ratio of Ca to total P was increased from
1.2 to 1.8, pigs grew more slowly regardless of the presence
of phytase, suggesting a specific effect due to Ca rather than
an influence on phytase efficacy in releasing P (78). In trials
conducted with P at requirement levels, P digestibility decreased
slightly as the Ca:P ratio increased from 1.2 to 1.9 but was
indifferent to phytase (79). Furthermore, urinary excretion of P
was 5-fold higher at a Ca:P ratio of 1.2, due to the lack of Ca
for deposition of P in bone. Nor was any effect of Ca on phytase
efficacy found when animals were fed above the P requirement
(127). A high Ca:P ratio therefore does not seem to have a
direct effect on phytase efficacy in releasing P but rather on
P absorption and retention, possibly going so far as to cause
a P deficiency and ultimately poorer growth regardless of the
presence of phytase (18, 79).

4.3. Depletion–Repletion Strategy
Animals have a survival strategy to overcome some mineral
deficiencies by enhancing digestion and increasing the efficiency
of utilization of the deficient nutrient (128). In several species,
dietary restriction of Ca and P results in increased intestinal
absorption, renal reabsorption, and deposition and mobilization
in bone tissue (1). The effects of dietary Ca restriction and
recovery processes on bonemetabolism were studied decades ago
in rats (129–131) and humans (132). The findings suggest that
bone has ways of replenishing losses due to the use of mineral
reserves and that parathyroid hormone and vitamin D play a role
in the mechanisms. Bone accretion, intestinal absorption, and
renal reabsorption of minerals are under hormonal regulations
described in Figure 7.

The Ca depletion–repletion strategy is already used to prime
dairy cows for high Ca demand during early lactation (133) and
to prevent milk fever. By feeding a Ca-deficient ration for a
few weeks before the start of lactation, regulatory mechanisms
that maintain blood Ca levels (increased intestinal absorption
and renal reabsorption) are activated (133, 134). A few days
before calving, when the demand for Ca becomes very high,
the cows then receive more Ca (134), and the shortfall between
the requirement and Ca absorbed is smaller because of the
effect of priming on parathyroid hormone. The animal is
also better prepared to draw upon bone Ca as needed to
maintain blood Ca levels and thus prevent milk fever. Similar
regulatory mechanisms allow maintenance of P levels, and these
can be exploited to increase dietary P utilization in growing
animals and hence the sustainability of livestock farms from the
environmental perspective. The idea underlying the depletion–
repletion strategy is therefore to trigger regulatory mechanisms
during the depletion phase to induce an increase in P utilization
efficiency without affecting growth performance (1). In the case
of P and Ca, the mineral content of the body or of a specific bone
is monitored using X-ray absorptiometry [DXA, (135)]. During
depletion in growing pigs, body bone mineral content continues
to increase, but bone accretion is decreased compared to control
pigs, leading to reduced bone mineral content.

When P supply is intentionally below the estimated
requirement of the animals, the level of Ca is generally decreased
at the same time to avoid the deleterious effects of a high
digestible Ca:P ratio on P absorption. When animals thus
primed are fed the repletion diet, which provides P at least
at the requirement level, the deficit overcome. This allows an
overall reduction in dietary P intake during the rearing phase.
Depletion–repletion studies of growing animals such as pigs
(8, 10, 136) and chickens (137–141) led to effectively increasing P
utilization and limiting excretion without compromising animal
well-being and performance. Some authors (9, 142) have focused
on improvements to bone health; these studies have led to better
understanding of the deleterious effects of short-term dietary Ca
deficits during growth on long-term bone mineralization. The
main trials performed with pigs are summarized in Table 3.

When Ca is deficient, the Ca regulation calls for
parathyroid hormone, which is a hypercalcemic hormone
that increases dietary Ca utilization, but with a concomitant
hypophosphoremic effect due to renal excretion of P (144).
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FIGURE 7 | Hormonal regulation of phosphocalcic metabolism.

Ca deficiency must therefore be avoided. In growing pigs,
it has been found to reduce the expression of genes related
to P reabsorption in the kidney, favoring P excretion in
urine (145). P depletion in the range of 30–40% and slightly
lower for Ca induces demineralization of the same order
in the whole body and vertebrae as measured by DXA
(Table 3). The trial conducted by Aiyangar et al. (9) shows
greater demineralization with a higher Ca deficiency. The
metacarpus appears to demineralize less (5–10%) than the whole
body or vertebrae (10), whereas the femur responds like the
whole body. Bone reserve depletion measured thus depends
primarily on the degree of dietary depletion and on the bone
region studied.

Several studies have shown that this strategy works and
increases bone mineral content (BMC) gains and digestible P
utilization when animals are fed a repletion diet (at requirement
or above). The gain of BMC in L2 to L4 vertebrae in depleted
animals exceeded those in non-depleted control pigs by 56%
during a first 28-day repletion phase and 15% during a second
repletion of the same length (8) and by 29% after a 28-day
repletion and 11% after a 56-day repletion in another study
(Figure 8; 136). The corresponding increases in digestible P
utilization estimated as deposition vs. intake were 20–50% with
bone deficit recovery in 28–56 days for the whole body and in 28
days for vertebrae. The shorter time for vertebrae could be due to
their high percentage of trabecular tissue, which is more sensitive
than cortical tissue to mineral deficiencies (146). Furthermore, in
pigs, bone mineralization is faster in the trunk from 3 to 30 kg
of BW than in other parts of the skeleton (147). In a study using
the common dosage of 750 FTU/kg without phosphate, thus 40%
below the requirement, the deficit was recovered in 27 days on
the repletion diet with a 47% increase in whole body BMC gain
(143). Overall, the depletion–repletion strategy reduced dietary
phosphate use and P release by about 40%. In contrast, the

repletion diet has failed to restore bone mineralization in at least
two porcine studies (9, 142).

Phosphocalcic regulations occur in the gut, kidney, and
bone (32, 148). Ca absorption may increase by 27% upon
repletion compared to control animals receiving the same feed
(8). Osteocalcin, derived from newly synthesized bone and
thus an indicator of osteoblastic activity and hence increased
bone accretion (149), has been found to increase during the
repletion phase (10). The physiological mechanisms underlying
animal responses to the depletion–repletion strategy remain
poorly understood. It, nevertheless, appears that adequate bone
mineralization and growth performance can be achieved at
decreased P intake and excretion through improved P utilization.

5. MITIGATION STRATEGIES:
COMPARISON AND PERSPECTIVES

The mitigation of the environmental footprint of P in pig
production both refers to the optimization of the use of
phosphates, which are a non-renewable resource that must
be extracted and transported, and to the minimization of its
excretion especially in regions with high production density.
Some strategies of mitigation have been proposed in the
previous sections.

The potential for decreasing P excretion with phytase is well
known (18). Its potential depends mainly on a precise nutritional
matrix. First, a precise estimation and utilization of the P matrix
is crucial. The Ca matrix has recently been shown to be of great
importance because, on the one hand, an excess of soluble Ca
can decrease the P digestibility (78) and, on the other hand, in
case of Ca deficiency, the P is not retained and is excreted in
the urine (79). In recent trial with microbial phytases (500 FTU),
Lagos et al. (150) showed a drop of 37% in the total P excretion,
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TABLE 3 | Effect of depletion–repletion strategy on bone mineralization of growing pigs.

Depletion period Repletion period

Articlea Measurement Phase Sequenceb BW, kg p-valuec Daysd Pe, % Cae , % Bonef , % p-valuec Bone accretiong , % p-valuec Sequenceb Daysd BW, kg p-valuec Bonef , % p-valuec Bone

accretiong ,

%

p-valuec

1 BMC total body (DXA)

1 L 34 ns 28 -31 -39 -34 <0.001 -62 <0.001

2
CL 67 28 -42 -22 -25 -48 LC 28 64 0.03 -17 <0.001 +2 ns

LL 66 ns 56 -42 -22 -25 <0.001 -45 <0.001

3
CCL 102 ns 28 -34 -13 -14 0.002 -31 <0.001 CLC 28 100 ns -13 0.006 +8 ns

LLL 100 84 -34 -13 -33 -23

4
CLCC 56 129 -3 +11

CCLC 28 134 ns +1 ns +29 <0.001

2
BMC of the L2 to L4

vertebrae

1 Low 46 ns 28 -40 -30 -29 <0.001

2
Con-Low 72 28 -40 -46 -24 -53 Low-Con 28 70 <0.01 -9 0.007 +17 0.005

Low-Low 77 ns 56 -40 -46 -30 <0.001 -36 <0.001

3

Con-Con-Low 104 28 -40 -33 -2 -18

Con-Low-Low 101 56 -40 -33 -16 +1 Low-Con-Con 56 99 -1 +15

Low-Low-Low 106 ns 84 -40 -33 -18 <0.001 0 ns Low-Low-Con 28 103 ns -7 ns +56 <0.001

3
Ash of the 3rd and 4th

metacarpus

1 L 48 <0.001 59 -47 -29 -9 <0.05

2
LL 91 <0.05 131 -45 -30 -7 <0.05 LH 72 99 ns -1 ns

HL 100 ns 72 -45 -30 -1 ns

4 BMC total body (DXA)

1 L 28 -54 -66 <0.01

2
LL 71 -54 -62 <0.01 -60 <0.01 LH 43 +3

HL 43 -54 -59 <0.01

5 Femur ash

1 DD- 12 ns 10 -60 -53 -19 <0.01

2

DD+ HCaPhyt- 21 25 -32 0 -10 DD- HCaPhyt+ 25 21 1

DD+ LCaPhyt- 21 25 -32 -37 -7

DD- LCaPhyt+ 21 35 0 -34 -1

DD- HCaPhyt- 21 35 -32 0 -17

DD- LCaPhyt- 21 35 -32 -37 -19

6 BMC total body (DXA)

1 Phyt 71 <0.05 39 -40 -40 -17 <0.001 -23 <0.01

2 Phyt-Phyt 27 108 ns +3 ns +47 <0.05

3 Phyt-Phyt-Phyt 55 130 ns +7 ns +4 ns

aArticle 1 : Gonzalo et al. (136), article 2 : Létourneau-Montminy et al. (8), article 3 : Varley et al. (10), article 4 : Aiyangar et al. (9), article 5 : Létourneau-Montminy et al. (79), article 6 : Lautrou et al. (143).
bSequences of depletion and repletion as named in the original articles.
cp-value of the statistical analysis of the control vs. the studied group, for the variable of the previous column.
dDuration of the depletion or repletion.
eP or Ca depletion against the control.
fDifference of the state of the bone at the end of the phase between the control vs. the studied group, according to the measurement.
gDifference of the bone accretion measurement between the control and the studied group.
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FIGURE 8 | Body bone mineral content of growing pigs feeding

depletion–repletion diets (145).

and a reduction of 6.1 g/kg monocalcium phosphate supply, for
60 kg BW pigs. Besides, Almeida and Stein (55) showed that
the total P excretion decreases up to 51% with 685 FTU at 15
kg of BW, and monocalcium phosphate supply is reduced up
to 8 g/kg.

The depletion–repletion strategy also led to a decrease of
the phosphate input and the P excretion. In Gonzalo et al.
(136)’s trial, a depletion period of 28 days (L) resulted in a
decrease of P supply from 8 to 12%, and 2 separate depletion
periods of 28 days (LCLC, C being a 28 days phase of
feeding control diet) resulted in a reduction of 12% of P
input. The excretion of P in the CLCC, CCLC, and LCLC
groups decreased of 15, 13, and 16%, respectively, compared
to the control. The decrease of P excretion was greater than
the decrease of P input thanks to animals utilizing P more
efficiently during the depletion and the repletion periods. With
P total collection of feces and urine, Létourneau-Montminy
et al. (8) showed that a depletion of 56 days can lead to a
P excretion decrease of 19% with a diminution of P intake
of 23%. As seen previously, few authors tested depletion–
repletion strategies on growing pigs and the results differ in
terms of bone mineralization compensation (145). There is a
lack of data to precisely defined an ideal strategy of depletion
repletion (depletion duration, age, intensity). The study of
underlying mechanisms, such as hormonal regulations, will
certainly help to reach this objective to reduce phosphate input
without compromising bone mineralization and to apply this
strategy on farm. Nevertheless, a reduction of 15–20% of both
phosphate use and P excretion may be achieved with depletion–
repletion strategy.

The strategy of depletion–repletion can also be combined with
phytase. Lautrou et al. (143) tried to evaluate the effect of a zero
phosphate diet on the growth of pigs and the environment. The
use of phytase did not meet the full extent of the P requirements
for pigs during the first growing phase of 39 days, but phytase

provided enough P during the 2 next phases. This strategy led to
a drop of 66% in P excretion during the 2 first phases (the data are
not available for the last one), and a reduction in monocalcium
phosphate supply of 18.71, 9.52, and 7.17 g/kg in Phases 1, 2, and
3, respectively. This trial showed that there is an opportunity to
feed growing pigs from 30 to 130 kg without adding any mineral
phosphates. This success has to be confirmed and always requires
a well-defined phytase matrix, particularly to mitigate the risks
associated with the depletion phase.

In a simulation, Pomar et al. (151) showed that precision
feeding, a strategy in development that allow to feed pigs with
diets tailored daily to each individual’s nutrient requirements,
could reduce P excretion by 38%. A recent study compared
the P excretion of pigs under conventional or precision feeding
(152). The individual and daily feeding system (based on
estimated lysine requirement) led to a decrease of 27% in P
excretion compared to the group phase feeding system. In
this trial, phytase was used but not compared with a control
without phytase. The combination of precision feeding with
phytase and a depletion–repletion strategy has not been tested
yet, but after the synergy observed with the phytase and
depletion–repletion strategy, combining these 3 methods seems
a promising strategy that could lead to an even greater reduction
of P excretion.

6. CONCLUSIONS

This review has shown that it is still possible to improve
P utilization in swine and to improve the sustainability
of the industry by mitigating phosphorus’ impact on the
environment. The first step is to precisely estimate the P
and Ca content of feedstuffs and each animal’s total diet.
The second step is to use a robust multicriteria modeling
approach to establish animal requirements. The new generation
of phytases may provide a strategy to increase P utilization by
pigs by providing a precise estimation of the equivalences and
interfering factors and maximizing the solubility of phytates.
A depletion–repletion strategy to prime animals to make them
more efficient is also promising, but still requires testing to
refine it and better understand the underlying mechanisms.
Finally, precision feeding, a strategy in development that
permits feeding pigs with diets that are tailored daily to
each individual’s nutrient requirements, shows possibilities to
reduce more P excretion, and will undoubtedly be employed
once the P requirements will be well defined by a robust
modeling approach.
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