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Introduction: As chronic kidney disease (CKD) is among the most prevalent chronic diseases in the 

world with various rate of progression among patients, identifying its phenotypic subtypes is important 

for improving risk stratification and providing more targeted therapy and specific treatments for 

patients having different trajectories of the disease progression.

Problem Definition and Data: The rapid growth and adoption of electronic health records (EHR) 

technology has created a unique opportunity to leverage the abundant clinical data, available as EHRs, 

to find meaningful phenotypic subtypes for CKD. In this study, we focus on extracting disease severity 

profiles for CKD while accounting for other confounding factors.

Probabilistic Subtyping Model: We employ a probabilistic model to identify precise phenotypes from 

EHR data of patients who have chronic kidney disease. Using this model, patient’s eGFR trajectory is 

decomposed as a combination of four different components including disease subtype effect, covariate 

effect, individual long-term effect and individual short-term effect.

Experimental Results: The discovered disease subtypes obtained by Probabilistic Subtyping Model for 

CKD are presented and their clinical relevance is analyzed.

Discussion: Several clinical health markers that were found associated with disease subtypes are 

presented with suggestion for further investigation on their use as risk predictors. Several assumptions 

in the study are also clarified and discussed.
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Introduction

Precision medicine is an emerging medical paradigm 

that takes into account individual variability in 

genes, environment, and lifestyle to develop 

targeted therapy and prevention strategies. The 

recently launched Precision Medicine Initiative1 

underscores the importance of this area. In the 

context of precision medicine, one of the key 

scientific challenges is the ability to identify stratified 

subgroups of individuals who exhibit similar disease-

related behavior. In medical terms, this process is 

known as phenotyping, where the phenotypes are 

the observable traits exhibited by the subpopulation. 

Phenotypes are typically the starting point for 

inquiry in clinical practice and medical research. In 

the past, the focus has been on identifying coarse 

phenotypes from patient level data obtained from 

specific patient cohorts. However, precision medicine 

demands identification of precise phenotypes, also 

referred to as deep phenotyping.3

Clinical data has the potential to be a cost-effective 

and large-scale source of deep phenotypes. The 

rapid growth in Electronic Health Record (EHR) 

technology has the potential to make clinical data 

much more accessible for analysis. In the context 

of precision medicine, emergence of networks 

such as DARTNet4 and eMERGE5 are indicative of 

the importance of identifying phenotypes from 

clinical data. EHR data collections allow us to study 

patient populations at an unprecedented scale. For 

example, the DARTNet data collection corresponds 

to approximately 12.5 million patient visits per year, 

5 million patients, and 5 billion data points (clinical 

tests, diagnoses, procedures, medications, etc.).

One large collection of EHR data is the DARTNet 

Chronic Kidney Disease (CKD) dataset.4 CKD is 

well recognized as a rising problem in global health. 

According to 2013 Global Burden Disease study,6 

approximately 956,000 deaths were caused by 

CKD worldwide in 2013. In the same study, CKD 

was ranked 19th in the top 50 causes of global years 

of life lost in 2013. In the United States, it is the 

9th leading cause of death and affects more than 

20% of the U.S. adult population.7 Analysis of a 

large EHR dataset shows that there is still room for 

improvement in clinical care for patients with CKD.8

The natural history of CKD often begins with initial 

kidney damage and progresses through stages 

of CKD, with decline of glomerular filtration rate 

(GFR) towards the end stage of renal failure.9 

However, the course of GFR decline among patients 

is heterogeneous depending on individual, ethnic, 

and disease specific conditions. The predictors to 

adverse outcomes of CKD still need to be clarified 

so that targeted therapy can be implemented based 

on risk stratification. To elucidate this question, we 

first need to identify different phenotypes of CKD 

progression and factors associated with various 

phenotypes. The goal of this study is to stratify a 

Conclusion: The large dataset of EHRs can be used to identify deep phenotypes retrospectively. 

Directions for further expansion of the model are also discussed.

CONTINUED
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large CKD patient population into subgroups, such 

that each subgroup corresponds to a distinct disease 

progression profile.

As far as we know, this is one of the first studies 

that attempts to find disease subtypes of CKD 

by exploiting large electronic health records. One 

previous study in CKD with large EHR dataset is 

Hagar et al.’s study10 which gives survival analysis 

on CKD with different types of covariates. However, 

the paper tends to focus more on survival analysis 

with CKD as a case study using wide varieties of 

information on EHRs. In our study, we focus more on 

temporal aspects of eGFRs, which are a key indicator 

of severity of CKD. In addition, the problem we are 

interested in is finding disease’s subtypes, which is 

not mentioned in Hagar et al.’s study.10

A study by R. Pivovarov et al.11 shows a capability 

of learning phenotypes from heterogeneous EHR 

data. In that work, the authors considered EHR data 

as a collection of text including notes, medication 

orders, diagnosis codes and laboratory tests. Each 

record contains a bag of words and the relationship 

between phenotypes and these health records 

is modeled as a probabilistic graphical model in 

which a phenotype is a hidden random variable. 

In our work, we approach the problem of finding 

phenotypes in EHRs in a different way. Instead of 

conducting text mining on EHR data, we focus more 

on laboratory tests and their numerical values. In 

addition, the temporal aspect of EHRs, which was 

not considered in that work, is an important element 

in modeling the disease progression.

Perhaps the closest previous study to our work is 

by Schulam et al.,12 in which a probabilistic graphical 

model is proposed to model different aspects of 

disease progression including disease subtype, 

covariate effect, long-term and short-term effect.

In this paper, we apply the same Probabilistic 

Subtyping Model (PSM)12 for clustering the disease 

progression trajectories, while accounting for the 

effect of patient-specific covariates. In particular, 

PSM considers factors that contribute to disease 

progression, including long-term health condition, 

short-term health condition, patient-specific 

covariates and trajectory of patient’s clinical health 

marker. In the context of CKD, our selected clinical 

health marker is estimated glomerular filtration 

rate. By examining the resulted subtypes identified 

through PSM-derived model, we can have a better 

understanding of CKD’s phenotypes and therefore 

provide appropriate care for patients based on 

their common disease progression. We apply PSM 

on data available from DARTNet. The subtypes 

identified using PSM are promising candidates for 

further study.

Problem Definition and Data

From the precision medicine perspective, our 

objective is to demonstrate the value of a publicly 

available clinical data resource for precision 

medicine. The data resource comes from a 

collaboration of nine practice-based research 

networks, called the DARTNet Institute.4 The 

partners within the institute are building a national 

collection of data from electronic health records, 

claims, and patient-reported outcomes. The nine 

distinct research networks that make up DARTNet 

Institute offer access to approximately 12.5 million 

patient visits per year, five million patient lives, 

and approximately five billion data points. This big 

health data resource has immense potential for 

fostering medical research, and there have been 

studies that have used the data.13,14 The data from 

DARTNet can be used to track patients over several 

years in terms of disease severity, using information 

about clinical tests, comorbidities, physiological 

characteristics, and medications. Moreover, the 



active engagement of medical practices allows a 

pathway for researchers to obtain more information 

about the patients via genomic sequencing and 

externally conducted surveys. In particular, we plan 

to utilize one curated data set that was extracted 

as a part of a Chronic Kidney Disease Natural 

History Study, which corresponds to 69,817 patients 

suffering from CKD. Table 1 lists various available 

elements in the dataset. It is clear that the richness 

offered by this data resource both in terms of 

clinical information and cohort size presents an 

unprecedented opportunity to understand the 

role of deep phenotypes for precision medicine. 

To focus the scope of the proposed research, we 

targeted extraction of disease severity profiles as 

the phenotypes while accounting for confounding 

factors such as demographic characteristics.

Target Variable

The target variable that we are interested in is called 

the estimated glomerular filtration rate (eGFR), 

which is a standard test to measure the level of 

kidney function in an individual. eGFR is typically 

estimated from a laboratory test that measures the 

creatinine level, using the MDRD Study equation.15 

However, estimation of GFR using the MDRD Study 

equation has limited precision and systematically 

underestimates GFR at higher values. In 2009, 

the CKD-EPI group has shown that the CKD-EPI 

equation is more accurate than the MDRD equation.16 

For this reason, we use the CKD-EPI equation 

as an estimation for GFR. The formula for CKD-

EPI is presented in Table 2. Given that the data 

was collected from nine practice-based research 

networks, different clinics used different coding for 

race information. For this reason, in our calculation of 

eGFR, we assume that all patients are White.

According to the National Kidney Foundation, eGFR 

for a normal individual ranges from 90-120. If the 

eGFR value is below 60 for more than 3 months, it 

signals a transition to stage 3 CKD. With the above 

condition, we only focus on patients with eGFR value 

below 60 for more than three months in this paper.

Probabilistic Subtyping Model

We used the Probabilistic Subtyping Model12 to 

explain different factors in variations of eGFR in 

patients’ profiles. We assume that the population 

consists of M patients. For the ith patient (1 ≤ i ≤ M), 

we have an eGFR sequence denoted as a vector 

yi consisting of Ni observations collected at times 

denoted by vector ti. Thus yij denotes the eGFR 

reading for patient i taken at time tij. The static 

covariates for ith patient are represented by a vector 

xi ∈ RC, where C is the number of available covariates. 

Conceptually, each patient’s eGFR trajectory 

yi is modeled as a Gaussian random variable 

with a mean value that is explained using four 

different components (See Figure 2 for graphical 

representation): disease subtype effect, covariate 

effect, individual long-term effect and individual 

short-term effect.

Disease Subtype Effect

A disease subtype can be described broadly as 

hidden traits that a sub-population of patients 

share. This disease subtype has an effect on 

disease progression, which can be observed as 

trajectory of eGFR records. In PSM, the disease 

subtype associated with a patient is modeled as 

a hidden discrete variable which is determined 

probabilistically.

Assuming that there are G disease subtypes, the 

membership of patient i is modeled using a latent 

multinomial random variable zi ∈ {1,2,⋯,G}. A vector 

π∈ RG parameterizes the multinomial distribution, 

such that p(zi)~Mult(zi;π) . We apply a symmetric 

Dirichlet prior on the vector p(π)~Mult(π;α) where α is 

the concentration parameter.
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Note: “Preprocessed” DARTNet patients are extracted by a procedure explained in Figure 1.
Continuous variables are summarized by median while 25th and 75th percentiles are presented in parenthesis. Categorical variables are summarized 
by number of patients in each category while percentage is presented in parenthesis.

Table 1. List of Data Elements Available in CKD Dataset

BASELINE CHARACTERISTICS

SUMMARY STATISTICS

“PREPROCESSED” 
DARTNET PATIENTS

CKD COHORT

Number of patients 63209 17314

Age at baseline (years) 66.32 (57.50, 74.55) 70.20 (63.13, 76.56)

SEX (%)

Male 26034 (41.19) 6856 (39.60)

Female 37175 (58.81) 10458 (60.40)

Smoking status

CKD INDICATORS

Serum creatinine 1.1 (0.9, 1.3) 1.2 (1.0, 1.5)

Years of last serum creatinine measure 2.76 (0.77, 4.75) 4.48 (3.07, 5.85)

Albumin-to-creatinine ratio 26.5 (8.0, 55.6) 22.3 (7.5, 41.6)

OTHER INDICATORS

Hemoglobin A1c 6.6 (6.1, 7.4) 6.6 (6.1, 7.3)

Alanine aminotransferase 22 (15, 33) 21 (15, 32)

Aspartate aminotransferase 21 (17, 26) 20 (17, 25)

Fasting Blood Glucose 101 (92, 119) 102 (92, 120)

Non-Fasting Blood Glucose 102 (91, 123) 103 (91, 123)

Triglyceride level 128 (91, 184) 131 (93, 185)

High Density Lipoprotein 47 (39, 58) 47 (39, 57)

Low Density Lipoprotein 95 (75, 120) 91 (72, 115)

Phosphorous 3.6 (3.2, 4.2) 3.5 (3.2, 3.9)

Parathyroid hormone 61.0 (35.6, 111.0) 56.3 (34.4, 92.0)

Height (inch) 66 (63, 69) 66 (63, 69)

Weight (lb) 184.0 (155.7, 217.0) 184.0 (156.0, 215.0)

Systolic blood pressure 130 (120, 140) 130 (120, 140)

Diastolic blood pressure 76 (70, 82) 74 (68, 80)



Figure 1. Flowchart of Preprocessing DARTNet Data
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Table 2. The CKD-EPI Equation for Estimating GFR

RACE AND SEX SERUM CREATININE EQUATION

BLACK

Female ≤0.7 GFR = 166 × (Scr/0.7)-0.329 × (0.993)Age

>0.7 GFR = 166 × (Scr/0.7)-1.209 × (0.993)Age

Male ≤0.9 GFR = 163 × (Scr/0.9)-0.411 × (0.993)Age

>0.9 GFR = 163 × (Scr/0.9)-1.209 × (0.993)Age

WHITE OR OTHERS

Female ≤0.7 GFR = 144 × (Scr/0.7)-0.329 × (0.993)Age

>0.7 GFR = 144 × (Scr/0.7)-1.209 × (0.993)Age

Male ≤0.9 GFR = 141 × (Scr/0.9)-0.411 × (0.993)Age

>0.9 GFR = 141 × (Scr/0.9)-1.209 × (0.993)Age

Figure 2. Probabilistic Subtyping Model



Each subtype eGFR trajectory is modeled as a 

weighted sum of P B-spline basis functions with 

weight vector βg ∈ RP. For each k in {1,2,⋯,P}, we 

denote ϕk (ti) ∈ RP×1 as the kth B-spline basis function 

applied on the vector ti. We also denote ϕ(ti )=[ϕ1 
(ti ),ϕ2 (ti ),⋯,ϕP (ti )]. With these notations, the 

contribution of the subtype mechanism in the 

trajectory for patient i, such that g = zi, can be written 

as follow:

	 ei
subtype =ϕ(ti)βzi		  (4.2)

The coefficient vectors βg are themselves drawn 

from a prior multivariate Gaussian distribution, i.e., 

p(βg)~N(βg;μβ,Σβ).

Covariate Effect

Specifically modeling the effect of patient-level 

covariates such as the gender, age, and smoking 

behavior is important because two patients with 

similar covariates might appear correlated in terms of 

the eGFR profiles. For this reason, the covariate effect 

is captured in the model as a term contributed to the 

total effect of the target variable. In the context of 

CKD, relevant covariate data includes race, gender 

and smoking behavior. Since smoking behavior 

is a temporal covariate, which may have different 

status over time, precisely modeling the duration 

of exposure to smoking within the PSM model is 

difficult; this will be considered in future extensions 

of the model. In addition, as race information is not 

available in our data, we only focus on modeling the 

covariate effect of gender in our analysis.

Conceptually, covariate values define sub-groups 

of patients who have similar traits, i.e., gender in 

this study. We want to model these sub-groups 

of patients to have similar patterns of disease 

progression. In PSM, each sub-group covariate effect 

is modeled as a linear effect that contributes to the 

eGFRs of patients, as follows:

	 ei
covariate =γ(ti)ρ(xi)	 	 (4.3)

where γ(ti)=[1,ti] and ρ(xi) is a patient-specific 

coefficient vector (slope and intercept) which is 

obtained through a linear combination of patient 

specific covariates xi using a 2 × C loading matrix, 

B, i.e., ρ(xi)=Bxi. The two rows of the loading matrix 

B, denoted as B0 and B1 are modeled using a 

multivariate Gaussian distribution, i.e., p(Bk)~(Bk;μB,ΣB 
), k ∈ {0,1}.

Individual Long-term Effect

Beside disease’s subtype and covariate effect, 

individual long-term health conditions are also an 

important factor that can help us explain additional 

variations in a patient’s eGFR’s trajectory. For 

example, eGFR values of a patient who has an 

unusually weak renal system are expected to decline 

faster than other normal patients. In PSM, individual 

long-term effect is modeled as a linear trend. It is 

also worth noting that patient’s eGFR trajectory may 

not follow a linear trend as shown in Li et al.’s study.17 

However, non-linear residuals in patient’s eGFR 

trajectory which cannot be explained by the above 

three effects (subtype, covariate and individual long-

term) will be later modeled using short-term effect.

The individual long-term effect of patient i can be 

written as follow:

	 ei
long-term =γ(ti)bi		  (4.4)

where bi ∈ R2×1 which represents the slope and 

intercept of individual long-term effect.

Individual Short-term Effect

Sometimes eGFR value can vary beyond the 

explanation of the subtype effect, covariate effect, 

and individual long-term effect. We can attribute 

this variation to temporary changes in a patient’s 

health condition which affect the test results and 
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subsequently affect the calculated eGFRs. In PSM, 

these short-term changes in eGFR trajectory are 

modeled as a Gaussian process18 with mean 0 and 

kernel function parameterized by hyper-parameter a 

and l:

	 ei
short-term =fi ~GP(0,k(∙,∙))		  (4.5)

	 k(t1,t2 ) =a2 exp(–
(t1–t2)2)2l2

	 (4.6)

Experimental Results

In this section, we present experimental results 

to show how PSM can identify disease subtypes 

within the CKD cohort by analyzing the clinical data 

from the DARTNet dataset. First, we explain how 

we preprocess data so that they can be used as 

inputs for PSM. After that, we present the subtypes 

discovered by PSM and examine features associated 

with each subtype.

Data Preprocessing

Although the dataset contains data for 69,817 

patients, in order to ensure the quality of our 

analysis, we only choose a subset of patients as 

a CKD cohort while excluding others whose data 

do not satisfy our criteria. In particular, we target a 

group of patients who have eGFR values less than 

60 for more than three months. This criterion is 

usually used in clinical practice to identify patients 

having CKD. Moreover, it is also viewed as selecting 

only patients transitioning to stage 3 CKD as well 

as existing patients in stage 3, 4 and 5 of CKD. In 

addition, we exclude patients who have invalid birth 

year and gender value in their records since age and 

gender are two important values needed to estimate 

GFR value. We also exclude patients who have less 

than a year of creatinine data available. Furthermore, 

having too few data points in eGFR readings can 

deteriorate the performance of deriving subtype 

trajectories; thus, in our experiments, only patients 

with at least five data points of serum creatinine 

values are considered. This lower bound of number 

of data points is chosen empirically so that we can 

ensure data quality while selecting a significant 

patient population for analysis. The set of patients 

who have data satisfying all above conditions is 

our target cohort. This cohort has 17,314 patients, 

represent 24.80% of total patients in the original 

dataset. Figure 1 presents a flowchart that shows 

the preprocessing steps we used to obtain the final 

CKD cohort. When choosing a cohort, our criteria 

had been deliberately designed so that the cohort 

can contain as many patients as possible while 

maintaining the quality of analysis with enough data.

All eGFR values of patients are computed using 

CKD-EPI equation as presented in Table 2. Finally, 

in order to remove outliers of test results from 

consideration, we remove all eGFR values which are 

beyond the five standard deviations from the mean 

eGFR value.

Discovered Disease Subtypes

Using the Probabilistic Subtyping Model, we perform 

an optimization process as described in Schulam 

et al.’s work.9 The result of this optimization is a 

probability distribution over all subtypes for each 

patient and the overall covariate effect, which 

maximizes the complete data log-likelihood. Disease 

subtype for each patient is subsequently determined 

by the subtype with highest probability. Given the 

computed disease subtype and covariate effect, 

individual long-term and short-term effects are 

calculated. Using Bayesian Information Criteria 

(BIC), we determine five as the number of subtypes. 

Figure 3 shows the result of five subtype trajectories 

found in the experiment. We have ordered these 

subtypes from best CKD prognosis to worst. The red 

lines in Figure 3 represent the subtype’s prototype 

trajectories learned from PSM while the blue dots 

are eGFR values of 200 sample patients who are 

probabilistically assigned to that subtype.



Another way to characterize the subtype trajectories 

is to use Table 3, which summarizes the rate of 

change of eGFR as well as the baseline eGFR for 

each subtype. From both Figure 3 and Table 3, 

one can observe distinct trends for the different 

subtypes. In particular, although subtype 1 and 

subtype 2 have similar baseline eGFR value, they 

have different rates of change of eGFR per year. 

While subtype 1 has a slightly upward trend, subtype 

2 remains stable over the follow-up period. On the 

other hand, subtypes 3, 4 and 5 all have downward 

trends with different rates of decline and different 

baseline eGFR values. Subtype 5 has a very low 

baseline eGFR while subtype 3 and 4 have better 

Figure 3. Subtype Trajectories
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baseline eGFR values in comparison with subtype 

5. Subtype 3 and subtype 4 can be differentiated 

by rate of change of eGFR per year and baseline 

eGFR. In other words, subtype 3 has slower rate of 

change of eGFR per year and higher baseline eGFR 

when comparing with subtype 4. In fact, the found 

subtypes coincide with existing knowledge about 

patient subgroups in CKD: 1) Subtype 1 corresponds 

to the group of patients that yields improvement 

in kidney’s function; 2) Subtype 2 indicates a group 

of patients whose kidney’s function is stable in 

moderate level over the follow-up period; 3) Subtype 

3 indicates a set of patients which have slow decline 

in kidney’s function; 4) Subtype 4 represents a 

set of patients that have a steady decline in renal 

capability; 5) Subtype 5 coincides with a group of 

patients having severe damage of kidney’s function.

In order to view the resulting subtypes from a 

different perspective, we look at demographics of 

each subtype to see if there are any demographic 

distinctions between different subtypes. Figure 4 

shows that the subtypes do not exhibit significant 

distinction for gender. Figure 5 provides the 

distribution of baseline age of patients belonging 

to each subtype. One observation from this figure 

is that the severity of each subtype is marginally 

correlated with its corresponding baseline age, with 

the exception of subtype 5. It is also worth noting 

that there is a linear trend of baseline age from 

subtype 1 to subtype 4. For a closer look at each 

subtype adjusted for age and gender, we give rate of 

change and baseline eGFR values for each subtype 

adjusted for age and gender in Table 4 and Table 5 

respectively. As shown in Table 4, within the same 

subtype, female patients on average have better rate 

of decline and baseline eGFR values in comparison 

with male patients. Table 5, on the other hand, shows 

that for a same subtype, the older group of patients 

on average have worse rate of decline and baseline 

eGFR values in comparison with younger groups of 

patients. Finally, Figure 6 shows the distribution of 

patients among subtypes. In particular, subtype 1 and 

subtype 2 comprise nearly 50 percent of all patients. 

On the other hand, subtype 5 in which patients 

mostly have severe kidney damage only contains five 

percent of total patients in the CKD cohort.

Table 3. Description of Subtypes in Terms of Their Trajectories

SUBTYPE  
1

SUBTYPE 
2

SUBTYPE 
3

SUBTYPE 
4

SUBTYPE 
5

Patient 
records

Average rate of 
change of eGFR  
per year

4.08 0.54 -0.93 -1.54 -1.80

Average baseline 
eGFR value

54.71 53.38 48.93 40.90 26.45

Prototype’s 
trajectory

Rate of change of 
eGFR per year

2.03 0.04 -1.07 -1.45 -1.13

Baseline eGFR value 53.97 53.13 48.77 40.69 25.69



Figure 4. Distribution of Gender for Each Subtype

Figure 5. Distribution of Baseline Age of Patients for Each Subtype
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Figure 6. Distribution of Patients for Each Subtype

Table 4. Rate of Change and Baseline eGFR of Each Subtype Breaking Down by Gender

SUBTYPE GENDER
AVERAGE RATE OF 

CHANGE OF EGFR PER 
YEAR

AVERAGE BASELINE 
EGFR VALUE

Subtype 1 Female 4.28 54.52

Male 3.83 54.96

Subtype 2 Female 0.60 53.15

Male 0.44 53.72

Subtype 3 Female -0.87 48.87

Male -1.03 49.02

Subtype 4 Female -1.42 40.72

Male -1.76 41.22

Subtype 5 Female -1.78 27.00

Male -1.83 25.63



Table 6 shows the distributions of various test results 

of patients belonging to each subtype. Among 

clinical lab measures presented in Table 6, albumin-

to-creatinine ratio (ACR) is an important indicator, 

which is used for predicting CKD progression. As we 

can see in the table, the more severe the subtype 

is, the higher the value of albumin-to-creatinine 

ratio. This indicates that albumin-to-creatinine ratio 

can also be an indicator for each subtype ranking 

from best prognosis to worst, which reinforces 

our understanding that eGFR and albumin-to-

creatinine ratio are independent and complementary 

predictors for CKD progression.9

One interesting finding from Table 6 is the correlation 

between value of alanine aminotransferase (ALT) 

and the subtypes. In particular, the more severe a 

subtype is, the less value of ALT it has. A similar 

observation can also be made with aspartate 

aminotransferase (AST) in Table 6. We notice that 

ALT and AST are measures of enzymes that are 

commonly used to assess liver function. This finding 

also agrees with previous study,19 which mentioned 

the levels of ALT and AST in CKD patients. Another 

observation that one can have from Table 6 is the 

relationship of parathyroid hormone (PTH) and the 

subtypes. As presented in Table 6, in more severe 

subtypes, we observe slightly higher level of PTH. 

Table 5. Rate of Change and Baseline eGFR of Each Subtype Breaking Down by Age

SUBTYPE AGE GROUP
AVERAGE RATE OF 

CHANGE OF EGFR PER 
YEAR

AVERAGE BASELINE 
EGFR VALUE

Subtype 1 < 45 9.10 52.71

45-65 4.13 54.97

> 65 3.91 54.56

Subtype 2 < 45 0.46 53.50

45-65 0.62 53.65

> 65 0.50 53.24

Subtype 3 < 45 -1.68 49.14

45-65 -0.84 49.11

> 65 -0.96 48.86

Subtype 4 < 45 -2.32 42.52

45-65 -2.24 42.58

> 65 -1.34 40.43

Subtype 5 < 45 -1.20 13.46

45-65 -2.22 27.84

> 65 -1.73 27.61
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As the role of PTH is to regulate the level of serum 

calcium and serum phosphate in body, the higher 

PTH is observed when kidney function decreases. 

This finding also agrees with previous study from 

Tomasello’s work.20

In addition to Table 6, we also perform an analysis 

to examine which lab measure associates with 

each subtype. In order to estimate the degree of 

association, we use hypothesis testing to compare 

the level of lab measure in two groups: patients in 

a particular subtype (group 1) and the remaining 

patients (group 2). Our null hypothesis is that there is 

no difference between the distribution of level of lab 

measures in groups 1 and 2. We use t-test with the 

assumption that the variance is different between 

two groups. If the resulting p-value is smaller than a 

threshold of five percent, we can statistically reject 

the null hypothesis. In Table 7, we present a table of 

p-value for each lab measure and each subtype. All 

p-values in Table 7 that are larger than five percent 

are italicized. We can observe that the distributions 

of most lab measures are statistically different 

between patients in a particular subtype and the 

set of remaining patients. This analysis provides 

an estimation for understanding the degree of 

associations between subtypes and lab measures 

from statistical perspective and it would be useful for 

further investigation from clinical perspective.

Discussion

CKD is a chronic condition with a strong tendency 

for progression. Here, we recognized that 15.91 

percent of patients with CKD achieved improvement 

of kidney function and 33.96 percent of them 

Table 6. Summarization of Relevant Clinical Measures with Respect to Each Subtype

LAB MEASURES SUBTYPE 1 SUBTYPE 2 SUBTYPE 3 SUBTYPE 4 SUBTYPE 5

Albumin-to-creatinine ratio 16.5 (6.8, 30.0) 14.7 (6.1, 30.0) 23.1 (7.7, 40.2) 30.0 (11.0, 93.8) 46.5 (17.0, 318.0)

Hemoglobin A1c 6.5 (6.0, 7.2) 6.5 (6.0, 7.2) 6.6 (6.1, 7.4) 6.7 (6.1, 7.5) 6.7 (6.1, 7.7)

Alanine aminotransferase 23 (16, 34) 22 (15, 33) 21 (15, 32) 19 (13, 29) 18 (12, 27)

Aspartate aminotransferase 21 (17, 26) 21 (17, 26) 20 (17, 25) 20 (16, 24) 19 (15, 24)

Fasting Blood Glucose 102 (92, 116) 101 (92, 117) 103 (92, 120) 104 (91, 127) 105 (92, 132)

Non-Fasting Blood Glucose 102 (91, 120) 101 (91, 118) 103 (92, 126) 105 (91, 132) 106 (91, 138)

Triglyceride level 128 (90, 180) 126 (90, 177) 133 (93, 190) 143 (103, 200) 144 (101, 201)

High Density Lipoprotein 47 (39, 58) 48 (40, 58) 46 (38.5, 57) 45 (37, 55) 43 (36, 53)

Low Density Lipoprotein 92 (72, 116) 93 (73, 117) 90 (71, 114) 89 (70, 113) 88 (68, 113)

Phosphorous 3.4 (3.1, 3.8) 3.4 (3.0, 3.7) 3.4 (3.1, 3.8) 3.6 (3.2, 4.0) 3.8 (3.3, 4.5)

Parathyroid hormone 42.4 (23.0, 59.0) 48.0 (31.7, 75.7) 53.9 (32.0, 84.4) 60.0 (40.5, 102.0) 114.0 (61.0, 203.0)

Systolic blood pressure 128 (120, 140) 130 (120, 140) 130 (120, 140) 130 (120, 142) 130 (120, 142)

Diastolic blood pressure 76 (70, 82) 76 (70, 80) 74 (68, 80) 72 (66, 80) 72 (66, 80)

Note: Clinical measures are summarized by median while 25th and 75th percentiles are presented in parenthesis.



remain stable during the follow-up period. The rest 

of the patients displayed various levels of CKD 

progression. We also compared the distribution 

of a number of clinical measures among these 

CKD subtypes. Among these clinical measures, 

level of albumin-to-creatinine ratio (ACR), alanine 

aminotransferase (ALT), aspartate aminotransferase 

(AST) and parathyroid hormone (PTH) were found 

to be associated with discovered subtypes. A more 

complexed risk prediction model with multiple 

weighted factors needs to be developed in the future 

to further explore the predictors of CKD progression. 

The CKD subtypes identified in this study can also 

be utilized to validate some current risk prediction 

models.21,22

More questions can be answered with this large 

clinical dataset in the future. For example, in CKD, 

what is the effect of systolic BP control? Or, how 

detrimental are non-steroidal anti-inflammatory 

drugs? Having the sub-phenotypes can also be 

correlated with genomic, proteomic, and microbiome 

information as we move toward personalized 

and precision medicine. Patients in each subtype 

identified through this study are potential candidates 

for genomic, proteomic, and metabolomics studies 

in the future to identify new markers or risk factors 

for CKD progression.

The identified subtypes shown in Figure 3 show 

distinctive characteristics between the five 

subpopulations. However, these results are based on 

an implicit assumption that the clinical data spans 

the entire disease history starting from the onset of 

CKD. Clearly, there can be instances when the true 

onset would have happened much before the data 

Table 7. P-value of Hypothesis Testing for Each Lab Measure and Each Subtype

LAB MEASURES
SUBTYPE 1 

(%)
SUBTYPE 2 

(%)
SUBTYPE 3 

(%)
SUBTYPE 4 

(%)
SUBTYPE 5 

(%)

Albumin-to-creatinine ratio 0.000 0.000 5.372 0.001 0.000

Hemoglobin A1c 0.000 0.000 6.966 0.000 0.000

Alanine aminotransferase 0.000 0.000 10.376 0.000 0.000

Aspartate aminotransferase 1.419 7.157 16.910 0.002 0.076

Fasting Blood Glucose 0.232 0.647 10.737 0.594 0.135

Non-Fasting Blood Glucose 0.000 0.000 1.705 0.000 0.000

Triglyceride level 0.193 0.000 1.785 0.000 0.000

High Density Lipoprotein 0.096 0.000 25.368 0.000 0.000

Low Density Lipoprotein 0.537 0.000 0.037 0.311 0.547

Phosphorous 3.624 0.000 0.590 1.747 0.000

Parathyroid hormone 0.000 0.000 0.005 24.463 0.000

Systolic blood pressure 98.426 1.015 15.010 35.429 10.178

Diastolic blood pressure 3.205 19.894 54.079 0.000 0.000
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collection started. This is important in cases such 

as subtype 4 and 5, where the subtype trajectories 

have similar slopes and only differ in the baseline 

values. In the presence of longer histories, some of 

these subtypes could potentially merge or newer 

subtypes may arise.

Although we have presented the five subtypes 

found in CKD for a sub-population of patients 

transitioning to stage 3 of CKD and existing patients 

in stage 3, 4 and 5 of CKD, few assumptions and 

simplifications have been made in our work so that 

the computation is feasible. In particular, the effect of 

smoking status is omitted when modeling covariate 

effect. One may encode a patient’s smoking 

behavior as smoker and non-smoker and then use 

this variable as a covariate effect. However, since 

smoking behavior is dynamic as people smoke and 

stop smoking at different times, it is not suitable 

to encode smoking behavior as static covariate in 

our model. Smoking effect may be better modeled 

when we can estimate the amount of time of one’s 

exposure to smoking but it seems nontrivial when 

extracting this information only from health records. 

In future work, we plan to account smoking into the 

model as a more dynamic feature which can change 

over time.

Another difficulty when running the model is to 

choose the prior distributions for parameters. 

Although a conservative distribution can be made 

with assumption of no prior information, we can 

further improve the model in future version by 

adding more expert knowledge about distributions 

of some parameters.

In addition, when choosing a cohort set of patients 

who have enough data with high quality for 

analysis, the process of filtering un-qualified data 

removed a substantial amount of data. Moreover, 

removing patients with little data also introduces 

selection bias as the subpopulation seems to have 

better care and have more hospital visits than the 

general population. A more flexible model should be 

introduced in the next version so that it can make 

use of low-quality data for inference as they are a 

good source of information.

Conclusion

With the ability to collect and normalize data from 

multiple EHRs, a large amount of longitudinal data 

can be collected regarding the diagnosis, severity, 

and natural history of chronic diseases in patients 

with multiple co-morbidities. This collection of data 

is efficient and relatively inexpensive. In essence, 

research data becomes a byproduct of routine 

clinical care. Another advantage of these datasets 

is that they are clinical data of real world patients, 

which is very useful for pragmatic clinical trials.2 

These large datasets can begin to answer some 

very clinically pertinent questions. In this study, we 

analyzed a CKD natural history dataset extracted 

from the DARTNet database and identified five deep 

phenotypes of CKD trajectories in patients with CKD 

using the Probabilistic Subtyping Model.

From the perspective of modeling disease 

progression, the Probabilistic Subtyping Model 

we used in this paper can be further expanded 

to cope with more clinical factors in modeling 

disease, such as medical information, which are 

abundantly available in EHR dataset. In addition, 

a joint probabilistic model which uses more than 

one clinical health marker can also be a possible 

extension in future research.
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