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Abstract 

Purpose:  Critically ill COVID-19 patients have significantly increased risk of death. 
Although several circulating biomarkers are thought to be related to COVID-19 severity, 
few studies have focused on the characteristics of critically ill patients with different 
outcomes. The objective of this study was to perform a longitudinal investigation of 
the potential mechanisms affecting the prognosis of critically ill COVID-19 patients.

Methods:  In addition to clinical data, 113 whole blood samples and 85 serum samples 
were collected from 33 severe and critical COVID-19 patients without selected comor-
bidities. Multi-omics analysis was then performed using longitudinal samples.

Results:  Obvious transcriptional transitions were more frequent in critical survivors 
than in critical non-survivors, indicating that phase transition may be related to survival. 
Based on analysis of differentially expressed genes during transition, the erythrocyte 
differentiation pathway was significantly enriched. Furthermore, clinical data indicated 
that red blood cell counts showed greater fluctuation in survivors than in non-survi-
vors. Moreover, declining red blood cell counts and hemoglobin levels were validated 
as prognostic markers of poor outcome in an independent cohort of 114 critical 
COVID-19 patients. Protein–metabolite–lipid network analysis indicated that trypto-
phan metabolism and melatonin may contribute to molecular transitions in critical 
COVID-19 patients with different outcomes.

Conclusions:  This study systematically and comprehensively depicted the longitu-
dinal hallmarks of critical COVID-19 patients and indicated that multi-omics transition 
may impact the prognosis.

Take home message:  Frequent transcriptional phase transitions may contribute 
to outcome in critically ill COVID-19 patients. Furthermore, fluctuation in red blood 
cell and hemoglobin levels may relate to poor prognosis. The biological function of 
melatonin was suppressed in COVID-19 non-survivors, which may provide a potential 
theoretical basis for clinical administration.
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Introduction
Coronavirus disease 2019 (COVID-19) was declared a global pandemic by the World 
Health Organization (WHO) on March 11, 2020. Despite an overall 2% mortality rate 
in COVID-19 patients, 53.8–61.5% of critically ill patients deceased within 28  days of 
admission to intensive care units (ICU) [1–3]. Thus, there is an urgent medical need for 
the overall assessment of patients’ condition and early intervention for these high-fatal-
ity cases.

Time-series sampling of patients can capture the dynamic nature of disease over time 
and highlight the biological changes that occur as disease progresses. Previous longitudi-
nal studies of COVID-19 have primarily focused on the immune response against patho-
gens [4, 5]. At present, sequencing-based multiscale changes among critical COVID-19 
patients and their potential correlation with clinical trajectory remain unknown. Explo-
ration of these molecular changes could contribute to our understanding of COVID-19 
and help uncover potential therapeutic targets. Many studies have shown that comor-
bidities impact the COVID-19 prognosis [6, 7]. Therefore, we studied patients without 
selected comorbidities (see Methods).

In this study, we acquired longitudinal transcriptomic, lipidomic, proteomic, and 
metabolomic data from COVID-19 patients. Based on these multi-omics data, we iden-
tified patients’ specific conditions in ICU-admitted COVID-19 patients, and signifi-
cant variations were further identified during hospitalization. Core pathways related to 
changes in disease condition in those patients that survived were also investigated.

Results
Overview of study design and COVID‑19 samples demographics

To investigate the physiological and biochemical changes in COVID-19 patients, we 
collected longitudinal blood samples from 33 COVID-19 patients, including 18 severe 
patients, 11 critical non-survivors, and 4 critical survivors (Fig. 1a). In total, we assessed 
113 whole blood samples and 85 serum samples collected over 2–7 longitudinal time-
points from 0 to 55 days after hospital admission (Fig. 1b). There were no significant dif-
ferences in age or sex between critical non-survivors and survivors, and the effects of age 
and sex were adjusted in our further analysis (Fig. 1c, Additional file 1: Table S1). Basic 
demographic information stratified by disease severity is detailed in Additional file  1: 
Table S1.

Clinical parameters could not distinguish critical survivors and non‑survivors

Among the 20 laboratory parameters measured, four did not show significant differences 
among the three groups. In contrast, 8 parameters, such as white blood cells (WBC), 
neutrophils (NEU), platelets (PLT), hemoglobin (Hb), C-reactive protein (CRP), inter-
leukin-6 (IL-6), IL-10, and IL-2R, showed significant differences between the severe and 
critical groups. However, these differences did not exist between critical non-survivors 
and survivors (Fig. 1d). Therefore, we inferred that severe and critical patients could be 
clearly distinguished by clinical parameters, but clinical data resolution was insufficient 
to clarify critical patients with different outcomes.
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Multi‑omics analysis identified distinct features in COVID‑19 patients with different 

severity

We acquired proteomic, metabolomic, and lipidomic data from sequencing serum sam-
ples, and transcriptomic data from whole blood cells. Differential expression analy-
ses of the multi-omics profiles were separately performed using multiple testing, with 
2101 mRNAs, 3 proteins, 38 metabolites, and 10 lipids identified as significantly altered 
between severe and critical samples (Additional file  3: Figure S1). Many differentially 
expressed genes were observed in the transcriptomic data, suggesting that transcrip-
tomes may be a good data source to assess patient status.

Phase transition in transcriptome of critically ill COVID‑19 patients

To assess critical patients with different clinical outcomes and better identify the key 
turnover in their in-hospital period, we used 113 transcriptomic profiles to perform 
principal component analysis (PCA) and clustering analysis. PCA roughly divided 
patient samples into three categories that were highly correlated with disease severity 
and clinical outcome (Fig. 2a). The distribution of the three clusters showed that each 
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Fig. 1  Patient enrollment, study design and different clinical parameters of COVID-19 patients. a Summary 
of recruited COVID-19 patients, including 18 severe patients, 4 critical survivors, and 11 critical non-survivors. 
b Admission days and multi-omics sample collection time of COVID-19 patients. Datasets contained 
113 transcriptome, 85 proteome, 85 metabolome, 85 lipidome were collected from 33 patients. Grey 
bar records time from disease onset to admission by weeks; colored bar records time from admission to 
outcome-time-point by days. Points represent multi-omics data sampling time. The details of enrolled 
patients were shown in Additional file 1: Table S1. c The age and gender distribution and comparison of 33 
COVID-19 patients. *p < 0.05. d The clinical parameters of COVID-19 patients. 123 clinical data were collected. 
****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. WBC, white blood cells; Lymph, lymphocyte; NEU, neutrophil; 
PLT, platelet; Hb, hemoglobin; ALT, alanine transaminase; AST, aspartate aminotransferase; TBIL, total bilirubin; 
ALB, albumin; GLO, globulin; CRP, C-reactive protein; IL6, interleukin-6; IL10, interleukin-10; IL8, interleukin-10; 
TNFα, tumor necrosis factor alpha; IL1β, interleukin-1 beta; IL2R, Interleukin-2 receptor; ESR, erythrocyte 
sedimentation rate; PCT, procalcitonin; D-dimer, fibrin D-dimer
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cluster mainly corresponded to one group of the patients (Fig. 2a). However, Cluster 2 
contained approximately 30% of non-survivor samples suggesting that the longitudinal 
samples of critical survivors had a different gene expression pattern (Fig. 2a). We further 
displayed the clustering results in longitudinal order and found that most initial time-
points of critical patients were classified into Cluster 1 (Fig. 2b). Interestingly, after the 
first Cluster 1 time-points (P085, P086 and P087), in-hospital time-points of three criti-
cal survivors transformed from Cluster 1 to Cluster 2, while overall cluster transition 
was much lower among critical non-survivors (Fig. 2b). These results indicate that phase 
transition in critical survivors, but not in non-survivors, may be an important reason for 
the different outcomes.

By analyzing the differential expression of genes between Cluster 1 and Cluster 2, 
we identified 1319 up-regulated and 478 down-regulated genes in Cluster 1 (Fig.  2c, 
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Fig. 2  Transcriptome features of phase transition between Cluster 1 and Cluster 2. a Left, PCA map for 
transcriptomics of 113 samples; right, the percentage of terminal status in each cluster. Dots represent 
samples. Three colors represent three clusters. Round, triangle, and square shapes represent patients’ 
terminal status. b Longitudinal distribution of samples in colors of clusters. 113 transcriptomic data were 
represented at time-points. Scatter plot shows the RNA sample collection time with dots colored by clusters. 
Red box-shadow represents Cluster 1-to-2 transition. Blue box-shadow represents Cluster 2-to-1 transition. 
c Heatmap of differential expression genes (logFC > 1) between Cluster 1 and Cluster 2. d Soft clustering 
of longitudinal gene dynamics in six patients containing Cluster 1-to-2 transition (FDR < 0.05). Each patient 
is individually analyzed by using mfuzz. X-axis represents the sampling time. e Validation of differential 
expressed gene from Cluster 1-to-2 by using Cluster 2-to-1 transcriptome data. Color represents the patient 
id. 85.2% up-regulated genes and 99.2% down-regulated genes show reversed expression levels. f GO terms 
and KEGG pathways for differentially expressed genes between Cluster 1 and Cluster 2. Top 3 terms and 
pathways are displayed. The size of dots denotes the -log10 of the p-value, the color denotes the expression 
level
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Additional file 2: Table S2). To further explore gene expression patterns over time, we 
selected six patients, whose transcriptome features changed from Cluster 1 to Cluster 
2 in adjacent time periods (Fig. 2b, red box-shadow). Differential genes were divided by 
Mfuzz software into clusters with similar patterns along longitudinal time-points. We 
identified differentially expressed genes in Cluster 1-to-2 transition in all six time-point 
pairs, including 263 up-regulated genes and 32 down-regulated genes (Fig.  2b–d). To 
verify the reliability of these 295 genes, we further selected 4 paired of adjacent time-
points showing Cluster 2-to-1 transfer, with 85.2% of down-regulated genes and 99.2% 
of up-regulated genes showing consistency (Fig. 2e, blue box-shadow). Thus, the expres-
sion of 295 genes showing cluster transition may be key factors that change during the 
time in which patients exhibit critical disease. Enrichment analysis further showed that, 
compared to Cluster 2, genes related to acute inflammation response decreased in Clus-
ter 1, while genes related to protein catabolism, erythrocyte differentiation, ferroptosis, 
and organelle disassembly increased (Fig. 2f ). These results suggest that cellular catabo-
lism was enhanced, but the immune response was somehow weakened in Cluster 1. As 
approximately 80% of Cluster 1 samples were from deceased patients, the overall phys-
iological changes observed in Cluster 1 may highlight the biological function of these 
pathways in COVID-19 patient prognosis (Fig. 2a).

As we collected multiple samples at different time-points of disease progression 
in each patient, the differences in sample number and sampling time may impact the 
results. We adjusted individual (different samples from the same patient) and sampling 
time (sampling day from disease onset), then re-analyzed the differentially expressed 
genes and their enriched pathways. Up-regulated genes were enriched in protein catabo-
lism, erythrocyte development, mitophagy, and ferroptosis, whereas down-regulated 
genes were related to endothelial cells (Additional file 4: Figure S2). The robustness of 
the up-regulated genes indicates that protein catabolism, erythrocyte development, 
mitophagy, and ferroptosis are likely to be major changes that occur during Clus-
ter 1-to-2 transition. We also assessed what clinical features contributed most to gene 
expression variance using the Adonis test (Additional file 4: Figure S2). Individual and 
sampling time ranked 3 and 6 in the list, suggesting that the donor and sampling time 
were not the most important factors. Interestingly, Hb ranked higher than sampling time 
(Additional file 4: Figure S2).

Dynamic changes in red blood cell (RBC) and Hb levels associated with prognosis in critical 

COVID‑19 patients

Based on transcriptomic data, the erythrocyte differentiation pathway was up-regulated, 
which aroused our interest in RBC. Therefore, we analyzed RBC and Hb levels in critical 
patients during their hospitalization. Longitudinal regression showed that RBC counts 
in 11 critical non-survivors gradually declined over time, and Hb values were highly cor-
related with RBC counts (Fig.  3a, Additional file  2: Table  S2). However, RBC and Hb 
levels of 4 critical survivors fluctuated constantly or gradually increased. The Radj

2 of the 
linear regression and normalized root mean square error (NRMSE) indicated that, com-
pared to the critical survivors, the instability of RBC values was significantly lower in 
critical non-survivors (Fig. 3a). Moreover, the expression levels of erythrocyte cell mark-
ers from the human cell landscape (HCL) were higher in Cluster 2 than in Cluster 1 [8]. 
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Although erythrocyte marker genes were highly expressed in Cluster 2, the expression 
of erythrocyte differentiation genes was higher in Cluster 1 (Fig. 3b). Thus, these results 
suggest that critical patients with different outcomes may have different trends in RBC 
and Hb levels.

To validate the above results, we collected RBC and Hb data from 114 independent 
COVID-19 critical patients without selected comorbidities (51 survivors and 63 non-
survivors). Consistently, RBC and Hb levels in critical survivors showed more significant 
fluctuation than critical non-survivors (Fig. 3c), indicating that a progressive decline in 
erythrocytes may be related to prognosis in critical patients. Yet, the underlying mecha-
nism of this potential correlation needs further investigation.

Protein–metabolite–lipid network analysis indicated activation of tryptophan metabolism 

in Cluster 1

The “cytokine storm” caused by the uncontrolled hyperproduction of proinflammatory 
cytokines and chemokines can be fatal in COVID-19 patients [2]. The altered inflam-
matory signaling is accompanied by a specific change in metabolites and metabolic 
processes [9]. Based on the relationships among proteins, metabolites, and lipids, we 
analyzed the protein–metabolite–lipid networks in 85 samples, with the significant 
changes during prognosis selected. Metabolites related to tryptophan metabolism, 
such as melatonin, 5-hydroxyindole-3-acetic acid, and l-kynurenine were significantly 
changed between Clusters 1 and 2. Melatonin, which is synthesized by a precursor pro-
vided by tryptophan metabolism, became negative regulation with multiple factors in 
Cluster 1 compared with Cluster 2. Furthermore, 5-hydroxyindole-3-acetic acid and 
l-kynurenine were positively correlated with most compounds in the network in Cluster 
1 and associated with increased expression levels (Fig. 4, Additional file 5: Figure S3). 
Considering the essential role of tryptophan metabolism in erythrocyte differentiation, 
the accelerated tryptophan metabolism in Cluster 1 may contribute to the observed 
enrichment in the erythrocyte differentiation pathway based on the transcriptomic data 
[10].
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Discussion
To better understand how multi-omics features of critical COVID-19 patients change 
over time, we profiled integrated studies of multiple molecular factors for 15 critical 
COVID-19 patients and 18 severe patients as a control population. By leveraging a 
multi-omics view on longitudinally collected samples, we identified various charac-
teristics between critical surviving and non-surviving COVID-19 patients.

Through gene expression, our evaluation of patient condition drafted a dynamic 
map over time. Coincidentally, most samples obtained from critical patients during 
hospital admission belonged to Cluster 1. The expression classification of three survi-
vors (P085, P086 and P087) changed from Cluster 1 to Cluster 2 during longitudinal 
analysis, which may be a crucial factor contributing to their survival (Fig.  2b). Fur-
thermore, transcriptomic analysis of temporal changes during Cluster 1-to-2 transi-
tion provided three major insights, including acute inflammation response, protein 
catabolism (especially autophagy and mitophagy), and ferroptosis (Fig.  2f ). Immu-
nological response was one of the most important pathways, while autophagy genes 
were up-regulated in Cluster 1-to-2 transition (Fig.  2f ). Although critical COVID-
19 patients who suffer from multiple organ dysfunction may exhibit dysregulation 
of many pathways, our research showed that activation of autophagy likely plays a 
central role in the prognosis of critical COVID-19 patients. Thus, effective therapies 
targeting the autophagy pathway may be promising therapeutic methods for COVID-
19 patients [11]. Our analysis indicated that critical COVID-19 patients could benefit 
from the inhibition of the autophagy pathway.

Notably, we identified genes related to changes in erythrocyte differentiation that 
have not been well explored in previous studies. Compared to critical survivors, the 
non-survivors showed obvious activation of the erythrocyte differentiation pathway. 
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Erythrocyte differentiation occurs in bone marrow, not peripheral blood. RBCs are 
reported to contain 8400 human genes, including erythrocyte differentiation genes 
[12]. The detected mRNAs in this study may be synthesized from previous pro-
cesses of differentiations. Our results showed that dynamic changes in RBCs, rather 
than their overall level, may be an essential indicator of critical COVID-19 patient 
prognosis.

This study has several limitations. Firstly, sample size is a major limitation for the reli-
ability of our statistical tests. Expanding the research population would increase the 
robustness of our conclusions. Another limitation is that the body mass index (BMI) 
information was incomplete in the current study, which may impact results as obesity is 
considered a strong predictor for poor prognosis [13, 14]. Moreover, other potential fac-
tors could account for the differences in critical non-survivors and survivors. For exam-
ple, the sampling interval was not unified across patients, so some crucial physiological 
and biochemical changes may have been missed in our study. In addition, the time from 
onset to sampling was not consistent in each patient. Different times (7–11  days) are 
considered as the demarcation line between the early and late phases of the disease [15–
18]. In our study, the earliest sampling date was 15 days after disease onset, resulting in 
a lack of samples collected during the early stage. Furthermore, in this study, age was 
significantly different between severe patients and critical non-survivors, consistent with 
the fact that older people exhibit a significantly higher fatality rate [19]. Although we 
adjusted for the effects of age in analysis, the significant differences may still impact our 
results, and may explain why the trend in RBC decline differed slightly between the vali-
dation and experimental groups (Fig. 3c). Nevertheless, as we collected multiple samples 
at different times in each patient with disease progression and validated the RBC and Hb 
results from a larger cohort, we believe that our results are consistent with real dynamic 
changes in COVID-19 patients.

In summary, we identified many different characteristics between critical COVID-19 
survivors and non-survivors by leveraging a multi-omics view on longitudinally col-
lected samples. Notably, transcriptional transition may be associated with the mortality 
and survival in critically ill COVID-19 patients. As critical non-survivors showed ele-
vated erythrocyte differentiation and decreased RBC, erythrocyte biomarkers may be a 
promising and sensitive approach for predicting patient prognosis, which has not been 
well explored in previous studies. Furthermore, the protein–metabolite–lipid network 
suggested that activation of tryptophan metabolism and melatonin function disorder 
may prompt metabolism impairment in patients with different outcomes.

Materials and methods
Ethics statement

The Institutional Review Board of Tongji Hospital, Tongji Medical College, Huazhong 
University of Science and Technology approved the study (TJ-IRB20200405). Informed 
consents were obtained from patients or their family members. The rest of blood 
samples using for standard diagnostic tests were collected, posing no extra burden to 
patients.
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Patient enrollment

Blood samples from 33 COVID-19 patients without any complications were collected at 
Tongji Hospital of Huazhong University of Science and Technology from 19th February 
2020 to 17th March 2020. A flowchart of sample preprocessing for this study is shown 
in Fig. 1a. Demographics and baseline characteristics of COVID-19 patients are shown 
in Additional file 1: Table S1. The mean age of the COVID-19 patients was 50.0 years 
old (standard deviation = 11.9), and the male:female ratio is 1.06:1. All patients were 
diagnosed in accordance with the guidelines for COVID-19 diagnosis and treatment 
(Trial Version 7) released by the National Health Commission of the People’s Republic 
of China. Selected patients were classified into two groups, including severely and criti-
cally ill. The critical state was defined with at least one of the following criteria: shock; 
acute respiratory distress syndrome (ARDS) requiring mechanical ventilation; and other 
organ dysfunction requiring admission to ICU. The severe state was defined with at least 
one of the following criteria: respiratory rate ≥ 30 times/min; arterial partial pressure of 
oxygen (PaO2)/fraction of inspired oxygen (FiO2) ≤ 300 mmHg; oxygen saturation ≤ 93% 
at resting state; and pulmonary imaging inspection showing significant injury progres-
sion by > 50% within 24–48  h. The definition of disease severity was consistent with 
previous study [20]. The exclusion criteria of comorbidities included hypertension, coro-
nary heart disease, diabetes, chronic obstructive pulmonary disease, malignancy, surgi-
cal history, chronic kidney disease, cerebrovascular disease, immunodeficiency disease, 
chronic hepatitis, and tuberculosis.

Sample preparation and nucleic acid extraction

Blood sample collection, blood cell separation, blood cell preservation, and serum pres-
ervation followed previous study [21]. After standard diagnostic tests, all anticoagu-
lated venous blood samples treated with ethylenediaminetetraacetic acid disodium salt 
(EDTA-2Na) were separated by centrifugation at 3000  rpm, then rested at room tem-
perature for 7 min. Whole blood cells were storage at − 80 °C. Before stored at − 80 °C, 
200-μL aliquot of serum mixing with 800 μL of ice-cold methanol and a 200-μL aliquot 
of serum mixing with 800 μL of ice-cold isopropanol were prepared.

We isolated mRNA from whole blood cells of each sample using a QIAGEN miRNeasy 
Mini Kit (217004, Qiagen) following the manufacturer’s instructions. RNA extraction of 
all samples was performed in a Biosafety III Laboratory with Level III protection.

Sequencing library construction and data generation

The mRNA library construction was performed as previously reported [21]. In total, 113 
transcriptome profiles were generated as follows: (1) rRNA was removed using RNase 
H; (2) globin RNA was removed using a QAIseq FastSelect RNA Removal Kit; (3) cDNA 
fragments purified by magnetic beads were successively mixed with End Repair Mix, and 
A-Tailing Mix by pipetting, followed by incubation; (4) PCR amplification; (5) library 
quality control and pooling cyclization were conducted. MiRNAs were enriched and 
purified, followed by adaptor ligation, unique molecular identifier (UMI)-labeled primer 
addition, and reverse transcription.
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Transcriptome mRNA libraries were sequenced by MGI2000 PE100 platform with 
100-bp paired-end reads, while small RNA libraries were sequenced by BGI500 platform 
with 50-bp single-end reads resulting in at least 20M reads for each library.

Proteomic analysis

Sera samples were processed as described previously [21] using data-independent acqui-
sition [22] strategy based on UltiMate 3000 UHPLC liquid chromatography (Thermo 
Scientific, San Jose, USA) and Q Exactive HF mass spectrometer (Thermo Scientific, San 
Jose, USA). Spectronaut software was utilized to analyze the raw data obtained from 85 
samples with default settings.

Metabolomic analysis

In total, 100 μL of serum from each sample was analyzed using a spectrometer, LC fol-
lowing previous procedures [21]. Raw metabolite data obtained from 85 samples were 
analyzed using Compound Discoverer v3.1 (Thermo Fisher Scientific, USA).

Lipidomic analysis

In brief, 100 μL of serum was analyzed using a Q Exactive mass spectrometer (Thermo 
Scientific, San Jose, USA) coupled with a Waters 2D UPLC (Waters, USA). Lipidsearch 
Version 4.1 (Thermo Fisher Scientific, USA) was employed to analyze the raw lipidomic 
data obtained from 85 samples.

Gene expression quantitation, differential expression analysis and clustering

In total, we sequenced 113 mRNA samples. Transcriptome raw reads filtration was per-
formed by SOAPnuke to remove low-quality reads (reads with low-quality base ratio 
(base quality < 5) > 20% and unknown base (’N’ base) ratio > 5%). Reads were aligned to 
rRNA using Bowtie2 (v2.2.5) [23, 24]. Clean reads were mapped to the human reference 
genome using HISAT2 [25]. Gene expression (FPKM) was quantified by RSEM [26]. 
Genes with FPKM > 0.1 in at least one sample were retained.

DEseq2 (v1.4.5) was used to analyze differential mRNA expression by setting sex 
and age as confounders. Genes with a Benjamini–Hochberg p-adjust value < 0.05 were 
defined as significantly differentially expressed. Functional enrichment analyses, includ-
ing GO term and KEGG pathway, were performed using Metascape with default param-
eters (p-value cutoff: 0.01; min enrichment: 1.5; pathway: GO Biological Process and 
KEGG Pathway) [27].

Principal component analysis (PCA) was performed to visualize transcriptome profiles 
and the unsupervised k-means clustering algorithm was used to cluster mRNA expres-
sion profiles, setting the initial cluster centers as 3, using the ade4 and stats R package.

Genes with an absolute value of log2FC greater than 1 between Cluster 1 and Cluster 
2 were clustered using R package Mfuzz after log2-transformation [28]. The minimum 
centroid distance (MCD) for a range of cluster numbers for estimation of optimized 
number of clusters was calculated. The MCD elbow was used to determine final num-
ber of clusters. Gene clusters that changed markedly from Cluster 1 to Cluster 2 in each 
individual were selected and intersected to identify genes that changed consistently in all 
patients with state transitions.



Page 11 of 14Sun et al. ICMx            (2021) 9:13 	

Estimation of cell proportion from bulk mRNA profiles

Cell heterogeneity and abundance were estimated from bulk mRNA profiles using 
CIBERSORTx and xCell [29, 30]. Cell types identified in more than half of samples 
were retained. Then, cell types that were significantly different in different status were 
retained.

Differential expression of proteins, metabolites, and lipids

In total, 85 expression data were log2 transformed and analyzed using limma [31] after 
removing confounding factors of sex and age. The P-values were adjusted using Benja-
mini and Hochberg. Significantly differentially expressed proteins, metabolites or lipids 
were defined using the criteria of p-adjust value < 0.05.

Heatmap expression profiles generation

All expression profiles, including mRNA, protein, metabolite, and lipid, removed con-
founders of sex and age using removeBatchEffect in R package limma. Processed expres-
sion matrix was used to plot a heatmap with the R package pheatmap.

Network construction based on differential co‑expression

To decipher dysregulated pathways in COVID-19 patients, a systems analysis frame-
work based on a differential co-expression (DC) network was constructed. Firstly, the R 
package DGCA was recruited to calculate differences in correlation between molecular 
(including protein, lipid, and metabolite) pairs in various conditions (non-ICU vs ICU 
and Cluster 1 vs Cluster 2) [32]. The Spearman method was used to evaluate the correla-
tion between each molecular pair, with only significantly differential correlations kept 
(p < 0.05). Three multiscale embedded networks were constructed using MEGENA for 
ICU comparison group, Cluster comparison group and identical differential correlation 
between them. Furthermore, to find highly connected molecules, which may have the 
same biological function, MEGENA was employed to detect their clustering structures 
in each network [33]. Finally, three networks, capturing significant differential correla-
tion in each comparison group were retained: DC network between ICU and non-ICU 
(2167 nodes, 4801 edges), DC network between Cluster 1 and Cluster 2 (2167 nodes, 
5818 edges), and identical DC network (1917 nodes, 2364 edges). Nodes with the high-
est degree in each network and molecule in the same module with nodes were explored 
to identify primary molecule changes. As melatonin and 5-hydroxyindole-3-acetic acid 
shared the same metabolic pathway, their subnetworks were integrated in the identical 
DC network. Network visualization was executed using Cytoscape [34].
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dynamics in six patients containing Cluster 1-to-2 transition (FDR < 0.05) using differentially expressed genes in 
Figure S2A. Each patient is individually analyzed by using Mfuzz. The X-axis represents the sampling time. (C) Valida-
tion of differentially expressed gene from Cluster 1-to-2 by using Cluster 2-to-1 transcriptomic data. Color represents 
the patient’s ID. 99.4% up-regulated genes and 99.6% down-regulated genes exhibited reversed expression levels. 
(D) GO terms and KEGG pathways for differentially expressed genes between Cluster 1 and Cluster 2. The top 5 terms 
and pathways are represented. The size of dots denotes the − log10 of the p-value, the color denotes the expression 
levels.

Additional file 5: Figure S3. The comparison of expression levels of 5-hydroxyindole-3-acetic (A) and l-kynurenine 
(B) between Cluster 1 and Cluster 2.
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