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Abstract: Changes in DNA methylation have been causally linked with cancer and provide promising
biomarkers for detection in biological fluids such as blood, urine, and saliva. The field has been fueled
by genome-wide characterization of DNA methylation across cancer types as well as new technologies
for sensitive detection of aberrantly methylated DNA molecules. For urological cancers, urine is in
many situations the preferred “liquid biopsy” source because it contains exfoliated tumor cells and
cell-free tumor DNA and can be obtained easily, noninvasively, and repeatedly. Here, we review
recent advances made in the development of DNA-methylation-based biomarkers for detection of
bladder, prostate, renal, and upper urinary tract cancers, with an emphasis on the performance
characteristics of biomarkers in urine. For most biomarkers evaluated in independent studies,
there was great variability in sensitivity and specificity. We discuss issues that impact the outcome
of DNA-methylation-based detection of urological cancer and account for the great variability in
performance, including genomic location of biomarkers, source of DNA, and technical issues related
to the detection of rare aberrantly methylated DNA molecules. Finally, we discuss issues that remain
to be addressed to fully exploit the potential of DNA-methylation-based biomarkers in the clinic,
including the need for prospective trials and careful selection of control groups.

Keywords: noninvasive detection; DNA methylation biomarkers; bisulfite conversion; urological
cancer; bladder cancer; prostate cancer; upper urinary tract cancer; renal cancer

1. Introduction

Urological cancers encompass a clinically and molecularly heterogeneous group of neoplasms
affecting any region of the urological system. Cancer of the bladder, kidneys, upper urinary tract
(ureter and renal pelvis), and prostate are all relatively common and pose specific requirements for
diagnosis and follow-up. While kidney and upper urinary tract cancers are detected using imaging
techniques, standard work-up for bladder and prostate cancer involves semi-invasive procedures
(i.e., cystoscopy and digital rectal examination (DRE), respectively). Cystoscopy is extensively used in
clinical practice and poses a significant burden on the healthcare system because it is used as a first-line
rule-out test for cancer in patients with relevant symptoms, primarily, hematuria. Other downsides
include patient discomfort and anxiety, risk of infectious complications, and high rates of false-positive
and false-negative results. Subsequent histopathological assessment of biopsy tissue and surgical
resection specimens is the gold standard for cancer diagnosis but also has its limitations, including the
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subjective evaluation by a pathologist, the need for tissue that is of a certain quality and representative
of the tumor, and constraints on sampling frequency. Given these challenges, there is a major unmet
need to develop noninvasive methods that could provide clinicians with rapid, objective, and accurate
routines for detection of urological cancers.

An important development in cancer care is “liquid biopsy”, which involves the analysis of
genetic material or tumor cells shed from primary or metastatic tumors into bodily fluids. A rapidly
increasing number of studies have demonstrated the potential of liquid biopsies for a wide range of
clinical applications, such as initial diagnosis, early detection, and disease monitoring after therapy [1].
Most of this work involves the analysis of cell-free DNA (cfDNA) circulating in the blood; however,
for urological cancers, a more convenient liquid biopsy source is voided urine, which is easily and
repeatably accessible and contains exfoliated cells and cfDNA from different sites of the urinary
system [2]. The advent of high-sensitivity PCR-based technologies has enabled reliable detection of
cancer-specific alterations in urine DNA. Because tumor-derived DNA in urine is often present in a large
background of DNA derived from normal cells, the most useful DNA biomarkers are those that provide
high specificity for malignancy or premalignancy, including mutations, translocations, gene fusions,
and aberrant hypermethylation of specific CpG sites. Among these, DNA hypermethylation events
represent the most versatile biomarker type because they are common in most cancers and can be easily
assessed using well-established techniques. Furthermore, DNA methylation changes are considered
early events in tumorigenesis and thus provide potential biomarkers for early diagnosis [3].

Urine-based DNA tests for urological cancer can be divided into two categories depending
on the a priori availability of information on the patient’s tumor DNA. For detection of recurrence
and evaluation of treatment response, DNA from the original tumor can be analyzed to identify
specific alterations that may serve as “personalized” biomarkers. For other applications, such as initial
examination of patients with symptoms of urological cancer, the genetic and epigenetic makeup of
the possible tumor is unknown. In these situations, there is a need for a “universal” or “generic”
test that can detect, in principle, any cancer. Because no genetic or epigenetic alteration is present in
all cases of a urological cancer type, it is necessary to use a combination of biomarkers. The initial
assembly of a biomarker panel is facilitated by information about the performance characteristics of
individual biomarkers in terms of sensitivity (the true positive rate), specificity (the true negative rate),
and predictive values [4]. If the test is used in individuals with unknown disease status to reduce the
use of invasive procedures, the most important performance characteristics are sensitivity and negative
predictive value (NPV) to achieve the lowest possible rate of false-negative results. As discussed below,
specificity is a less well-defined characteristic that varies based on a number of factors, including
control populations and the definition of a false-positive result.

Although the promises of DNA-methylation-based detection of cancer have been recognized since
the early 2000s [5], including the potential for detection and management of urological cancers [6],
only a few DNA methylation biomarkers have been implemented into routine clinical practice.
Navigating towards clinical utility is challenging, requiring optimal study designs (representative and
large patient series) as well as robustly designed biomarker assays. Here, we provide an overview
of current DNA-methylation-based biomarkers for urological cancer, with an emphasis on their
performance characteristics in urine. We discuss potential causes of performance variability across
studies and other challenges that must be overcome before clinically useful tests can be developed
and implemented. Some of these issues have been discussed in detail elsewhere [7–9] and are only
reviewed briefly here.

2. Performance Characteristics of DNA Methylation Biomarkers

To provide an overview of current DNA-methylation-based biomarkers for urine-based detection
of urological cancer, we undertook systematic literature searches in PubMed and Embase until February
2019. Details on search strategy, criteria for selection of relevant studies, and data extraction are
provided in Supplementary Methods.
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2.1. Bladder Cancer

A total of 57 studies met the inclusion criteria (Supplementary Table S1). Fifty-two studies
analyzed urine from bladder cancer patients at first diagnosis, using a total of 114 different DNA
methylation biomarkers. The sensitivities for 23 biomarkers investigated in more than three studies
are shown in Figure 1. Two of these biomarkers each reached a median sensitivity of >80% (ZNF154
and POU4F2) with, however, large variability across studies. The specificities for these biomarkers are
shown in Supplementary Figure S1, also demonstrating large interstudy variability. Fifty-two different
biomarker combinations, comprising between 2 and 12 individual biomarkers, have been tested for
initial diagnosis of bladder cancer. Twenty of these combinations achieved a sensitivity of ≥90% (listed
in Table 1).
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Table 1. DNA-methylation biomarker panels for detection of primary bladder cancer.

Biomarker Sample Processing Cases (n) Controls (n) Pathology Control Population Method Sens.
(%)

Spec.
(%) Ref. Year

SOX1, TJP2, MYOD, HOXA9_1,
HOXA9_2, VAMP8, CASP8,

SPP1, IFNG, CAPG, HLADPA1,
RIPK3 (Positive when six or
more markers are present)

Sedimentation 73 18 Ta-T4, Grade 1–3 Healthy Pyrosequencing 100 100 [10] 2013

POU4F2, PCDH17, GDF15 Sedimentation 72 92 Ta-T4, LG, HG Mixed urologic diseases
and healthy qMSP 97 75 [11] 2016

ZNF671, SFRP1, IRF8 Sedimentation 26 19 Ta-T4, LG, HG Noncancer, not
specified qMSP 96 84 [12] 2015

POU4F2, EOMES Sedimentation 72 92 Ta-T4, LG, HG Mixed urologic diseases
and healthy qMSP 96 88 [11] 2016

TWIST1, NID2 Sedimentation 24 15 Ta-T3, LG, HG Mixed urologic
diseases, and healthy MSP 96 93 [13] 2013

BCL2, EOMES, VIM, SALL3,
CCNA1, HOXA9, POU4F2 Filtration (8 µm) 33 26 Ta-T2, LH, HG, PUNLMP

Mixed urologic
diseases, negative

findings
qMSP 94 [14] 2015

TWIST1, NID2 Sedimentation 35 57 Ta-T2, LG, HG Mixed urologic diseases qMSP 94 91 [15] 2010

VIM, TMEFF2, GDF15 Sedimentation 51 20 Not Specified Healthy qMSP 94 100 [16] 2010

VIM, TMEFF2, GDF15, HSPA2 Sedimentation 51 20 Not Specified Healthy qMSP 94 100 [16] 2010

SALL3, CFTR, ABCC6, HPR1,
RASSF1A, MT1A, ALX4,

CDH13, RPRM, MINT1, BRCA1
Sedimentation 132 23 Stage 0a-IV Mixed urologic diseases MSP 92 87 [17] 2007

SALL3, CFTR, MT1A, HPP1,
ABCC6, RASSF1A, CDH13,

RPRM, MINT1, BRCA1, SFRP1
Sedimentation 82 15 Stage pTa-IV Mixed urologic diseases MSP 92 73 [18] 2009

POU4F2, PCDH17 Sedimentation 58 90 Ta-T4, LG, HG Mixed urologic diseases
and healthy qMSP 91 93 [11] 2016

POU4F2, PCDH17, GDF15 Sedimentation 58 90 Ta-T4, LG, HG Mixed urologic diseases
and healthy qMSP 91 88 [11] 2016

p14ARF, p16INK4A, RASSF1A,
DAPK, APC Sedimentation 113 ≥T1, PUNLMP, Grade 1–3 Healthy MSP 91 [19] 2017

SEPTIN9, SLIT2 Filtration (11 µm) 167 105 Ta-T1 (NMIBC), LG, HG Patients with negative
cystoscopy (hematuria) qMSP 91 71 [20] 2016

RARβ, DAPK, CDH1, p16 Sedimentation 22 17 NMIBC-MIBC, Grade 1–3 Healthy MSP 91 76 [21] 2002
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Table 1. Cont.

Biomarker Sample Processing Cases (n) Controls (n) Pathology Control Population Method Sens.
(%)

Spec.
(%) Ref. Year

HOXA9, PCDH17, POU4F2,
ONECUT2 Sedimentation Not

specified
Not

specified Ta-T4, LG, HG, PUNLMP Mixed urologic
diseases, hematuria qMSP 91 73 [22] 2018

HS3ST2, SEPTIN9, SLIT2 Filtration (11 µm) 167 105 Ta-T1 (NMIBC), LG, HG Patients with negative
cystoscopy (hematuria) qMSP 90 75 [20] 2016

HS3ST2, SLIT2 Filtration (11 µm) 167 105 Ta-T1 (NMIBC), LG, HG Patients with negative
cystoscopy (hematuria) qMSP 90 34 [20] 2016

HS3ST2, SEPTIN9 Filtration (11 µm) 167 105 Ta-T1 (NMIBC), LG, HG Patients with negative
cystoscopy (hematuria) qMSP 90 72 [20] 2016

SALL3, CFTR, MT1A, HPP1,
ABCC6, RASSF1A, CDH13,

RPRM, MINT1, BRCA1
Sedimentation 82 15 Stage Ta-IV Mixed urologic diseases MSP 90 80 [18] 2009

ONECUT2, VIM, SALL3,
CCNA1, BCL2, EOMES Filtration (8 µm) 99 376 Ta-T4, LG, HG, PUNLMP Macroscopic hematuria,

no malignancy qMSP 90 89 [23] 2016

MSP = methylation-specific PCR, qMSP = quantitative MSP, HG = high grade, LG = low grade, PUNLMP = papillary urothelial neoplasm of low malignant potential, NMIBC = nonmuscle
invasive bladder cancer, MIBC = muscle invasive bladder cancer.
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Table 2. DNA-methylation biomarkers and biomarker panels for detection of recurrent bladder cancer.

Biomarker Sample
Processing Cases (n) Controls (n) Pathology Control Population Method Sens. (%) Spec. (%) Ref. Year

APC Sedimentation 15 25 Ta-T1 No recurrence qMSP 27 80

[24]

2008

BCL2 Sedimentation 15 25 Ta-T1 No recurrence qMSP 13 96 2008

DAPK Sedimentation 15 25 Ta-T1 No recurrence qMSP 0 96 2008

CDH1 Sedimentation 15 25 Ta-T1 No recurrence qMSP 7 84 2008

EDNRB Sedimentation 15 25 Ta-T1 No recurrence qMSP 20 80 2008

EOMES Sedimentation 139 67 Ta-T1, Grade 1–3 Mixed urologic diseases qMSP 94 55 [25] 2012

HOXA9 Sedimentation 139 67 Ta-T1, Grade 1–3 Mixed urologic diseases qMSP 93 55 2012

IGFBP Sedimentation 15 25 Ta-T1 No recurrence qMSP 20 84 [24] 2008

MGMT Sedimentation 15 25 Ta-T1 No recurrence qMSP 20 92 2008

NID2 48 275 Ta-T3, Grade 1–3 No recurrence MSP 46 90 [26] 2012

POU4F2 Sedimentation 139 67 Ta-T1, Grade 1–3 Mixed urologic diseases qMSP 88 64 [25] 2012

RASSF1A Sedimentation 15 25 Ta-T1 No recurrence qMSP 50 32

[24]

2008

TERT Sedimentation 15 25 Ta-T1 No recurrence qMSP 13 100 2008

TNFRSF25 Sedimentation 15 25 Ta-T1 No recurrence qMSP 40 56 2008

TWIST1 Sedimentation 139 67 Ta-T1, Grade 1–3 Mixed urologic diseases qMSP 90 43 [25] 2012

TWIST1 48 275 Ta-T3, Grade 1–3 No recurrence MSP 75 69 [26] 2012

VIM Sedimentation 139 67 Ta-T1, Grade 1–3 Mixed urologic diseases qMSP 90 59 [25] 2012

WIF1 Sedimentation 15 25 Ta-T1 No recurrence qMSP 20 76 [24] 2008

ZNF154 Sedimentation 139 67 Ta-T1, Grade 1–3 Mixed urologic diseases qMSP 94 67 [25] 2012

APC_a, TERT_a, TERT_b, EDNRB Sedimentation 65 29 Ta-T4, Grade 0–3 No recurrence MS-MLPA 72 55

[27]

2012

APC_a, TERT_a, TERT_b, EDNRB Sedimentation 49 60 Ta-T1, Grade 1–3 No recurrence MS-MLPA 63 58 2012

APC_a, TERT_a, TERT_b, EDNRB Sedimentation 68 91 Ta-T1, Grade 1–3 No BC MS-MLPA 2012

CFTR, SALL3, TWIST1 Sedimentation 173 285 Ta-T1 Ta-T1 Pyrosequencing 90 31 [28] 2018

HS3ST2, SLIT2, SEPTIN9 Filtration (11 µm) 72 86 Ta-T4, LG, HG Ta-T4, LG, HG qMSP [20] 2016

miR-9-3, miR124-2, miR-124-3, miR-137 Sedimentation 25 107 Ta-T1 No recurrence Pyrosequencing 62 74 [29] 2018

OTX1, ONECUT2, OSR1 Sedimentation 95 40 NMIBC, Grade 1–3,
(recurrence) No recurrence SNaPshot 74 Fixed = 90% [30] 2013

Panel consisting of 41 sequences Sedimentation 136 ≥Ta, LG, HG Mixed urologic
diseases, and healthy MS-MLPA [31] 2013

RASSF1A, ECAD, APC, DAPK, MGMT, BCL2, TERT,
EDNRB, WIF1, TNFRSF25. IGFBP Sedimentation 15 25 Ta-T1 No recurrence qMSP 86 8 [24] 2008

SOX1, IRAK3, L1-MET (L1-MET hypomethylated) Sedimentation 29 54 Ta-T1, LG, HG Ta-T1, LG, HG Pyrosequencing 86 89
[32]

2014

SOX1, IRAK3, L1-MET (L1-MET hypomethylated) Sedimentation 134 25 Ta-T1, LG, HG Ta-T1, LG, HG Pyrosequencing 80 97 2014

MSP = methylation specific PCR, qMSP = quantitative MSP, HG = high grade, LG = low grade, NMIBC = nonmuscle invasive bladder cancer, BC = bladder cancer, MS-MLPA =
methylation-specific multiplex ligation-dependent probe amplification.
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Eleven studies investigated recurrent bladder cancer, using 18 individual biomarkers and 8
biomarker panels (Table 2). ZNF154 and EOMES achieved the highest sensitivity (94%), however with
a specificity of <70%. The biomarker combination with the highest sensitivity (CFTR, SALL3, and
TWIST1; 90%) had a very low specificity (31%). Only one individual biomarker (TWIST1) and two
panels have been evaluated in more than one study.

2.2. Prostate Cancer

Twenty-seven studies met the inclusion criteria (Supplementary Table S2). Of these, 26 studies
contained data on single biomarker performance (48 different biomarkers), with 9 biomarkers tested in
2 or more studies (shown in Figure 2). GSTP1 was the most extensively studied biomarker (19 studies).
The highest median sensitivity was reported for HOXD3 (76%); most other biomarkers had sensitivities
of <50%. The corresponding specificities for these biomarkers are shown in Supplementary Figure S2.
Fifteen studies combined two or more biomarkers, with five studies achieving a sensitivity of ≥90%
(Table 3).
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2.3. Renal Cancer

Five studies met the inclusion criteria (Table 4). Data on single biomarkers were available from
four studies for 15 different biomarkers, with sensitivities between 5% and 79% and a generally high
specificity (89–100%). TCF21 was the only biomarker tested in more than one study. Both studies
achieved 100% specificity, but the sensitivity varied from 28% to 79%. Three studies evaluated
biomarker combinations, with the best performing combination (VHL, p16, ARF, APC, RASSF1A, and
TIMP3) achieving a sensitivity of 88% and a specificity of 100%. A similar sensitivity was reported by
combining nine biomarkers (APC, ARF, CDH1, GSTP1, MGMT, p16, RARB2, RASSF1A, and TIMP3),
with no indication of specificity.
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Table 3. DNA-methylation biomarker panels for detection of prostate cancer.

Biomarkers Urine
Collection

Sample
Processing Cancer (n) Controls (n) Pathology Control Population Method Sens.

(%)
Spec.
(%) Ref. Year

GSTP1, RARβ2, APC,
miR-34b/c + miR-193b Morning Sedimentation 87 32 T2-T3b Asymptomatic donors qMSP 100 75 [33] 2018

TGFB2, HOXD3, APC Post DRE Sedimentation 10 5 Organ
confined Cancer free (not further specified) qMSP 100 60 [34] 2014

EDNRB, APC, GSTP1 Post DRE/biopsy Sedimentation 12 5 GS 6–7 Biopsy Negative MSP 100 40 [35] 2006

miR-34b/c + miR-193b Morning Sedimentation 87 32 T2-T3b Asymptomatic donors qMSP 95 84
[33]

2018

GSTP1, RARβ2, APC Morning Sedimentation 87 32 T2-T3b Asymptomatic donors qMSP 94 84 2018

≥6 positive of 19 markers First Void Sedimentation 32 35 GS 6–10 Negative biopsy results Nested
qMSP 94 71 [36] 2018

miR-34b/c + miR-193b No DRE Sedimentation 95 46 GS ≥ 6 No urological malignancy, healthy qMSP 91 98 [37] 2017

MSP = methylation specific PCR, qMSP = quantitative MSP, DRE = digital rectal examination, GS = Gleason score.

Table 4. DNA-methylation biomarkers and biomarker panels for detection of renal cancer.

Biomarker Sample
Processing Cancer (n) Controls (n) Pathology Control Population Method Sens.

(%)
Spec.
(%) Ref. Year

APC Sedimentation 26 91 Not specified Various conditions, malignant and
nonmalignant qMSP 38 96

[38]

2004

ARF Sedimentation 26 91 Not specified Various conditions, malignant and
nonmalignant qMSP 31 100 2004

CDH1 Sedimentation 26 91 Not specified Various conditions, malignant and
nonmalignant qMSP 38 95 2004

GDF15 Sedimentation 19 20 Not specified Healthy qMSP 5 100 [16] 2010

GSTP1 Sedimentation 26 91 Not specified Various conditions, malignant and
nonmalignant qMSP 15 100 [38] 2004

HSPA2 Sedimentation 19 20 Not specified Healthy qMSP 11 100 [16] 2010

MGMT Sedimentation 26 91 Not specified Various conditions, malignant and
nonmalignant qMSP 8 100

[38]
2004

p16 Sedimentation 26 91 Not specified Various conditions, malignant and
nonmalignant qMSP 35 100 2004

PCDH17 Sedimentation 50 48 Not specified Healthy qMSP 20 100 [39] 2011
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Table 4. Cont.

Biomarker Sample
Processing Cancer (n) Controls (n) Pathology Control Population Method Sens.

(%)
Spec.
(%) Ref. Year

RARB2 Sedimentation 26 91 Not specified Various conditions, malignant and
nonmalignant qMSP 31 91

[38]
2004

RASSF1A Sedimentation 26 91 Not specified Various conditions, malignant and
nonmalignant qMSP 65 89 2004

TCF21 Sedimentation 33 15 Grades I–IV Healthy Pyrosequencing 79 100 [40] 2016

TCF21 Sedimentation 50 48 Not specified Healthy qMSP 28 100 [39] 2011

TIMP3 Sedimentation 26 91 Not specified Various conditions, malignant and
nonmalignant qMSP 46 91 [38] 2004

TMEFF2 Sedimentation 19 20 Not specified Healthy qMSP 11 100
[16]

2010

VIM Sedimentation 19 20 Not specified Healthy qMSP 5 100 2010

PCDH17, TCF21 Sedimentation 50 48 Not specified Healthy qMSP 32 100 [39] 2011

APC, ARF, CDH1, GSTP1,
MGMT, P16, RAR-β2,

RASSF1A, TIMP3
Sedimentation 26 91 Not specified Various conditions, malignant and

nonmalignant qMSP 88 [38] 2004

VHL, p16/cdkn2a, p14ARF,
APC, RASSF1A, Timp-3 Sedimentation 50 24 T1–T3 Healthy, renal stones, benign renal cysts MSP 88 100 [41] 2004

MSP = methylation specific PCR, qMSP = quantitative MSP.
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Table 5. DNA methylation biomarkers and biomarker panels for detection of upper urinary tract tumors.

Biomarkers Sample
Processing Cancer (n) Controls (n) Pathology Control Population Method Sens.

(%)
Spec.
(%) Ref Year

ABCC6 Sedimentation 98 113 Not specified Benign urologic conditions MSP 44 54

[42]

2018

BRCA1 Sedimentation 98 113 Not specified Benign urologic conditions MSP 26 58 2018

CDH1 Sedimentation 98 113 Not specified Benign urologic conditions MSP 28 98 2018

GDF15 Sedimentation 98 113 Not specified Benign urologic conditions MSP 30 90 2018

HSPA2 Sedimentation 98 113 Not specified Benign urologic conditions MSP 83 36 2018

RASSF1A Sedimentation 98 113 Not specified Benign urologic conditions MSP 48 73 2018

SALL3 Sedimentation 98 113 Not specified Benign urologic conditions MSP 23 80 2018

THBS1 Sedimentation 98 113 Not specified Benign urologic conditions MSP 74 25 2018

TMEFF2 Sedimentation 98 113 Not specified Benign urologic conditions MSP 67 40 2018

VIM Sedimentation 98 113 Not specified Benign urologic conditions MSP 73 61 2018

VIM Sedimentation 22 20 Not specified Healthy qMSP 82 100 [43] 2014

CDH1, VIM Sedimentation 98 113 Not specified Benign urologic conditions MSP 82 60

[42]

2018

CDH1, VIM, RASSF1A Sedimentation 98 113 Not specified Benign urologic conditions MSP 82 60 2018

CDH1, VIM, RASSF1A,
HSPA2 Sedimentation 98 113 Not specified Benign urologic conditions MSP 85 59 2018

CDH1, VIM, RASSF1A,
HSPA2, GDF15 Sedimentation 98 113 Not specified Benign urologic conditions MSP 82 65 2018

CDH1, VIM, RASSF1A,
HSPA2, GDF15, TMEFF2 Sedimentation 98 113 Not specified Benign urologic conditions MSP 82 68 2018

VIM, GDF15 Sedimentation 22 20 Papillary,
invasive, LG, HG

Healthy, renal cell carcinoma, prostate
carcinoma qMSP 91 100 [43] 2014

VIM, GDF15, TMEFF2 Sedimentation 22 20 Papillary,
invasive, LG, HG

Healthy, renal cell carcinoma, prostate
carcinoma qMSP 91 100 2014

MSP = methylation specific PCR, qMSP = quantitative MSP, HG = high grade, LG = low grade.
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2.4. Upper Urinary Tract Cancer

Only two studies met the inclusion criteria, investigating a total of 10 biomarkers (Table 5). VIM
was the only biomarker investigated in both studies, achieving a sensitivity of 82% and 73% and a
specificity of 100% and 61%. HSPA2 achieved a sensitivity of 83% but with a specificity of only 36%.
Among seven biomarker combinations tested, a combination of VIM and GDF15 reached a sensitivity
of 91% and a specificity of 100% in a study with 22 cases and 20 healthy controls, whereas in a study
with 98 cases and 113 controls with benign urologic conditions, these two biomarkers in combination
with CDH1, RASSF1A, and HSPA2 only reached a sensitivity of 82% and a specificity of 65%.

3. Factors Affecting Biomarker Performance

The overall conclusion from our review of DNA-methylation-based biomarkers for detection of
urological cancer is that there is great variability in sensitivity and specificity across studies. Below,
we discuss clinical and technical factors, which can explain this variability and should be considered
when designing studies that eventually should lead to the implementation of urine-based tests in
the clinic.

3.1. Urine Collection and Processing

Urine is a complex biological fluid that contains inorganic salts, organic compounds, and multiple
cell types, including leukocytes, urothelial cells, renal cells, and prostate cells. Tumor-derived DNA can
be present in both the cellular and cell-free fractions of urine, and the procedures used for collection
and processing of DNA will greatly impact the outcome of biomarker analysis. Several sources of
DNA have been utilized, including (i) whole urine (containing cellular DNA and cfDNA), (ii) urine
sediment obtained by centrifugation (containing cellular DNA), (iii) urine supernatant (containing
cfDNA), and (iv) cells obtained by immune capture [44] or filtration [14,45,46]. Because cells and DNA
in urine are susceptible to degradation upon storage depending on time and temperature, correct
storage is important when urine samples are not processed immediately. One study found that DNA
in urine stored at room temperature was stable only upon addition of preserving agents but also found
that DNA remained stable without the addition of preservatives for up to 28 days when stored at
−20 ◦C or −80 ◦C [47]. A confounding factor in many studies is that samples containing DNA of
insufficient quantity or quality were excluded from analysis. Such sample selection bias may lead to
an overestimation of performance characteristics.

The vast majority of studies included in this review utilized sedimented urine as the source of DNA.
The procedure for collection of urine sediments is simple and inexpensive but has several limitations
in addition to storage challenges and processing time, including the co-sedimentation of normal cells
and the presence of crystals and substances that may inhibit downstream PCR analyses [48]. A recent
study showed that the sensitivity for detection of bladder cancer using TERT promoter mutations as a
biomarker was higher in sedimented samples compared with cfDNA [2]. However, in leukocyte-rich
urine, the sensitivity was higher in cfDNA using next-generation sequencing (NGS), probably because
of a higher ratio of tumor-to-wildtype DNA compared with urine sediments. An alternative approach
to enriching for tumor DNA is size-based cell selection, utilizing a filter with a pore size that enables
capture of tumor cells with the passage of smaller-sized normal cells, at the same time removing
inhibitory substances. One study comparing sedimentation and filtration of urine samples from
patients with bladder cancer showed a higher sensitivity for filtration, particularly for low-grade
tumors [46].

Another factor that should be considered when designing urine-based assays for urological cancer
is that the concentrations of cells and DNA in urine are not constant. Shedding of cells and release of
DNA through apoptosis or necrosis are stochastic and depend on several factors, including the size
and location of the tumor. In prostate cancer, higher sensitivities have been achieved after physical
manipulation of the prostate, such as massage and DRE. Another approach to increase the sensitivity
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is repeated urine sampling. In a study of men with high-grade prostate cancer, analysis of urine
cells collected by filtration on different days without prior DRE showed a great interday variation in
the presence of DNA methylation biomarkers, with some samples giving a false-negative result [49].
A study of patients with small low-grade bladder tumors showed that analysis of pooled urine samples
collected over 24 h resulted in a sensitivity of 100%, whereas it was only 75% when a single urine
sample was analyzed [50].

3.2. Bisulfite Treatment, Detection Technologies, and Sample Scoring

With few exceptions, the studies included in this review used treatment of DNA with sodium
bisulfite to selectively convert unmethylated cytosines to uracil (leaving methylated cytosines as
cytosine). These methylation-dependent C-to-U changes can subsequently be analyzed using
PCR-based technologies to ascertain the methylation status [50]. Although the basic protocol for
bisulfite conversion is simple and well described, it has a number of limitations that can introduce biases.
Treatment of DNA with bisulfite introduces DNA strand breaks and results in highly fragmented
single-stranded DNA, leading to degradation of up to 90% of the input DNA [51] and severely
reducing the number of molecules effectively available for PCR amplification. The loss of DNA may
be further aggravated by incomplete DNA recovery after bisulfite conversion. Recovery depends on
the length of input DNA, with higher recovery for high-molecular-weight DNA. In urine, cfDNA has
a large component of mononucleosomal (178 bp) DNA, posing specific requirements for extraction
procedures [52]. Another limitation inherent to bisulfite treatment is incomplete conversion, which may
lead to false-positive results because unconverted unmethylated CpG sites are falsely interpreted
as methylated. A comparison of 12 commercially available bisulfite conversion kits showed a large
variability in recovery and conversion efficiency [53]. Furthermore, several factors have been shown to
affect the technical variability of PCR-based analysis of bisulfite-treated DNA, including the amount of
bisulfite-converted template in the PCR, the amount of DNA input in the bisulfite conversion, and
storage (bisulfite-converted DNA is less stable than genomic DNA) [54].

A wide range of PCR methods have been used for downstream biomarker evaluation. The most
frequently used methods are methylation-specific PCR (MSP) and quantitative MSP (qMSP). Conventional
MSP [55] was the method of choice in earlier studies but has also been used in more recent studies.
This method is easy to perform and requires no specialized equipment but has several limitations,
including the qualitative readout. The most frequently used method in more recent studies is qMSP
based on the MethyLight technology [56], which provides a semiquantitative readout. Other methods
include pyrosequencing [55], methylation-sensitive single nucleotide primer extension (MS-SnuPE) [57],
methylation-sensitive high-resolution melting (MS-HRM) [58], and methylation-specific multiplex
ligation-dependent probe amplification (MS-MLPA). [59] A systematic evaluation and comparison of
assays for measuring DNA methylation at specific CpG sites was recently conducted by the BLUEPRINT
Consortium [60]. Most methods performed well in distinguishing methylated from unmethylated
DNA but all had limitations in detecting low-abundant molecules. It is likely that the field will
be markedly advanced with the introduction of newer technologies such as NGS and digital PCR,
which enable DNA quantification with superior sensitivity and accuracy.

A general limitation in most studies reviewed here was the lack of information about assay
performance in terms of limit of blank (LoB), limit of detection (LoD), and limit of quantitation
(LoQ), which are critical parameters describing the smallest concentration of a biomarker that can
be reliably measured [61]. In most cases, there were no predefined thresholds for interpreting assay
signals, and several studies did not indicate the number of positive biomarkers required for scoring a
sample positive.

3.3. Genomic Location of Biomarker Assays

The most commonly used strategy to identify and develop new DNA methylation biomarkers is
targeting functionally relevant locations, such as CpG islands where methylation affects gene expression.
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The three biomarkers TWIST1, OTX1, and ONECUT2 included in the commercial AssureMDx test,
evaluating the risk for bladder cancer in patients with hematuria, are examples of this [11]. Whereas
the biomarker for TWIST1 is located in the gene promoter and associated with loss of gene expression,
the assays for OTX1 and ONECUT2 are located in regions associated with increased gene expression [8].

Detailed promoter methylation studies have demonstrated that some CpG sites may influence
gene expression more than others. This was first shown in 2002, when Deng et al. reported that
methylation of CpG sites in a proximal region of MHL1 was associated with lack of expression,
whereas CpG sites in the distal part of the promoter tended to be methylated independently of MLH1
expression [62]. Designing biomarker assays close to the transcription start site generally increases the
likelihood of hitting a location where the DNA methylation status will have a functional effect.

Independent of whether DNA methylation is functionally important or not, detailed knowledge
of the methylation pattern of the individual CpG sites (e.g., through TCGA data) in a genomic region of
interest is useful prior to biomarker assay design. Methylation density may vary considerably within
a genomic region, potentially affecting the sensitivity and specificity of a biomarker assay. From a
biomarker perspective, CpG sites that most robustly separate cases from controls and reach the highest
sensitivity and specificity (independent of functional effect) would be highly attractive.

3.4. Sensitivity, Specificity, and Control Populations

Most DNA methylation biomarkers reviewed here were originally discovered by analysis of DNA
from tumor biopsies, using adjacent tumor-free tissue or normal tissue as control. The sensitivity of
a biomarker may here be defined as the proportion of tumors positive for this biomarker. However,
a biomarker with high sensitivity in tumor tissue may not necessarily provide the same sensitivity
in urine because this will depend on the shedding of tumor cells or cfDNA. Only a few studies have
compared urine and tumor tissue from the same patients, suggesting that the sensitivity is generally
lower in urine. As larger tumors will shed more material than smaller tumors, sensitivity is highly
dependent on the cohort composition, with studies having a higher proportion of advanced cancers
achieving higher sensitivity. Only a few studies have evaluated the sensitivity of biomarkers in large
prospective studies enrolling patients consecutively and in an unbiased manner.

The specificity of a urinary DNA methylation biomarker is the probability of a negative test
result in individuals without cancer. Based on the data compiled in this review, the specificity of
DNA methylation biomarkers was relatively high in renal carcinoma (>90%) but generally lower in
prostate cancer and recurrent bladder cancer. Although these figures may reflect a true difference in
the ability of biomarkers to discriminate between cancer and no cancer, it is important to consider
that specificity is affected by choice of control group. In the ideal situation, cases and controls should
be age and sex matched. Notably, because epigenetic modifications (including DNA methylation)
increase with age, the use of a non-age-matched control group could introduce significant bias. Another
important factor is the clinical status of the control group. In many studies, including those on renal
carcinoma, the control population consisted of healthy individuals. To evaluate the specificity of a
test in a more realistic setting, the control population should consist of individuals with symptoms
relevant for the specific cancer. Examples of such control groups include individuals with hematuria
(in the case of bladder cancer) and increased prostate-specific antigen (PSA) levels (in the case of
prostate cancer). One caveat here is that some patients with a positive urine test may have early cancers
or precursor lesions that are molecularly detectable but still undetectable using current scanning or
endoscopic procedures.

None of the biomarkers or biomarker panels for bladder cancer detected recurrence with a
sensitivity or specificity of more than 90%, despite better performance of the same biomarkers for
detection of primary bladder tumors [13]. The lower sensitivity may be explained by the fact that
recurrent tumors are usually smaller than primary tumors and therefore are less prone to shed material
into urine [13]. The lower specificity may at least in part be ascribed to challenges in the study
design. While control groups for evaluating specificity at first diagnosis of bladder cancer are usually
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individuals with no prior history of bladder cancer, controls for recurrence are groups of patients
showing negative follow-up cystoscopy. It is possible that these patients have residual DNA biomarkers
in the urine due to incomplete tumor resection or the emergence of an as-yet undetectable recurrent
tumor, thereby resulting in a lower specificity. Longitudinal studies where the patient is his/her own
control may be more accurate, at least when it comes to the sensitivity.

4. Conclusions

Studies over more than a decade have demonstrated the great potential of DNA methylation
biomarkers for urine-based detection of urological cancer. However, the bewildering number of
biomarkers currently under evaluation and the great variability in biomarker performance across
studies hamper successful translation into clinically useful tests. We have highlighted a number of
factors, which directly impact the performance of urinary DNA methylation biomarkers, including
technical issues related to the design and implementation of biomarker assays. Guidelines for these
procedural issues should be clearly defined to ensure reproducibility and eventually facilitate the
development of clinically useful urinary tests for urological cancer.
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