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MicroRNA miR124 is required for the expression
of homeostatic synaptic plasticity
Qingming Hou1, Hongyu Ruan2,*, James Gilbert1,*, Guan Wang1, Qi Ma2, Wei-Dong Yao2 & Heng-Ye Man1,3

Homeostatic synaptic plasticity is a compensatory response to alterations in neuronal

activity. Chronic deprivation of neuronal activity results in an increase in synaptic AMPA

receptors (AMPARs) and postsynaptic currents. The biogenesis of GluA2-lacking, calcium-

permeable AMPARs (CP-AMPARs) plays a crucial role in the homeostatic response; however,

the mechanisms leading to CP-AMPAR formation remain unclear. Here we show that the

microRNA, miR124, is required for the generation of CP-AMPARs and homeostatic plasticity.

miR124 suppresses GluA2 expression via targeting its 30-UTR, leading to the formation of

CP-AMPARs. Blockade of miR124 function abolishes the homeostatic response, whereas

miR124 overexpression leads to earlier induction of homeostatic plasticity. miR124

transcription is controlled by an inhibitory transcription factor EVI1, acting by association with

the deacetylase HDAC1. Our data support a cellular cascade in which inactivity relieves

EVI1/HDAC-mediated inhibition of miR124 gene transcription, resulting in enhanced miR124

expression, formation of CP-AMPARs and subsequent induction of homeostatic synaptic

plasticity.

DOI: 10.1038/ncomms10045 OPEN

1 Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts 02215, USA. 2 Division of Neuroscience, New England Primate
Research Center, Harvard Medical School, Southborough, Massachusetts 01772, USA. 3 Department of Pharmacology and Experimental Therapeutics, Boston
University, 5 Cummington Mall, Boston, Massachusetts 02215, USA. * These authors contributed equally to this work. Correspondence and requests for
materials should be addressed to H.-Y.M. (email: hman@bu.edu).

NATURE COMMUNICATIONS | 6:10045 | DOI: 10.1038/ncomms10045 | www.nature.com/naturecommunications 1

mailto:hman@bu.edu
http://www.nature.com/naturecommunications


H
omeostatic plasticity is a compensatory regulation in
neuronal activity, which is crucial for the maintenance of
neuronal and neural circuit stability1–5. A major cellular

mechanism underlying the homeostatic regulation is to adjust
synaptic strength in a negative feedback manner, that is,
homeostatic synaptic plasticity (HSP)2,3,6. Studies have shown
that in neuronal cultures chronic suppression of cell activity
results in an increase in the amount of synaptic AMPARs
and therefore strengthened synaptic transmission7–9. Similar
regulation has also been observed in vivo10–16. However, the
initial molecular steps and signaling cascades that lead to the
expression of HSP remain less well understood.

Most AMPAR heterotetrameric complexes contain GluA2
subunits and are permeable only to sodium and potassium. When
constituted without GluA2, AMPARs become permeable to both
sodium and calcium. An accumulating amount of work has
established an important role for CP-AMPARs in HSP. Following
activity deprivation, the level of GluA1 expression is preferentially
increased over GluA2 (refs 17–19), suggesting the formation of
GluA2-lacking AMPARs. Consistently, under activity deprivat-
ion, AMPAR-mediated currents show inward rectification and
become sensitive to CP-AMPAR-selective antagonists
philanthotoxin-433 (PhTx) or Naspm10,17–21. Interestingly,
multiple signaling molecules involved in HSP, including TNF-a,
retinoic acid, Arc/Arg3.1 and integrin b3, can cause an imbalance
in GluA1 and GluA2 expression, and thus biogenesis of CP-
AMPARs18,22,23. Our own study also shows that synaptic
homeostatic regulation requires the activity of CP-AMPARs.
Application of PhTx during activity deprivation abolishes the
expression of AMPAR-mediated homeostatic regulation21.
Interestingly, the blockade of homeostatic plasticity is observed
only when PhTx is applied at the early stage of activity
deprivation, but not the later phase21, indicating that CP-
AMPARs function as a signaling cue for the induction of
homeostatic synaptic regulation. However, how the GluA2-
lacking CP-AMPARs are generated by inactivity remains
unknown.

MicroRNAs (miRNAs) are 19–25 (B22) noncoding nucleotide
RNAs that play important roles in the posttranscriptional
regulation of gene expression24–27. miRNAs repress translation
by binding to specific complementary sequences located in the
30-untranslated region (30-UTR) of target messenger RNAs
(mRNAs). The miRNA–mRNA interaction normally requires
six to eight base pairs of perfect complementarity between the
miRNA 50 terminus (seed sequence) and a cognate miRNA target
site in the mRNA 30-UTR26,28. At the posttranscriptional level,
miRNA can regulate gene expression in a tight spatial and
temporal manner. There are more than 1,000 miRNAs in
humans, and most of them are highly conserved across species.
Some have a general expression pattern, others are specifically
expressed in certain tissues or cell types, and expression can be
spatially and temporally restricted.

miR124 is one of the most abundant miRNAs expressed in the
brain, accounting for more than a quarter of all brain miRs29,30.
There are three independent loci of miR124 in vertebrates and all
produce the same mature miR124 (ref. 31). miR124 is expressed
in neurons, but not astrocytes, and the levels of miR124 increase
over time in the developing brain30,32,33 In cultured cortical
neurons, we also found that miR124 expression is continuously
increased after plating. miR124 has been shown to play a key role
in neuronal differentiation and neurogenesis34. Overexpression
of miR124 promotes differentiation of precursor cells into a
neuronal phenotype and stimulates neurite growth35. When
functional miR124 is increased in mouse or human cells in vitro,
the global mRNA expression profile shifts toward neuronal
mRNA population36,37. Deletion of miR124 can lead to major

developmental phenotypes including decreased brain size,
defective axonal outgrowth and cell death38. Several genes
involved in neurogenesis have been identified as miR124
targets, including SCP1, BAF53a, Ptbp1, RhoG, Jagged1 and
Sox9. However, the role of miR124 in the regulation of
neurotransmitter receptors and synaptic plasticity remains
largely unknown39.

We explored the role of miR124 in AMPAR subunit expression
and in homeostatic plasticity. We find that miR124, via
interaction with the 30-UTR of the GluA2, but not GluA1
subunit, causes a selective reduction in GluA2 levels and the
formation of CP-AMPARs. The expression of miR124 is activity
dependent. Suppression of neuronal activity induces an increase
in miR124 expression, consistent with a role for miR124 in the
homeostatic response during activity deprivation. Blockade
of miR124 function completely abolishes inactivity-induced
homeostatic plasticity. In addition, we confirm that in neurons,
miR124 transcription is controlled by an inhibitory transcription
factor EVI1 via its association with a histone deacetylase,
HDAC1. Interestingly, miR124 alone is not sufficient to induce
a homeostatic response; rather, it is able to accelerate the
induction of homeostatic plasticity under the condition of activity
deprivation.

Results
miR124 specifically targets AMPAR subunit GluA2. To examine
whether the expression of AMPAR GluA2 subunits is subject to
the regulation of microRNA, we used Targetscan software to
search for potential miRNAs that target the 30-UTR sequence of
GluA2. A search of the database revealed several potential miR-
NAs, including miR124, mir30, mir181 and mir218. Among
them, miR124 is the most abundant miRNA expressed in neu-
rons29. miR124 binds to an 8-bp sequence in the GluA2 30-UTR,
while no targeting sites were detected in GluA1 30-UTR. This
binding site is localized at the 50 end of the
30-UTR (187–194 bp from the 50 end), the optimal location for
efficient microRNA function25. Furthermore, the miR124 binding
sequence in the GluA2 30-UTR is evolutionarily conserved
(Fig. 1a). Therefore, miR124 was considered the best candidate
for GluA2 regulation. Previous studies showed that miR124 is
required for neuronal determination and differentiation but its
roles in mature neurons remain unclear. We first wanted to know
whether miR124 expression could cause gross changes in neuron
morphology or cellular conditions. We transfected cultured
hippocampal neurons at day in vitro (DIV) 11 with a plasmid
containing DsRed and the miR124 sequence inserted in an intron
of the DsRed gene. Regular DsRed construct was transfected in
sister cultures as a control. No toxicity or obvious developmental
and structural changes were observed in neurons 3 days after
transfection. Dendritic arborization and synapse density as
measured with PSD95 staining showed no difference compared
with the transfected DsRed control cells (Supplementary Fig. 1).

GluA2 mRNA was predicted to be the target of miR124 by
sequence matching. To validate this, we transfected miR124 in
cultured rat hippocampal neurons at DIV 11. Two days after
transfection, neurons were immunostained for AMPARs under
permeant and non-permeant conditions for the analysis of total
and surface receptors, respectively. When synaptic puncta
intensity was measured, we found that miR124 overexpression
resulted in a significant reduction in both total and surface GluA2
puncta compared with the DsRed control (Fig. 1b–d; total:
74±7% of control value, Po0.05, n¼ 392 puncta from 14 cells,
mean±s.e.; surface: 69±8% of control value, Po0.05, n¼ 368
puncta from 12 cells; t-test). In contrast, puncta intensity of
GluA1 showed no change (Supplementary Fig. 2, 102±10% of
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control value, P40.05, n¼ 485 puncta from 10 cells; t-test). To
further confirm these findings in a more non-biased manner with
biochemistry, we subcloned miR124 into a lentiviral vector and
infected cultured cortical neurons with concentrated miR124
virus. In line with immunostaining data, western blots using
infected cell lysates demonstrated a marked reduction in GluA2
protein levels, whereas no changes were found in the abundance
of GluA1 and the synaptic scaffolding protein PSD95 (Fig. 1e,f,
GluA2: 57.4±8.9% of control; GluA1: 92.1±7.2% of control;
PSD95: 98.5±6.1% of control, n¼ 4 each). These data indicate
that miR124 selectively downregulates GluA2, and the effect is
not a result of general suppression of protein synthesis or due to
synapse removal.

miR124 targets the 30-UTR of GluA2 mRNA. MicroRNAs
suppress protein translation via complementary binding with a
sequence in the 30-UTR of a target mRNA. To determine whether
the 30-UTR is responsible for the effect of miR124, we used a GFP
reporter plasmid in which the GFP mRNA is flanked by 50- and

30-UTR of GluA2 or GluA1 (Fig. 2a). Two days after transfection
of the reporter GFP with or without miR124 into HEK293T cells,
cell lysates were subjected to western blot analysis for GFP levels.
We found that in cells expressing GluA2-UTR-GFP, co-expres-
sion of miR124 caused a significant reduction in GFP amounts
(Fig. 2b, 61±4% of DsRed control, Po0.05, n¼ 3; t-test).
However, the level of GFP in GluA1-UTR-GFP was not affected
by miR124 (Fig. 2b, 98±5% of DsRed control, n¼ 3). Further
supporting the miR124 specificity for GluA2, levels of tubulin
remained unchanged in all conditions. Next, we co-transfected
the reporter GFP with miR124 in hippocampal cultures, and the
GFP intensity was examined 2 days after transfection. Consistent
with the findings in HEK cells, miR124 overexpression sig-
nificantly reduced GluA2-UTR-GFP, but not GluA1-UTR-GFP
(Fig. 2c,d, GluA2-UTR: 45±20% of DsRed control, Po0.05,
n¼ 16; GluA1-UTR: 109±16% of DsRed control, P40.05,
n¼ 17; t-test). Together, these results indicate that miR124
regulates GluA2 expression via an interaction with the GluA2
30-UTR.

0

0.2

0.4

0.6

0.8

1

1.2

Total Surface

0

0.2

0.4

0.6

0.8

1

1.2

GluA2 GluA1 PSD95 

To
ta

l G
lu

A
2 

M
er

ge
d 

G
lu

A
2 

cl
us

te
r 

in
te

ns
ity

(n
or

m
al

iz
ed

) 
 

a DsRed miR124 

S
ur

fa
ce

 G
lu

A
2 

M
er

ge
d 

DsRed miR124

e 

Im
m

un
ob

lo
t i

nt
en

si
ty

(n
or

m
al

iz
ed

) 
 

d

f
DsRed miR124 

*

* 

*

1K 2K
GluA2 3′-UTR length: 2,682

miR124  3′

Human  5′

0K 3K

5′ 3′

Mouse  5′

Rat  5′

b

c

GluA2

GluA1

PSD95

DsRed miR124 

′
′

′

′

Figure 1 | miR124 expression selectively suppresses GluA2 expression. (a) The binding site for the miR124 seed sequence in GluA2 mRNA 30-UTR is

highly conserved in human, mouse and rat. (b–d) Cultured hippocampal neurons were transfected with miR124 (containing DsRed) or DsRed at DIV12.

Total and cell-surface GluA2 were immunostained (green) at DIV14 under permeant and non-permeant conditions, respectively. GluA2 puncta intensity

was measured. Bar graphs represent mean±s.e., *Po0.05, t-test. Image scale bars¼ 10mm. (e,f) DIV12 cortical neurons were infected with lentiviral

constructs of miR124 or DsRed control for 3 days, and cell lysates were probed for GluA1, GluA2 and PSD95. miR124 induced a decrease in the expression

of GluA2, but not GluA1 or PSD95. Bar graphs represent mean±s.e., n¼4 experiments, *Po0.05, t-test.
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Neutralization of miR124 increases GluA2 expression. Next, we
examined the effect of miR124 suppression on GluA2 expression.
To neutralize endogenous miR124, we transfected hippocampal
neurons with a miR124-binding sponge (BS) construct. The
sponge contains two tandem repeats of a sequence com-
plementary to miR124, so that when overexpressed, it will
dominantly bind to and sequester miR124 so as to avoid its
interaction with de novo targets. Expression of miR124 BS
markedly increased the puncta intensity of both total and the
surface GluA2 puncta in hippocampal neurons (Fig. 3a–c, total:
137.2±13.5% of GFP control, Po0.05, n¼ 430 puncta from
15 cells; surface: 144.2±9.7% of GFP control, Po0.05, n¼ 385
puncta from 14 cells; t-test). This result suggests the existence of

constitutive suppression of GluA2 expression by miR124 during
basal conditions. To further confirm the effect of miR124 BS on
the total cellular GluA2 amount, lysates of BS-infected neuron
cultures were examined by western blot. Consistent with
immunostaining data, we detected a significant increase in GluA2
protein levels in BS transfected neurons (Fig. 3d, 132±8% of GFP
control, Po0.05, n¼ 3; t-test). As a control, the BS miR124 did
not alter the expression of total GluA1 levels (Supplementary
Fig. 3, 104±5% of GFP control, P40.05, n¼ 10; t-test). We also
transfected neurons with the UTR constructs together with
siRNA against miR124. Similar to the effect of the BS, transfec-
tion of the miR124 siRNA led to an increase in GluA2-UTR-GFP
expression (Fig. 3e,f, GluA2: 189±21% of scRNA control,
Po0.05, n¼ 21 neurons; GluA1: 97±22% of scRNA control,
P40.05, n¼ 22 neurons; t-test). miR124 specificity was also
examined by co-transfecting neurons with mir124 (containing
DsRed), or a scrambled control (containing DsRed), with
GluA2-UTR-GFP. In support of a role for GluA2-UTR in
sequestering miR124, co-transfection of GluA2-UTR-GFPþ
miR124 was sufficient to block the miR124-mediated decrease in
GluA2 (Supplementary Fig. 4, n¼ 10 neurons each). To examine
other possible synaptic targets for miR124, we examined the
GABA a1 receptor subunit (a1R) and the NMDA receptor
subunit GluN1 after suppression of miR124. Treatment with
the miR124 inhibitor did not affect expression of a1R
(Supplementary Fig. 5A and Supplementary Fig. 5B, 105±4% of
scRNA control, P40.05, n¼ 10) or GluN1 (Supplementary
Fig. 5C and Supplementary Fig. 5D, 96±3% of scRNA
control, P40.05, n¼ 11; t-test), indicating the specificity for
miR124 in the regulation of GluA2 expression.

miR124 expression promotes the formation of GluA2-lacking
AMPARs. To directly examine whether miR124 promotes the
formation of GluA2-lacking CP-AMPARs, we measured the
current–voltage relationship (I–V curve) of mEPSCs. Inward
rectification of the I–V curve at positive membrane potentials is a
signature feature of CP-AMPARs40. mEPSC analysis revealed a
typical rectification of the I–V curve in cells transfected with
miR124, whereas the control cells showed a linear I–V
relationship (Fig. 4a). We also transfected neurons with the
sponge construct BS to inhibit miR124 function. A normal linear
I–V relationship was maintained in BS-expressing neurons
(Fig. 4a), suggesting that most AMPARs are GluA2-containing
during basal conditions. Furthermore, we examined the mEPSC
sensitivity to PhTx, an antagonist specific for CP-AMPARs. In
control neurons, application of PhTx had no effect on mEPSCs.
In contrast, in neurons transfected with miR124, PhTx treatment
caused a marked reduction in mEPSC amplitude (Fig. 4b,c). In
addition, in miR124 transfected neurons, mEPSCs showed a
faster decay time indicative of the presence of GluA2-lacking
AMPARs (Supplementary Fig. 6A, 0.83±3% of control, n¼ 6,
Po0.05; t-test), while no change in mEPSC frequency was
observed (Supplementary Fig. 6B, 0.91±20% of control, n¼ 6,
P40.05; t-test). These results strongly indicate that miR124
expression results in the biogenesis of CP-AMPARs in neurons.

miR124 is required for HSP. It has been previously shown that
CP-AMPARs are expressed during neuronal inactivity, and
blockade of CP-AMPARs leads to the abolishment of homeostatic
regulation. We therefore hypothesized that miR124, via down-
regulating GluA2 expression, plays an important role in the
initiation of the homeostatic response. If so, the expression of
miR124 should be coupled with neuronal activity. To test this
idea, we performed RT–PCR to examine the effect of neuronal
inactivity on miR124 abundance. We found that incubation of
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hippocampal neurons with TTX/APV for 15 h resulted in 1.7-fold
increase in the amount of miR124 (Supplementary Fig. 7),
suggesting a role for miR124 in HSP under neuronal activity
deprivation. To test this possibility, we investigated whether
suppression of miR124 blocks HSP. DIV 11 cultured hippo-
campal neurons were transfected with the specific BS to neutralize
endogenous miR124. One day after transfection, cells were then
incubated with TTX/APV for 15 h. Given that HSP is expressed
by an elevated expression of GluA1-containing AMPARs, we
immunostained GluA1 following TTX/APV incubation. The
same batch of cultured neurons was transfected with an empty
vector as control. As expected, TTX/APV reliably induced a
homeostatic increase in GluA1 synaptic accumulation. However,
when endogenous miR124 was blocked by BS, TTX/APV failed to
trigger homeostatic changes in AMPAR expression (Fig. 5a,b,
non-transfected neighbouring cells: 136±9% of non-treatment
control, Po0.05, n¼ 272 puncta from 15 cells; BS transfected
neurons, 96±7% of non-treated control, P40.05, n¼ 245 puncta

from 15 cells; t-test). To further confirm the requirement of
miR124 function, we also transfected neurons with an
inhibitor siRNA against miR124. Similar to the effect of the BS,
transfection of the miR124 inhibitor led to a complete
abolishment of TTX/APV-induced homeostatic elevation in
GluA1 puncta intensity (Fig. 5c,d, non-transfected neighbouring
cells: 122±6% of the control, Po0.05, n¼ 326 puncta from 12
cells; BS transfected, 98±8% of the control, P40.05, n¼ 377
puncta from 10 cells; t-test). Similar to GluA1, 15 h TTX/APV
also induced a significant increase in synaptic GluA2 both in the
control and miR124-transfected neurons (Supplementary Fig. 8A,
surrounding: 137.7%±8.2%, n¼ 379 puncta from 17 cells;
miR124: 133.4%±5.7%, n¼ 425 puncta from 14 cells; t-test). In
addition, the homeostatic change in GluA2 was abolished by BS
(Supplementary Fig. 8B, surrounding: 135.9%±8.3%, n¼ 483
puncta from 16 cells; BS: 94.8%±13.5%, n¼ 527 puncta from 12
cells; t-test). These immunostaining data indicate the requirement
of miR124 function in homeostatic AMPAR expression.
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To further investigate the role of miR124 in homeostatic
regulation of synaptic transmission, AMPAR-mediated mEPSCs
were recorded from hippocampal cultures transfected with BS or
miR124 siRNA as above. Consistent with previous studies, a
significant increase in mEPSC amplitude was induced following
15 h incubation with TTX/APV. In contrast, no significant
alterations in mEPSC amplitude by TTX/APV treatment was
detected in cells expressing either the BS construct or the siRNA
inhibitor of miR124 (Fig. 5e,f, BS: 104±7%, n¼ 6, P40.05;
siRNA: 103±8%, n¼ 6, P40.05; t-test). Together, these findings
indicate that miR124 function is necessary for the expression of
HSP.

To determine the role of CP-AMPARs for HSP, neurons
were transfected with miR124 and incubated with a mixture of
TTX/APVþ PhTx for 12 h. We found that HSP was completely
abolished in both the control and miR124-expressing neurons
(Supplementary Fig. 9 and Supplementary Table 1, control
TTX/APV/PhTX¼ 0.95±0.05 of control, n¼ 6, P40.05; miR124
TTX/APV/PhTx¼ 0.97±0.05 of control, n¼ 7, P40.05; t-test),
indicating that GluA2-lacking AMPARs are required for HSP
expression.

miR124 facilitates the initiation of HSP. If miR124 leads to the
formation of CP-AMPARs, which are required for the expression
of homeostatic plasticity, we reasoned that the homeostatic
response might be facilitated by miR124. We therefore explored
the role of miR124 in the time course of the induction of the
homeostatic response. In most studies, significant homeostatic
responses were detected following 12–48 h incubation with
TTX or TTX/APV. We reasoned that if GluA2-lacking receptors
serve as a rate-limiting factor that allows inactivity to initiate
homeostatic events, increased amount of miR124 should be able
to expedite homeostatic induction via CP-AMPARs. To test this
idea, 48 h after miR124 transfection, hippocampal neurons were
incubated with TTX/APV for various periods of time. With an
incubation time of 4 h, a significant increase in GluA1 puncta
intensity was detectable in neurons transfected with miR124
(Fig. 6a,b, 4 h TTX/APV miR124 neurons: 138±7% of control,
Po0.05, n¼ 461 puncta from 16 cells; t-test). In contrast,
for non-transfected neighbouring cells in the same culture,
no homeostatic increase in GluA1 was detected (Fig. 6a,b,
non-treated miR124 neurons: 103±6% of non-transfected
cells, P40.05, n¼ 437 puncta from 18 cells; 4 h TTX/APV
surrounding neurons: 106±7% of control, P40.05, n¼ 417
puncta from 15 cells; t-test). However, when GluA1 accumulation
was examined after 36 h TTX/APV treatment, the same level
of increase was observed in both miR124 transfected and non-
transfected cells (Fig. 6a,b, 36 h miR124 neurons: 102±4% of
non-transfected surrounding control, P40.05, n¼ 378 puncta
from 10 cells; t-test). These data indicate that pre-expression of
miR124 facilitates the expression of homeostatic plasticity, but
not the strength or magnitude of the response. With a sufficient
period of activity suppression, the homeostatic response will
reach the same extent between miR124-transfected and the
control neurons.

Using a similar time course of TTX/APV treatment, we also
measured mEPSCs as an indicator of the functional homeostatic
response. In our cultures, homeostatic increases in mEPSC
amplitude could be reliably obtained after 12 h TTX/APV
incubation, but no significant increase was detected when we
shortened the recording time to 8 h. However, in neurons
transfected with miR124, a significant increase in mEPSC
amplitude was induced 8 h after activity inhibition (Fig. 6c,d,
DsRed control: 104±4% of basal control, n¼ 6; miR124:
117±3%, n¼ 6, Po0.05; t-test). A higher response was detected
in miR124 neurons at 12 h treatment (DsRed control: 116±3% of
basal control, n¼ 6; miR124: 131±3%, n¼ 6, Po0.05; t-test). At
24 h TTX/APV incubation, we detected a more robust, but
comparable level of increase in mEPSC amplitude in both the
control and miR124-transfected neurons (Fig. 6c,d, DsRed:
143±4% of basal control, n¼ 5; miR124: 148±4%, n¼ 5;
t-test), indicating a time-dependent saturation. On mEPSCs from
neurons of 12 h TTX/APV treatment, analysis of the cumulative
probability of amplitude and frequency showed typical homeo-
static scaling of mEPSC amplitude with no change in inter-event
intervals (Supplementary Fig. 6C,D).

To determine the contribution of normal versus CP-AMPARs
in HSP, we added PhTx at the time of recording following 12 h
TTX/APV incubation in cells transfected with miR124, or a
scrambled control. We found that after induction of HSP,
application of PhTx during recordings led to a significant
decrease in mEPSC amplitude in neurons overexpressing
miR124, but not in the control cells. However, in the presence
of PhTx, the remaining currents were still significantly
higher than the currents under basal conditions. These results
indicate that HSP is expressed by GluA2-containing AMPARs
under normal conditions, whereas both GluA2-containing and
GluA2-lacking AMPARs contribute to HSP under the condition
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of miR124 overexpression (Supplementary Fig. 10 and
Supplementary Table 2, 12 h TTX/APV control¼ 1.22±0.05
of basal control, n¼ 6, Po0.01; 12 h TTX/APV miR124¼
1.38±0.05, n¼ 6, Po0.001; 12 h TTX/APV controlþ
PhTx¼ 1.14±0.04, n¼ 9, Po0.05; 12 h TTX/APV miR124þ
PhTx¼ 1.19±0.04, n¼ 9, Po0.01; t-test).

The transcription factor EVI1 regulates miR124 expression.
Our data indicate a crucial role for miR124 in HSP. We wanted to
further understand how miR124 expression is regulated in an
activity-dependent manner. In non-neuronal cells, the tran-
scription factor EVI1 has been shown to regulate miR124
expression41. EVI1 binds to the regulatory region of the miR124
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gene to suppress its transcription42,43. Consistent with this, in
HEK cells, we found that knockdown of EVI1 by an EVI1-specific
siRNA led to increased miR124 expression (Fig. 7a). We
hypothesized that activity deprivation may lead to
downregulation of EVI1-dependent suppression, resulting in
miR124 expression and the biogenesis of CP-AMPARs. To test
this idea, we first examined EVI1 subcellular localization.

Immunostaining in hippocampal neurons showed that EVI1
was mainly localized at the soma with further enrichment in the
nucleus in a punctate pattern (Fig. 7b). Next, we examined the
interaction between EVI1 and the miR124 promoter. Using
cortical neuron lysates, we immunoprecipitated EVI1 and
performed ChIP assays to examine the presence of the miR124
promoter sequence by PCR amplification. We found that the
miR124 promoter was indeed co-immunoprecipitated with EVI1
(Supplementary Fig. 11), confirming an association of EVI1 with
the regulatory region in the miR124 gene in neurons.

Involvement of EVI1 and HDAC1 in HSP. Having established
that EVI1 regulates miR124 expression, we investigated the role
of EVI1 in HSP. In neurons co-transfected with EVI1 and GFP,
or GFP alone as a control, 15 h incubation with TTX/APV caused
a significant increase in GluA1 puncta in both the GFP-only
control and neighbouring, non-transfected cells (Fig. 7c,d,
GFP-only: 142±4% of non-treated control, Po0.05, n¼ 694
puncta from 18 cells; neighbouring cells: 144±5% of non-treated
control, Po0.05, n¼ 547 puncta from 17 cells; t-test). In contrast,
the same treatment failed to induce a significant change in GluA1
in EVI1-transfected cells (EVI1: 110±6% of non-treated control,
P40.05, n¼ 531 puncta from 16 cells; neighbouring cells:
143±5% of non-treated control; t-test). Consistent with this,
in EVI1 transfected neurons, electrophysiological recordings of
mEPSCs revealed a typical homeostatic increase in mEPSC
amplitude in non-transfected cells, but not in cells overexpressing
EVI1 (Fig. 7e,f).

EVI1 has been suggested to associate with HDAC1, a histone
deacetylase that has an important role in transcriptional
suppression via histone deacetylation44,45. We reasoned that the
EVI1–HDAC1 interaction, and thus the inhibitory effect in
gene transcription may be controlled by neuronal activity. We
therefore immunoprecipitated EVI1 from lysates of cultured
cortical neurons, and probed for HDAC1. Indeed, HDAC1 was
successfully co-immunoprecipitated with EVI1. Importantly,
activity deprivation by TTX/APV treatment induced a
reduction in the EVI1–HDAC1 interaction (Fig. 7g). The
interaction between EVI1 and HDAC1 was also confirmed by
reversed co-immunoprecipitation assays (Supplementary Fig. 12).
To further determine the role of HDAC1 in homeostatic
regulation, hippocampal neurons were transfected with
HDAC1, then incubated with TTX/APV for 15 h. We found
that in contrast to the homeostatic increase in synaptic GluA1 in
GFP-transfected control cells, inactivity treatment failed to cause
changes in neurons overexpressing HDAC1 (Fig. 7h). Taken
together, these findings are in agreement with an important
role for EVI1 and HDAC1 in activity deprivation-induced
HSP, presumably via regulation of miR124 expression and the
generation of CP-AMPARs.

Discussion
HSP is crucial for the maintenance of neuronal and neural circuit
stability, but the underlying cellular and molecular mechanisms
remain less well understood. Our data identify miR124 as an
important mediator in the expression of the homeostatic
response. miR124 specifically suppresses GluA2 expression via
targeting on the 30-UTR of GluA2 mRNA, leading to the
biogenesis of CP-AMPARs. During our paper preparation and
revision for publication, a few studies have been published
showing the role of miR124 on GluA2 expression46,47, consistent
and in support of our findings. We find that blockade of miR124
function abolishes the inactivity-induced homeostatic response in
AMPAR synaptic accumulation and mEPSC amplitude, strongly
indicating a key role for miR124 in HSP. Immunostaining of
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GluA1, which was used to indicate AMPAR levels, showed a
significant increase during HSP. Thus, the increased AMPARs are
GluA1-containing. Following HSP induction, addition of PhTx
had little effect on the elevated AMPAR-mediated currents,
indicating that most of the AMPARs are also GluA2-containing.
Therefore, normal AMPARs containing both GluA1 and GluA2
are inserted at synapses during HSP expression. In comparison,
in neurons overexpressing miR124, PhTx resulted in a marked
decrease in AMPA currents after neuronal inhibition, suggesting
that both normal and GluA2-lacking AMPARs contribute to HSP
with the overexpression of miR124. Likely, under physiological

conditions, neuronal inactivity triggers transient upregulation in
miR124, leading to temporary formation of GluA2-lacking
AMPARs for HSP initiation, followed by enhanced synaptic
insertion of normal, GluA1/GluA2-containing AMPARs for
HSP maintenance21. During HSP expression, the switch from
CP-AMPARs to normal AMPARs has been observed in many
studies17,21,48. For instance, during TTX or APV-induced HSP,
mEPSC currents are highly sensitive to the CP-AMPAR-specific
antagonist Naspm. However, 24 h after activity inhibition, Naspm
only has a minimal effect on mEPSC amplitude17, indicating that
both GluA2-lacking and GluA2-containing AMPARs are utilized
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for the homeostatic upregulation of synaptic strength48. Indeed,
knockdown of GluA2 abolishes homeostatic response49.
Consistent with the involvement of GluA2-containing AMPARs
in HSP expression, the amounts of both GluA1 and GluA2 are
increased in neuronal inactivity-dependent scaling8,50. However,
in retinoic acid-induced HSP, the homeostatic increase in mEPSC
amplitude seems to result solely from CP-AMPARs because the
HSP response can be completely abolished by PhTx18. Thus, the
relative contribution of CP-AMPARs in HSP varies depending on
the paradigms, and probably also on the time course of HSP
expression and/or the developmental stage of the neurons51.

Interestingly, although miR124 facilitates the expression of
homeostatic plasticity, miR124 overexpression alone does not
induce the response. This finding indicates that miR124, and thus
CP-AMPARs, are necessary but not sufficient for the initiation of
the homeostatic response. We hypothesize that additional
factor(s) induced by activity suppression, such as retinoic acid18,
are required. It is also possible that miR124 initiates some
HSP-antagonizing processes, which can be suppressed by
TTX/APV. Similar to the complex signaling cascades in
Hebbian synaptic plasticity, future studies are expected to
identify additional key molecules involved in HSP.

miR124 is one of the most abundant microRNAs in the
nervous system. In the rat brain, miR124 levels increase 13-fold
from E12 to E21 (ref. 30), indicating a role in neural development.
Indeed, miR124 has been shown to be critically involved in
neurogenesis, migration, morphogenesis and neuronal cell
death38. An appropriate level of miR124 seems important for
brain function52. In mice, knockout of the cAMP sensor protein
EPAC results in abnormal synaptic plasticity, deficits in spatial
learning and social interactions, accompanied by increased
expression of miR124. Remarkably, suppression of miR124
completely rescues, whereas miR124 expression mimics, these
phenotypes53. This is consistent with the key role of miR124 in
long-term plasticity of synaptic function39. miRNAs are
implicated in neurodevelopmental disorders such as Fragile X
syndrome and neurodegenerative diseases including Alzheimer’s
disease25,54–56. Alterations in miR124 show sensitivity to brain
injuries and can be a biomarker for stroke57,58. Consistent
with this, a recent study shows that expression of GluA2/3/4-
containing AMPARs is regulated by miR124, which is implicated
in the pathology of frontotemporal dementia46.

Glutamate receptors and their downstream signaling proteins
are controlled by microRNAs. MiR219 has been shown to
regulate NMDA receptor-dependent behavior via targeting on
calcium/calmodulin-dependent protein kinase II (CaMKII)59.
In Drosophila neuromuscular junctions, where the glutamatergic
system is used for transmission, suppression of miRNA
production by postsynaptic knockdown of dicer-1 results in
elevated amounts of AMPA receptor subunits60. In demyelinated
hippocampal neurons, an increase in miR124 is correlated with a
reduction in GluA1 and GluA2 (ref. 61).

Our data demonstrate that miR124 expression is coupled to
neuronal activity. Suppression of neuronal activity by TTX/APV
induces an increase in the amount of miR124, supporting a role
for miR124 in the homeostatic response. To further understand
the molecular regulatory process, we find that in neurons, miR124
transcription is controlled by an inhibitory transcription factor
EVI1. In peripheral cells and cancer cells, EVI1 has been shown to
bind to the promoter region of miR124 and suppresses its
transcription. In neurons, EVI1 is highly expressed in the nucleus
forming a few punctate hot spots, presumably sites of specific
promoter regions, including that for miR124. EVI1 is also
distributed in the cytosol and the dendrites at a reduced level. In
neurons, the exact molecular events by which EVI1 suppresses
miR124 expression have not been studied. Earlier studies in

non-neuronal cells suggest that EVI1 can bind to the transcrip-
tion suppressor CtBP, which can then bind to the deacetylase
HDAC1. Histone acetylation plays a key role in the epigenetic
regulation of gene transcription, in which acetylation of histones
activates gene transcription. The reverse process, histone
deacetylation by HDACs, is a well-known mechanism for gene
silencing. In support of this molecular machinery, we find that in
neurons EVI1 is indeed associated with HDAC1, and the
interaction is weakened by neuronal activity suppression. How
neuronal activity controls the EVI1–HDAC1 association remains
unclear, but it could result from a change in protein association
affinity via modifications such as protein phosphorylation. The
role of EVI1 in neurons is probably to recruit HDAC1 to the
proximity of a target gene, for example, miR124, via their
association, so as to regulate the chromatin acetylation status.
Importantly, overexpression of EVI1 or HDAC1 completely
abolished inactivity-induced HSP, consistent with their inhibitory
effects on miR124 expression.

Methods
Culture of primary hippocampal neurons. Hippocampi from E18 rat embryos
(Sprague Dawley) were digested with papain (0.1 mg ml� 1 in HBSS, 37 �C for
20 min), washed and triturated with a serological pipette. To ensure high-quality
cell adhesion and growth, coverslips were pre-incubated in nitric acid overnight
and thoroughly washed with four changes of large amounts of water every 2 h.
After a 70% ethanol wash and flame sterilization, glass coverslips were coated with
poly-L-lysine (Sigma, 0.1 mg ml� 1) overnight and washed again before being
placed into culture dishes containing plating medium. Neurons were counted and
plated onto 60 mm Petri dishes containing five coverslips with 18 mm diameter and
0.1 mm thickness (0.7� 106 cells per 60 mm dish). The plating medium was MEM
containing 10% fetal bovine serum (FBS), 5% horse serum (HS), 31 mg cysteine,
5 mM Glutamax and 1% P/S. 24 h after plating, the culture medium was replaced
with feeding medium (neurobasal medium supplemented with 1% HS, 2% B-27,
2 mM Glutamax and 1% P/S). Thereafter, hippocampal neurons were fed twice a
week with 2 ml feeding medium per dish until use. All the procedures involving
animal use in this study were in compliance with the policies of the Institutional
Animal Care and Use Committee (IACUC) at Boston University, following the
National Institutes of Health (NIH) guide for the care and use of Laboratory
animals (NIH Publications No. 8023, revised 1978). Approved experimental
protocol number: 11–039. The number of animals used in this study has been
minimized.

Neuron and HEK cell transfection. Coverslips of 12-day-old hippocampal
neurons were first transferred to a 12-well plate and transfected with Lipofectamine
2000 (Invitrogen) according to the manufacturer’s protocol. For one coverslip,
0.8 mg of DNA and Lipofectamine (0.8 ml) were separately diluted with EBSS,
combined and incubated at room temperature for 20 min. The DNA complex was
then added to a well containing 0.5 ml of feeding medium and kept in the incu-
bator. After 4 h incubation, the transfection medium was removed and replaced
with fresh feeding medium until the next medium change or use for experiments.

HEK cells (ATCC) were cultured and split into six-well plates (1 million per
well) to grow overnight before transfection. The transfection process for HEK cells
was identical to that described for neurons except that 4 ml Lipofectamine 2000 was
mixed with 4 mg target plasmid to transfect each well of cells. Medium was changed
4 h post transfection and HEK cells were further cultured an additional 24 h to
ensure target protein expression before cells were collected for western blot
analysis. HEK cells were cultured in the following medium: 1� DMEM with 10%
FBS, 1% P/S and 1% l-Glutamine. MiR124 and RFP were cloned into the pFUGW
vector (Addgene, #14883) between the BamHI and EcoRI sites. GFP-GluA1 and
GFP-GluA2 constructs were generous gifts from the Lu Chen Lab. The mouse
GluA1 30-UTR and GluA2 30-UTR (Accession #s: NM-008165 and NM_013540)
were amplified from mouse hippocampal cDNA. The UTR fragments and GFP
were then inserted into pCI-Neo (Promega). The EVI1 construct was a generous
gift from the Zhijian Qian lab. Two tandem repeats of the miR124 BS sequence
(50-TGGCATTCACAAGTGCCTTAA-30) were cloned into pEGFP-N1. A pool of
4 miR124 siRNAs was purchased from Qiagen (Cat. #: GS406907).

Total RNA extraction and quantitative real-time PCR. Total RNA was purified
using TRIzol (Invitrogen) and treated with DNAse to remove DNA contamination
from hippocampal cultures. Six micrograms total RNA is recovered from 60 mm
culture dish based on the optical density at 260 nm. The optical density A260/A280
ratio is 41.9. To analyse the expression levels of the mature miR124 sequence
(50-UGUGUUCACAGUGGACCUUGAU-30), 2 mg of total RNA was reverse
transcribed and quantitative real-time PCR (qRT-PCR) was performed with a 7300
real-time PCR system (Applied Biosystems) using a TaqMan mir124 assay kit
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(Applied Biosystems. Cat. #: 4426961). Transcript levels were normalized to the
mature U6 snRNA sequence (50-GTGCTCGCTTCGGCAGCACATATACTAAAA
TTGGAACGATACAGAGAAGATTAGCATGGCCCCTGCGAGGATGACACGC
AAATTCGTGAAGCGTTCCATATT-30) using a micro RNA Taqman assay
(Applied Biosystems, Cat. # 4427975).

Immunocytochemistry. Hippocampal neurons were washed with ACSF and fixed
with 4% paraformaldehyde/4% sucrose for 10 min on ice, permeabilized with 0.25%
Triton X-100 (on ice, 10 min) or stained without permeabilization for surface
labelling. Coverslips with neurons were blocked with 10% normal goat serum
(NGS) in phosphate-buffered saline (PBS) for 1 h and then incubated with primary
antibodies dissolved in 5% NGS in PBS for 2 h at room temperature. The cells were
then washed four times with PBS and incubated with fluorescent Alexa Fluor-
conjugated secondary antibodies (1:600, Thermo Fisher) for 1 h for visualization.
For surface staining, live neurons were incubated with antibodies against the
extracellular amino (N) termini of GluA2 (1:100) in culture medium in the
incubator for 10 min. Plates were then placed on ice and washed four times
with ACSF. After fixation, the cells were blocked and incubated with fluorescent
secondary antibodies as above. The specificity of surface labelling was confirmed by
a lack of intrasoma immunointensity and a lack of staining by incubation with
GluA2 carboxy (C)-terminal antibodies.

The following primary antibodies were used: GluA1C (Rabbit, 1:400;
homemade) and GluA1N (Mouse, 1:100; Millipore), EV1 (Rabbit, 1:400, Abcam);
PSD-95 (Mouse, 1:400; Thermo Fisher); GluN1C (Mouse, 1:200; Millipore); GABA
a1 (Rabbit, 1:600, Abcam).

Co-immunoprecipitation and western blot. Two-week-old cultured cortical
neurons were incubated with TTX/APV for 1–2 h and harvested in ice-cold lysis
buffer (PBS supplemented with 1% Triton X-100, 0.5% deoxycholate, 0.1% SDS
and 1:300 protease inhibitor cocktail containing AEBSF, Aprotinin, Bedysyin,
E-64, Leupeptin and Pepstatin A, Sigma) and rotated at 4 �C for 1 h. Following
centrifugation of the lysates at 14,000g for 15 min, supernatants were incubated
overnight on rotation at 4 �C with anti-EVI1 antibodies, (1 mg, Abcam) followed by
the addition of 40 ml of 50% slurry of protein A-Sepharose beads (Santa Cruz
Biotechnology). Immunoprecipitates were washed three times with lysis buffer and
resuspended in 30 ml of 2� Laemmli buffer and denatured on a 95 �C heat block
for 10 min. Immunoprecipitates were analysed by western blotting. The full
western blots are shown as Supplementary Figs 13–16.

The following antibodies were used for western blot: GFP (Mouse, 1:500,
Abcam); GluA1C (Rabbit, 1:1,000; homemade) and GluA1N (Mouse, 1:1,000;
Millipore), EV1 (Rabbit, 1:1,000, Abcam); PSD-95 (Mouse, 1:1,000; Thermo
Fisher); HDAC1 (Rabbit, 1:1,000, Cell Signaling).

DNA chip assay. DIV14 cultured cortical neurons (2� 107) were washed once
with 1� PBS. Cell fixation was performed by the addition of 37% formaldehyde to
0.75% final concentration and rocking gently for 10 min at room temperature. One
millilitre of 1.25 M glycine for every 9 ml crosslinking solution was added to
quench the reaction. The cells were scraped into 5 ml cold PBS and washed with
cold PBS and lysed with FA lysis buffer (50 mM HEPES-KOH pH 7.5, 140 mM
NaCl, 1 mM EDTA pH 8, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS,
protease inhibitors) and sonicated 10 times with 20 s on/off. The sonicated lysate
was then diluted 1:10 with RIPA buffer, and incubated with 2 mg EVI1 antibodies
or negative control IgG for 1 h, followed by the addition of 30 ml protein A/G
agarose beads for overnight on rotation. Antibody-bound EVI1 complexes were
precipitated by centrifugation for 1 min at 2,000 g at 4 �C. Precipitates were washed
four times with washing buffer. Antibody–protein complexes were eluted with
freshly prepared, pre-heated elution buffer (1% SDS, 100 mM NaHCO3) at 65 �C.
Sodium chloride was added to the elutions and input samples to a final con-
centration of 200 mM NaCl and heated at 65 �C for 4 h. RNase A and proteinase K
were added to digest RNA and protein. A 2 ml sample was used for PCR reactions
using primers (50-GGAGAAGTGTGGGCTCCTC-30 and 50-AATCAAGGTCC
GCTGTGAAC-30) specific for the miR124–3 regulatory region.

Imaging. Images were acquired on a Zeiss Axiovert 200 M fluorescent microscope
using a � 63 oil-immersion objective (N.A. 1.4; ref. 62). Immunostained coverslips
were mounted onto slides by using Prolong Gold anti-fade reagent and kept in the
dark for 4 h before imaging. A DIC snap was first taken for morphology purposes.
The exposure time for the fluorescence signal was first set automatically by the
software and adjusted manually so that the signals were within the full dynamic
range. Either the glow scale look-up table or the histogram was used to monitor the
saturation level. Once the parameters were set, they were fixed and used
throughout the imaging for the full set of experiments. Usually, —three to five
sections of proximal dendrites per cell in 10–20 cells were used for analysis.
AMPAR clusters were individually inspected to avoid contamination with
nonspecific signals.

Patch-clamp recordings. mEPSC recordings were performed as described
previously63,64. Eleven-day-old cultured hippocampal neurons were transfected

with plasmids as indicated and then supplemented with TTX (1 mM, Tocris
Bioscience)/APV (50 mM, Tocris Bioscience) 48 h later for 15 h to induce
homeostatic regulation. The coverslip was then transferred to a recording chamber
with an extracellular solution containing (in mM) 140 NaCl, 3 KCl, 1.5 MgCl2, 2.5
CaCl2, 11 glucose and 10 HEPES (pH 7.4), which was supplemented with TTX
(1 mM) to block action potentials, APV (50mM) to block NMDAR and bicuculline
(Sigma Aldrich, 20mM) to block GABAA receptor-mediated IPSCs. Cells that were
co-expressing fluorescent protein were visually identified with a Zeiss Axiovert
200 M fluorescent microscope before recording. Whole-cell voltage-clamp
recordings were made with patch pipettes pulled to an average resistance of
2–4 MO and filled with an intracellular solution containing (in mM) 100 Cs-
methanesulfonate, 10 CsCl, 10 HEPES, 0.2 EGTA, 4 Mg-ATP, 0.3 Na-GTP and 10
Na-phosphocreatine (pH 7.4), with the membrane potential clamped at � 70 mV
with an average access resistance of 10–15 MO. Recordings started 10 min after
establishing whole-cell configuration to ensure equilibration between the pipette
solution and the cytosol. mEPSCs were recorded with an Axopatch 200B amplifier,
displayed and recorded digitally on a computer for subsequent off-line analysis by
Clampfit (pClamp version 10). For I–V curves, recordings were made from the
same cell during a series of voltage steps. In some experiments, earlier time points
were recorded to examine facilitated expression of the homeostatic response.
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