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Abstract

Microcystis aeruginosa is a freshwater bloom-forming cyanobacterium capable of producing

the potent hepatotoxin, microcystin. Despite increased interest in this organism, little is

known about the viruses that infect it and drive nutrient mobilization and transfer of genetic

material between organisms. The genomic complement of sequenced phage suggests

these viruses are capable of integrating into the host genome, though this activity has not

been observed in the laboratory. While analyzing RNA-sequence data obtained from Micro-

cystis blooms in Lake Tai (Taihu, China), we observed that a series of lysogeny-associated

genes were highly expressed when genes involved in lytic infection were down-regulated.

This pattern was consistent, though not always statistically significant, across multiple spa-

tial and temporally distinct samples. For example, samples from Lake Tai (2014) showed a

predominance of lytic virus activity from late July through October, while genes associated

with lysogeny were strongly expressed in the early months (June–July) and toward the end

of bloom season (October). Analyses of whole phage genome expression shows that tran-

scription patterns are shared across sampling locations and that genes consistently clus-

tered by co-expression into lytic and lysogenic groups. Expression of lytic-cycle associated

genes was positively correlated to total dissolved nitrogen, ammonium concentration, and

salinity. Lysogeny-associated gene expression was positively correlated with pH and total

dissolved phosphorous. Our results suggest that lysogeny may be prevalent in Microcystis

blooms and support the hypothesis that environmental conditions drive switching between

temperate and lytic life cycles during bloom proliferation.
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Introduction

Viruses are one of the most potent drivers of nutrient cycles, horizontal gene transfer, and

microbial evolution in aquatic ecosystems [1, 2]. Bacteriophage play an important role in

microbial communities by lysing primary producers and heterotrophic bacteria, releasing

nutrients from biomass [3]. Moreover, due to their density-dependent infection, viruses are

thought to reduce the competitive advantages of some of the most prolific organisms–the “kill-
the-winner” hypothesis [4]. Phage genomes also can encode auxiliary metabolic genes that

serve to augment host metabolism during infection, considerably altering the functional

potential of entire populations within the microbial community [5, 6]. Despite their recog-

nized importance, much of the potential of viruses remains uncharacterized, highlighting a

crucial need for examination of the role they play across ecosystems.

Microcystis aeruginosa has repeatedly been identified as a nuisance bloom-former in fresh-

water systems over the last several decades [7]. It has come to the forefront of public attention

as the primary agent in blooms worldwide and for its ability to produce a potent hepatotoxin,

originally known as “Fast-Death Factor” [8], but now known as microcystin [9, 10]. Recent

impacts include the shutdown of the public water supply to the City of Toledo (Ohio) during

the Microcystis bloom in 2014 [11], and the considerable accumulation of toxic algal biomass

in Lake Tai, China (Taihu in Chinese) [12, 13]. While significant strides have been made

describing the ecology [14–16], physiology [17–19], and genetics [20–22] of Microcystis, little

is known about the effect of phage on Microcystis ecology. To date, only 11 viruses infecting

M. aeruginosa have ever been brought into culture [23–28], of which only 2 have sequenced

genomes [29, 30], and each of these isolates has subsequently been lost to science. Microcystis
phage Ma-LMM01, classified as an unassigned myovirus, has been the best studied. The avail-

ability of Ma-LMM01’s full genome sequence has led to analyses of distribution (via PCR and

qPCR-based techniques) and some characterization of its genetic regulation [31, 32].

Ma-LMM01 appears to have been host specific in lab studies, targeting M. aeruginosa at the

strain level [27]. This has led to the hypothesis that phage play a role in modulating dominant

strains during blooms [33]. Ecologically, one gene from this virus (gp91), encoding a viral tail

sheath and present in the genomes of both Microcystis phages Ma-LMM01 and MaMV-DC

[29, 30], has been used via qPCR to suggest Microcystis-specific phage particles can be present

at concentrations >10,000 mL-1 of lake water [31, 34]. These virus densities and a projected

high level of host specificity suggest the potential for long-term predator-prey coevolution

between virus and host, a trait generally associated with temperate phage [35]. They also sug-

gest that bloom events of susceptible Microcystis cells should quickly succumb to phage infec-

tion [4].

Beyond an ability to infect and lyse Microcystis, the Ma-LMM01 genome encodes machin-

ery necessary for lysogeny and induction, including 3 transposases, a serine recombinase, and

2 prophage anti-repressors. In addition, one transposase (gp135) and the recombinase (gp136)

make up a 2-gene mobile genetic element called IS607, originally identified in Helicobacter
pylori, and has led some to hypothesize that these genes further act independently as a transpo-

son [36, 37]. Although there is an absence of lysogenic activity with Microcystis observed in

the laboratory, expression of these genes has been documented in environmental samples

(although they were not tied to lysogeny [38]). Taken together, the presence of lysogeny-asso-

ciated genes within Microcystis and the implied protection against superinfection might

explain how this genus can come to dominate freshwater ecosystems and escape Hutchinson’s

Paradox of the Plankton [39] or the “kill-the-winner” phenomenon [4].

During analyses of metatranscriptomic data from Microcystis blooms in Lake Tai, we

observed expression of phage-encoded lysogeny-associated genes that negatively correlated
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with expression of genes consistent with lytic infection and phage replication. Regulation of

these putative lysogenic genes appears to be strongly associated with specific environmental

conditions in the water column. Based on these observations, we hypothesize that a phage

lysogenizes the Microcystis bloom community in a matter constrained by nitrogen and phos-

phorus availability.

Materials and methods

Sample collection and survey of environmental conditions

No specific permissions were required for these locations/activities as Lake Tai is open access

water. Research did not involve endangered or protected species. Samples were obtained from

Lake Tai over the course of five months during the M. aeruginosa bloom in 2014 and have

been used in conjunction with several other experiments [12]. Surface water samples were col-

lected monthly from June to October from 11 different locations across the lake (S1 Table).

From all stations and dates 35 samples were selected (based on the quality and quantity of

extracted RNA) were submitted for RNA-seq. Samples from Lake Tai (25–180 mLs) were col-

lected on 0.2-μm nominal pore-size Sterivex™ (EMD Millipore Corporation, Darmstadt, Ger-

many) and preserved for transport by adding ~ 2 mL of RNAlater (ThermoFisher Scientific,

Waltham, MA).

Water column depth and Secchi depth (SD) were measured using a water depth gauge

(Uwitec, Austria) and Secchi disk, respectively. Water temperature, electrical conductivity

(EC), pH, dissolved oxygen (DO) and phycocyanobilin (PC) were measured in situ using a

multiparameter water quality sonde (YSI 6600 V2, Yellow Springs Instruments Inc., USA).

Total nitrogen (TN), total dissolved nitrogen (TDN), ammonium (NH4), nitrate (NO3), total

phosphorus (TP), total dissolved phosphorus (TDP), orthophosphate (PO4), total dissolved

solids (TDS), and chlorophyll a (chl a) were all measured according to standard methods [40].

Cyanobacterial toxins were determined using liquid chromatography coupled with mass

spectroscopy as previously described [41]. Fourteen common microcystin congeners were

determined by reverse phase liquid chromatography (microcystins RR, dRR, mRR, hYR, YR,

LR, mLR, dLR, AR, FR, LA, LW, LF, WR and R-NOD) using a Waters ZQ4000 mass spec-

trometer coupled with a photodiode array spectrometer. Microcystins were all quantified

against a microcystin-LR standard, and their presence confirmed using diagnostic ADDA UV

signatures. We also looked for anatoxin-a (ATX), homoanatoxin-a, cylindrospermopsin

(CYL) and deoxycylindrospermopsin in these extracts using HPLC coupled with mass selec-

tive (LCMS) or tandom mass (LC-MS/MS: Waters TQD) detection, and quantified against

respective standards. Method detection limits were dependent on the volume filtered, ranging

from 0.1–0.3 μg MC-LR / L and were less than 0.01 μg/L for anatoxin-a, cylindrospermopsin,

and their variants.

RNA extraction and sequencing

Total RNA was extracted using the MOBIO PowerWater (now Qiagen DNeasy PowerWater)

DNA isolation kit for Sterivex (Qiagen, San Diego, CA) modified and optimized for RNA iso-

lation. RNA concentration and purity were determined using a NanoDrop™ ND-1000 spectro-

photometer. Extracted RNA was tested for DNA contamination by running a polymerase

chain reaction using universal bacterial 16S rDNA primers 27F and 1522R (sensitivity ~ 10

gene copies per sample). The On-Spin Column DNase I Kit (MO BIO Laboratories) was used

for DNA removal, with the modification that DNase was allowed to sit for up to 30 min to

increase the efficiency of DNA removal. Purified RNA samples were shipped to the Hudson

Alpha Institute Genomic Services Laboratory (Huntsville, AL) for rRNA reduction, using the
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Ribo-Zero Gold Epidemiology rRNA removal kit, and sequencing on the Illumina HiSeq™
platform using a paired-end 125 bp flow cell.

RNA-seq data processing

Raw sequences were processed using the CLC Genomics Workbench v. 9.5.4 suite (QIAGEN,

Hilden, Germany). Bases below 0.03 error score cutoff were trimmed. Samples were subjected

to a subsequent in silico rRNA reduction using the SortmeRNA 2.0 software package [42]. Fil-

tered paired-reads were competitively mapped to cyanobacterial and phage genomes (S2) with

a 0.9 read-length fraction and 0.9 identity-fraction cutoffs. Transcripts were enumerated as

read pairs mapped within the open reading frames of individual genes, and counts normalized

by library size (unless noted). Paired reads with ends mapping to different genomes were not

included in downstream analyses or counts. Sequence information has been deposited in

MG-RAST database under the study Lake_Taihu_metatranscriptome_project (sample IDs in

S1 Table).

Phylogenetic analysis

Reference sequences from Proteobacteria, Cyanobacteria, and phage identified by sequence

alignment as IS607 regions in [36] were downloaded from NCBI (S3 Table). IS607 reference

sequences were aligned in MEGA 7.0.14 software [43] using the MUSCLE algorithm [44] and

this alignment was then used to generate a maximum likelihood tree with a Shimodaira-Hase-

gawa-like approximate likelihood ratio test branch validation using PhyML [45]. The reference

sequences were then aligned with RNA-seq reads mapping to the Ma-LMM01 IS607 region

in HMMER v. 3.1 (hmmer.org). Reads from the alignment were placed the reference tree

using pplacer [46]. Quantity of reads placed on the tree was visualized as branch width using

the guppy software package [47].

Statistical analysis

Microcystis phage Ma-LMM01 gene read counts were log2(x+10) transformed and Pearson

correlation values were calculated in R Statistics [48] using the Hmisc R package [49]. Mapped

read counts per gene were normalized to expression of M. aeruginosa NIES-843 rpoB (as a

proxy for host cell density) and plotted using the SigmaPlot software package (Systat Software,

Chicago, IL). Whole genome expression was determined by counting reads mapped within

gene regions on the Ma-LMM01 reference genome, which were normalized by library size,

square root transformed, and used to generate a Bray-Curtis dissimilarity matrix and non-

metric multidimensional scaling (nMDS) plots in the PRIMER7 software suite [50]. Associated

environmental variables were correlated with Bray-Curtis dissimilarity distributions and plot-

ted as vectors on the nMDS. The relationship between environmental variables and expression

of the phage genome was determined using the BEST analysis [50]. The co-occurrence of

expression of whole genome expression was grouped using the CLUSTER function using the

Pearson correlation coefficient as the index of association with a 0.1 p-value cutoff. The results

of this analysis were visualized in a dendrogram, all in PRIMER7.

Results

Differential expression of genes from Microcystis-infecting phage

Normalized expression of the Ma-LMM01-like tail sheath (gp091), transposase (gp135), and

site-specific recombinase (gp136) observed in Lake Tai are shown in Fig 1. Of the 35 samples, 2

(T07_9 and T08_9) exhibited negligible expression of phage and host genes and have been
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Fig 1. Lytic and lysogenic gene expression by station. Spatial and temporal gene expression of lytic and

lysogenic genes from Microcystis-phage in Lake Tai. Expression of the Microcystis phage Ma-LMM01 phage

Lysogeny in Microcystis blooms
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removed from subsequent analyses. In the remaining 33 samples, 16 showed more abundant

expression of gp091 relative to gp135, with a ratio ranging from 1.21 to 79-fold, implying that

lytic infection was dominant. These samples were collected during the earlier months (June

and July) of the bloom season, with the exception of T09_1, T10_7, and T10_9, which were

collected during September and October. The remaining samples showed expression of the

gp135 and gp136 to be greater than the expression of gp091, implying the Microcystis commu-

nity was, at least to some degree, lysogenized. These samples primarily occurred during the

months of August, September, and October. Statistically, sample location within the lake did

not relate to expression patterns, with each station exhibiting periods with dominance of lytic

or putative-lysogenic transcripts almost in equal measure across all five months. Tail sheath

expression was significantly and negatively correlated with both transposase (Fig 2, ρ = -0.53,

p = 0.0017) and also recombinase abundance (ρ = -0.57, p = 0.0001). Transposase and recom-

binase were very highly correlated (ρ = 0.98, p = 0, R = 0.986 on a linear function fit), suggest-

ing tightly coordinated co-expression.

Microcystis-phage genome expression

As a proxy for in situ expression of all Microcystis phage genes, we recruited environmental

transcripts to the Ma-LMM01 genome. Results observed from samples collected in Lake Tai,

and organized by hierarchical clustering, are represented in Fig 3. Each of the genes for both

datasets generally fell into one of three major clusters. The first cluster includes all the genes

potentially involved in lysogeny, including all three transposases (gp031 and gp032– collapsed

in branch A, gp135), the serine recombinase (gp136), and two hypothetical proteins (gp171,

gp067).

The second cluster is predominantly made up of genes involved in phage packaging and

cell lysis. It contains 60 genes, including 2 encoding lysozymes (gp069–collapsed in branch W,

and gp095–collapsed in branch X) and the genes for DNA terminase (gp118—collapsed in

branch DD), DNA primase (gp134—collapsed in branch AA), and a putative Fe/S oxidoreduc-

tase (gp128—collapsed in branch AA), which are the only ORFs with functions assigned. These

genes exhibit high correlation values (ρ� 0.7), of which 48 are significantly co-expressed

(p� 0.1) with at least one other gene.

The third cluster is the largest, and is made up of genes whose products are associated with

nucleotide metabolism, DNA replication, and the structural components of the phage. It is

made up of 112 genes including the viral tail sheath (gp091, collapsed in branch T), phage-

encoded RecA (collapsed in branch S), the phycobilisome degradation protein NblA (collapsed

in branch N), and a rIIA-like protein (collapsed in branch P). Viral tail sheath expression was

highly correlated with genes gp088 and gp092, which were predicted by protein size to encode

viral tail tube proteins. Genes gp086 and gp087 also clustered with the tail sheath, which are

believed to encode major head proteins for the phage particle.

Environmental drivers of phage gene expression

A non-metric multidimensional scaling (nMDS) plot of the Bray-Curtis dissimilarity analysis

of phage genome expression in Lake Tai is shown in Fig 4. Samples were distributed in a con-

tinuum across the x-axis, forming two primary clusters where phage gene expression was at

least 60% similar. The position of samples along the x-axis corresponds significantly to the

viral tail sheath (gp091, black), transposase (gp135, red), and recombinase (gp136, blue) normalized by

expression of Microcystis aeruginosa RNA polymerase B (rpoB) observed in the Lake Tai dataset.

https://doi.org/10.1371/journal.pone.0184146.g001

Lysogeny in Microcystis blooms

PLOS ONE | https://doi.org/10.1371/journal.pone.0184146 September 5, 2017 6 / 17

https://doi.org/10.1371/journal.pone.0184146.g001
https://doi.org/10.1371/journal.pone.0184146


Fig 2. Tail sheath, transposase, and recombinase coexpression. Co-expression of genes associated with

putative lytic and lysogenic infections in Lake Tai. A. Scatterplot comparing expression of Ma-LMM01 viral tail sheath

Lysogeny in Microcystis blooms
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ratio of tail sheath to transposon (gp135) expression (a similar trend was observed when the

ratio of tail sheath to recombinase (gp136) expression is plotted on the samples). Vectors for

environmental variables are plotted on the nMDS, showing that pH (towards lysogenic) and

concentration of total dissolved solids (towards lytic) contributed most significantly to posi-

tion along the x-axis. Total dissolved nitrogen and phosphorous also contributed to position

along the x-axis, driving the position of samples towards greater expression of lytic genes or

putative lysogenic genes, respectively. The dissolved oxygen concentration and water temp-

erature also contributed, though more significantly to position along the y-axis. The BEST

analysis of environmental variable contribution to expression of the entire phage genome con-

firmed these associations, and determined that water temperature, pH, and concentration of

total dissolved solids, phosphorous, nitrogen, and oxygen concentrations were responsible for

33% of the variation in gene expression (p = 0.05). Phage gene expression was not correlated to

toxin concentration (gp091: microcystin μg/L, ρ = -0.19, p = 0.2956; gp135: microcystin, ρ =

0.29, p = 0.099; gp136: microcystin, ρ = 0.25, p = 0.1623).

Discussion

We surveyed community metatranscriptomes from natural populations of M. aeruginosa at

“bloom densities” to describe the physiology and ecology of Microcystis, and in the process

identified active phage infections by the Microcystis phage Ma-LMM01. We have analyzed this

data in light of available nutrient concentrations, toxin levels, and environmental conditions to

predict how lake chemistry and climate influenced Microcystis phage gene expression. Our

observations suggest that expression across the entire phage genome appears to have switched

between the expression of genes involved in active viral replication (i.e., the lytic cycle), and

the expression of genes that have been proposed to allow the phage to integrate into the host

genome (i.e., lysogeny). Lastly, we found that the expression of phage genes appears to have

been strongly associated with total dissolved solids and pH as well as the availability of nutri-

ents, specifically the relative abundance of nitrogen and phosphorous. These observations have

given rise to three distinct hypotheses: 1.) These correlations and co-occurrences are the prod-

uct of random chance; 2.) The pattern of gene expression represents a novel physiological

interaction (the purpose of which is currently unclear) between this phage and its host and was

independent of lysogeny; 3.) The results indicate that Microcystis phage were actively switching

between lytic and lysogenic cycles. We address these conclusions below within the context of

factors that drive freshwater microbial communities.

The possibility that observed patterns in phage gene expression were the result of random

chance is not supported by our analyses. The observation of similar expression patterns across

Lake Tai suggests the mechanism by which Microcystis-infecting phage regulate gene expres-

sion has been largely conserved and is important for this virus’s survival. Previous attempts to

describe Ma-LMM01 transcriptional regulation in the laboratory relied on ORF orientation in

the virus genome sequence, which yielded two general groups of genes: an “early” gene region

containing 144 genes that were suggested to be responsible for nucleotide metabolism and

genome replication, and a late gene region, encoding the remaining 40 genes, believed to

encode phage structural components [29]. A subsequent study used q-rtPCR in culture to

measure transcripts of the viral tail sheath (gp091), a putative late gene, and the gene for the

(gp091, x-axis) to viral transposase (gp135, y-axis). Expression values are absolute read abundance log2 normalized

and demonstrate the negative relationship between the putative lytic (gp091) and lysogenic (gp135) infection markers.

B. Scatterplot comparing expression of Ma-LMM01 recombinase gene (gp136, x-axis) to viral transposase (gp135, y-

axis), both putative markers of lysogenic infection of Microcystis.

https://doi.org/10.1371/journal.pone.0184146.g002
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phycobilisome degradation protein (NblA), a putative early region gene [32]. They observed a

temporal separation of expression between the two genes and hypothesized that the larger

gene regions were consistent with early/late phage gene expression, a regulation strategy

observed in other cyanomyoviruses [51]. The disconnect between the regions identified by

Yoshida and colleagues with our clustering is not surprising: in dealing with natural popula-

tions (unlike lab studies), we were most likely dealing with non-synchronous infections.

Indeed, that there are statistically relevant relationships within the expression data suggests

there are strong environmental controls on lytic vs lysogenic decisions.

A second potential explanation for our observations, that switching between expression

states is unrelated to lysogeny, remains plausible. Much of the gene expression we attributed to

genome integration originates in the virus’ three putative-transposases (gp031, gp032, gp135)

Fig 3. Ma-LMM01 whole genome coexpression. Cluster analysis of statistically co-expressed Microcystis-phage gene expression (based on Ma-

LMM01 genome) in Lake Tai. Individual branches represent genes correlated with the expression of others. Transcript sets are collapsed and

labeled with a letter where expression patterns were statistically indistinguishable (see S4 Table for genes contained in collapsed branches).

https://doi.org/10.1371/journal.pone.0184146.g003

Fig 4. Environmental contribution to whole genome expression. A. Non-metric multidimensional scaling plot of Bray-Curtis dissimilarity

between Microcystis-infecting phage whole genome expression for Lake Tai. Read abundance was normalized by library size and square root

transformed. Ellipses represent minimum similarity between samples at the 40%, 60%, and 80% levels. Symbols have been colored based on the

log2 transformed gp091:gp135 expression ratio to denote lytic (black) vs lysogenic (red) dominated states. Environmental variables identified in the

BEST analysis have been correlated (Pearson) with similarity between samples and plotted as vectors, indicating the direction on the 2-dimensional

plane with which they correlated.

https://doi.org/10.1371/journal.pone.0184146.g004
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and the recombinase (gp136), all of which have some homologues in different strains of M. aer-
uginosa and other cyanobacteria. Transposase gp135belongs to a potential family of mobile

elements, IS607, which was originally identified in Helicobacter pylori [37]. IS607 representa-

tives encode a corresponding serine recombinase (gp136 in Ma-LMM01) and together, this

gene pair is widespread amongst sequenced cyanobacteria [36]. While these genes can be phy-

logenetically resolved across the length of the insertion sequence, determining the genomic

origin of short sequencing reads is more challenging. Our pplacer phylogenetic tree (Fig 5)

demonstrates the majority of reads were identified as viral in origin, but the dearth of sequen-

ced phage genomes related to Ma-LMM01 makes it difficult to evaluate the consistency of

IS607 in viruses. Additionally, the IS607 encoded serine recombinase is atypical in structure

amongst other similar enzymes. The DNA-binding and catalytic domains are flipped in orien-

tation, resulting in a recombinase that acts via a modified mechanism, leading to a significant

reduction in insertion site specificity [52]. At the outset, it is not known how this would influ-

ence activity of the insertion sequence in the context of viral infection, nor how it could play a

role in lysogeny, but we speculate that decreased binding specificity might better allow integra-

tion of the virus into the notoriously plastic M. aeruginosa genome [20, 22]. It should also be

noted that the presence of insertion sequences in phage genomes are very rare, as they can neg-

atively impact virus survival [53].

That observed shifts in Microcystis-phage gene expression represent active genome integra-

tion (lysogeny) are the most consistent with our observations and those in other systems.

Moreover, that this process is tied to nutrient availability in the water column gives this obser-

vation significant ecological relevance. The formation of a lysogen would explain why putative

lysogenic genes are conserved in the phage genome in a variety of geographic locations [38].

There is a broad literature suggesting that phage have adapted to replicate or integrate depend-

ing on the conditions that favor the growth or senescence of their particular host [54–57].

Nutrient availability has long been associated with the formation of prophage in environmen-

tal systems, though it is generally thought to inhibit induction indirectly by limiting the mate-

rial available to produce viral progeny, rather than by direct sensing for lysis-lysogeny decision

making [58]. In better characterized phage-host systems, such as Lambda phage, the richness

of the growth medium modulates signals in host metabolism that influence the lysis-lysogeny

decision [59]. Unfortunately, our ability to determine the mechanism of action from metatran-

scriptomic data is limited, and the lack of similarity to better characterized phage systems,

such as Lambda phage, makes comparisons with Microcystis phage difficult to draw at this

time. This is further complicated by the current unavailability of Microcystis-infecting phage

for controlled studies. That said, it is clear from the consensus of the scientific community that

we cannot discount the importance of this (and similar) environmental molecular studies [60].

That Microcystis blooms can proliferate to massive densities [61] and yet somehow escape

infection by the community of abundant phage [62] remains a perplexing ecological problem.

This may be explained by the ability to resist infection by lytic viruses due to lysogen-induced

resistance to superinfection. Indeed, while many observations lie in contrast, other studies that

have suggested a “Piggyback-the-winner” model [63], which proposes that the spread of viral

genomic material is best served by lysogenizing rapidly growing host cells that can persist at

high densities. Clues to how this occurs mechanistically may lie in the uncharacterized genes

co-expressed with the transposase and recombinase, namely gp171 and gp067. While neither of

these genes have close hits in the NCBI database, their implied relationship with the putative

lysogenic genes suggests involvement in prophage maintenance. However, without culture

work to identify their function, this remains speculation.

We observed that Microcystis phage gene expression could consistently be detected in

Microcystis blooms and that a dramatic shift expression of lytic vs lysogenic gene groups was
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tied to environmental cues. Although the cause and effect of these cues needs further study, we

hypothesize that Microcystis-infecting phage may actively integrate into the host genome–a

state that can be distinguished from the lytic cycle via the relative transcription of gp091 and

gp135. While these new observations need continued validation and a better resolution of

mechanistic controls, this study demonstrates that phage may have a strong influence popula-

tion dynamics of this harmful bloom forming species.
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