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Network meta‐analysis compares multiple treatments from studies that form a

connected network of evidence. However, for complex networks, it is not easy

to see if the network is connected. We use simple techniques from graph theory

to test the connectedness of evidence networks in network meta‐analysis. The

method is to build the adjacency matrix for a network, with rows and columns

corresponding to the treatments in the network and entries being one or zero

depending on whether the treatments have been compared or not, and with

zeros along the diagonal. Manipulation of this matrix gives the indirect connec-

tion matrix. The entries of this matrix determine whether two treatments can

be compared, directly or indirectly. We also describe the distance matrix,

which gives the minimum number of steps in the network required to compare

a pair of treatments. This is a useful assessment of an indirect comparison as

each additional step requires further assumptions of homogeneity in, for exam-

ple, design and target populations of included trials. If there are no loops in the

network, the distance is a measure of the degree of assumptions needed; it is

approximately this with loops. We illustrate our methods using several

constructed examples and giving R code for computation. We have also

implemented the techniques in the Stata package “network.” The methods

provide a fast way to ensure comparisons are only made between connected

treatments and to assess the degree of indirectness of a comparison.
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1 | INTRODUCTION

Networkmeta‐analysis, or mixed treatment comparison, is
a statistical method to synthesize comparative evidence on
multiple treatments provided by a set of randomized con-
trolled trials (RCTs) that forms a connected network of
- - - - - - - - - - - - - - - - - - - - - - - - - -
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treatment comparisons.1 These networks, or graphs, can
be analyzed using the extensive literature of graph theory2;
this theory has many applications in fields other than net-
work meta‐analysis, including social media,3 medicine,4

computational chemistry,5 and sociology.6 An evidence
network is a graph that consists of vertices, representing
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the treatments and edges, representing the available
comparisons between pairs of treatments. Vertices corre-
sponding to treatments are said to be adjacent if there is
an edge connecting them. Vertices are said to be connected
if there is a chain of adjacent vertices connecting them,
named a “walk.” If treatments represented by the vertices
are connected, they can be compared through a chain of
RCT evidence.7 A network is connected if every two verti-
ces are connected. A glossary of terms used in this manu-
script is provided in Table 1.

Figure 1 illustrates several networks, including the com-
plex networks 2 and 3. It is not immediately clear from
visual inspection that network 2 is connected while network
3 is not. Visual inspection of evidence networks is time‐con-
suming and prone to error, especially as there can be many
networks in an analysis, covering different time‐points, out-
comes, treatment definitions, and subgroup and sensitivity
TABLE 1 Glossary of terms and symbols

Term/symbol Explanation

Vertices Vertices are the nodes in an evidence
network corresponding to treatments.

Edge There is an edge between two vertices if
the corresponding treatments were
compared in at least one RCT.

Adjacent Two vertices are adjacent if there is an
edge between them. This means the
corresponding treatments have been
compared in at least one RCT.

Walk A chain of adjacent vertices in a graph.

Connected Vertices are connected if there is a walk
connecting them. This means that the
treatments represented by the vertices
can be compared through a chain of
evidence.

Adjacency matrix, A An n × n symmetric matrix, where n is
the number of treatments, with
elements aij = 1 if treatments i and j
have been compared in an RCT (that
is, if there is direct evidence relating
them), and aij = 0 otherwise, with
zeros on the diagonal.

Indirect connection
matrix, I(Cn − 1)

An n × n symmetric matrix with I(Cn − 1)

ij = 1 if there is a walk between
treatments i and j (that is, if they are
connected) and I(Cn − 1)ij = 0
otherwise, with ones on the diagonal.

Distance matrix, D An n × n symmetric matrix with dij being
the length of the shortest walk
between treatments i and j and zero if
they are not connected, with zeros on
the diagonal.

Abbreviation: RCT, randomized controlled trial.
analyses. Automated network connectedness testing
methods have been implemented in the R statistical lan-
guage8; these include the breadth‐first search of the
“igraph” package and an implementation in “netmeta”
using a distance algorithm.9-11 In this paper, we explain an
alternative, matrix‐based method from graph theory, which
is a fast and simple method to test connectedness. We pro-
pose that the connectedness test should be applied before
any network meta‐analysis to quickly exclude disconnected
components of a network.We also discuss a distance matrix
that provides the degree of separation, or indirectness,
between treatments in an evidence network. As trials on dif-
ferent treatments can differ in their design, target popula-
tion, and other ways, this can be a useful illustration of
the assumptions of an indirect comparison.

We begin by describing the methods and then illustrate
their application to a range of networks of varying complex-
ity. We have implemented these methods in the Stata pack-
age “network”12,13 but here provide algorithms for use in
other software and code for use in the R statistical language.
2 | METHODS

2.1 | The adjacency and indirect
connection matrices

We first construct an n × n symmetric matrix, A, which is
called the adjacency matrix, where n is equal to the num-
ber of treatments in the network G. We set the element
aij = 1 if treatments i and j have been compared in a trial,
and aij = 0 otherwise. The diagonal is filled with zeros, so
aii = 0. Note that G may have multiple matrices A for
different orderings of the vertices, but these matrices are
equivalent in representing the adjacency relation. We
can therefore work with an adjacency matrix A for a given
ordering of vertices. Raising A to a power k counts the
total numbers of k step walks connecting vertices corre-
sponding to each row and column. For example, the (1,
2) entry of matrix A3 would count the number of three‐
step walks, called 3‐walks, from treatment 1 to treatment
2. This includes 3‐walks with loops such as 1→ 2→ 3→ 2
as well as nontrivial 3‐walks like 1→ 3→ 4→ 2. In graph
theory, nontrivial walks that visit each vertex at most
once, are termed “paths.” In a network with n treatments,
the maximum length of a path is n − 1 steps. The (i, j)
entry of the sum of the powers of the adjacency matrix to l

Cl ¼ ∑
l

k¼1
Ak;

counts the total number of walks of length l, or less,
between treatments i and j. The (i, j) entry of Cn − 1



FIGURE 1 Three example networks of

evidence with different degrees of

connectedness and complexity [Colour

figure can be viewed at wileyonlinelibrary.

com]
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counts the total number of walks of length n − 1, or
less, between treatments i and j. Setting all nonzero
elements to 1 gives I(Cn − 1), which we term the
indirect connection matrix, where the I() operator sets
elements to 1 if they are nonzero and zero otherwise.
If all off diagonal elements of I(Cn − 1) are one, then
the network is fully connected. Otherwise, the network
is disconnected, and it is possible to form a block
diagonal indirect connection matrix, after some permu-
tation of the row and column indices, indicating that
only treatments within each block are connected.
Trials with more than two arms contribute additional
ones to the adjacency matrix but the indirect connection
matrix is still given by I(Cn − 1) as it only depends on
whether or not two treatments have been compared in
a trial.
2.2 | Illustration of method

Consider the network illustrated in Figure 2A, which was
generated using a freely available routine14 within Stata.
This consists of eight hypothetical treatments labeled 1
through 8. The evidence consists of six pairwise RCTs,
represented as six edges in the network, comparing 1 with
2, 2 with 3, 2 with 5, 4 with 5, 6 with 7, and 7 with 8. The
adjacency matrix is therefore

A ¼

0 1 0 0 0 0 0 0

1 0 1 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

;

where an entry aij is 1 if treatments i and j have been
compared in at least one RCT and zero otherwise.

A2 indicates the number of 2‐walks between each pair
of treatments. We need only know A to obtain A2, and
that A2 counts the number of 2‐walks is made intuitive
by considering the treatment connections implied by A.
For example, the first row of A indicates which treat-
ments are directly connected to treatment 1. Multiplying
row 1 by the jth column tells us where walks can go in
two steps from 1 via j. In the first row of this example,
all entries other than the 2nd are zero, so only treatments
connected to treatment 2, indicated by the second row,

http://wileyonlinelibrary.com
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FIGURE 2 Illustrative evidence

network with eight treatments. Each step

plots the comparisons possible with that

number of steps on the evidence network

[Colour figure can be viewed at

wileyonlinelibrary.com]
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will contribute to the calculation. Treatment 2 is
connected to 1, 3, and 5, and so the first row of A2 has
1 in these entries. The same process is repeated to obtain
all rows of A2.

This 2‐walk matrix is

A2 ¼

1 0 1 0 1 0 0 0

0 3 0 1 0 0 0 0

1 0 1 0 1 0 0 0

0 1 0 1 0 0 0 0

1 0 1 0 2 0 0 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 2 0

0 0 0 0 0 1 0 1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

Note that all treatments can be connected to themselves
by at least one 2‐walk. For example, treatment 2 has three
2‐walks looping back to itself, namely 2 → 1 → 2,
2 → 3 → 2, and 2 → 5 → 2. Figure 2B shows the compar-
isons that can be made using walks of one or two steps
and is the network corresponding to adjacency matrix
I(C2). This network directly connects any treatment from
the network in Figure 2A that can be compared in one or
two steps.
A3 indicates the number of 3‐walks between treat-
ments.

A3 ¼

0 3 0 1 0 0 0 0

3 0 3 0 4 0 0 0

0 3 0 1 0 0 0 0

1 0 1 0 2 0 0 0

0 4 0 2 0 0 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 2 0 2

0 0 0 0 0 0 2 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

For example, the first row of A3 indicates that treatment 1
is connected to treatments 2 and 4 in walks of three steps.
The matrix C3 is the sum of A1 + A2 + A3 and this gives

I C3ð Þ ¼

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:
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Figure 2C shows the treatments that can be compared in
one, two, or three steps and is the network corresponding
to adjacency matrix I(C3).

We now apply the same blocking (rows/columns 1–5,
rows/columns 6–8) to A as we do to I(C3) and it becomes
clear that A also has a block diagonal structure, with
entries outside the two corner blocks zero. Further pow-
ers will therefore remain block diagonal.15 As a sum of
block diagonal matrices is also block diagonal, I(C3), with
its blocks completely filled, will be identical to I(C7), the
indirect connection matrix.

I C7ð Þ ¼

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

As expected, this matrix tells us that treatments 1
through 5 can be directly or indirectly compared with
each other but not to treatments 6, 7, or 8. These three
treatments can only be compared, directly or indirectly,
with each other.

The appendix provides a proof for the interested
reader and R code to calculate the matrix for networks
of arbitrary complexity. The input data is the treatment
matrix in the format used by the National Institute for
Health and Care Excellence Decision Support Unit
Technical Support Documents.16,17 We have imple-
mented these methods in the Stata package network,
which routinely computes this matrix when a network
is set up and issues a warning if the network is discon-
nected12; this is also described in the appendix.
2.3 | The distance matrix

The distance matrix of an evidence network represents
the length of the shortest path between two vertices and
represents a more informative alternative to the indirect
connection matrix. These matrices are symmetric and
can be arranged to be block diagonal if the evidence
network splits into disconnected components. Note that
it is useful to keep track of the treatment labels of the
rows and columns in rearranged matrices, and we do so
in our applications below. The main diagonal is zero as
the distance between a vertex and itself is zero. For the
network in Figure 2A, the distance matrix is
D ¼

0 1 2 3 2 0 0 0

1 0 1 2 1 0 0 0

2 1 0 3 2 0 0 0

3 2 3 0 1 0 0 0

2 1 2 1 0 0 0 0

0 0 0 0 0 0 1 2

0 0 0 0 0 1 0 1

0 0 0 0 0 2 1 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

This matrix describes the degree of indirectness of the evi-
dence used to compare treatments in evidence networks.
Higher entries represent more indirect evidence. For
example, it requires three steps to compare treatments 1
and 4 but only 2 to compare treatments 1 and 3. Also,
the matrix tells us that treatments 1 and 2 can be com-
pared directly as there is only one step between them.

The distance matrix can be calculated from the sums
of the powers of the adjacency matrix A via the formula

D ¼ Aþ ∑
n − 1

i¼2
i I Cið Þ − I Ci−1ð Þð Þ

Code to calculate the distance matrix using this formula
is provided in the appendix.
2.4 | Collecting matrices into connected
components

We suggest collecting the indirect connection and
distance matrices into block diagonal format where each
block represents a connected subnetwork. These block
diagonal matrices make it easy to see how many
connected components there are in the network. If the
matrices consist of a single block, then the entire network
is connected. We provide code for a simple recursive
sorting function in the appendix.
3 | APPLICATION TO EXAMPLE
NETWORKS

We apply our connectedness test to a series of evidence
networks to illustrate the utility and behavior of the
algorithm. The examples are illustrated in Figure 1.

Consider network 1 in Figure 1. In this case, there are
seven treatments and six direct pairwise comparisons.
The adjacency matrix is presented in Table 2 and the
indirect connection matrix is presented in Table 3. The
distance matrix with connected components grouped to
form a block diagonal matrix is presented in Table 4.
The collected matrix allows us to quickly see which treat-
ments can be compared and that there are two connected



TABLE 2 Adjacency matrix for network 2

1 2 3 4 5 6 7

1 0 0 1 0 0 1 1

2 0 0 0 1 0 0 0

3 1 0 0 0 0 0 0

4 0 1 0 0 1 0 0

5 0 0 0 1 0 0 0

6 1 0 0 0 0 0 1

7 1 0 0 0 0 1 0

TABLE 3 Indirect connection matrix for network 2

1 2 3 4 5 6 7

1 1 0 1 0 0 1 1

2 0 1 0 1 1 0 0

3 1 0 1 0 0 1 1

4 0 1 0 1 1 0 0

5 0 1 0 1 1 0 0

6 1 0 1 0 0 1 1

7 1 0 1 0 0 1 1

TABLE 4 Distance matrix for network 2 collected into connected

subcomponents

1 3 6 7 2 4 5

1 0 1 1 1

3 1 0 2 2

6 1 2 0 1

7 1 2 1 0

2 0 1 2

4 1 0 1

5 2 1 0
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subcomponents. For example, treatments 1, 3, 6, and 7
can be compared and form a connected subcomponent
but cannot be compared with 2, 4, and 5, which form
another connected subcomponent. The distance matrix
quickly summarizes the additional information that no
treatment is more than two steps from any to which it
is connected and that overall most connections are direct
(single step) comparisons.

Network 2 in Figure 1 consists of 23 treatments and
25 direct pairwise comparisons. The collected distance
matrix is presented in Table 5 and tells us everything
the indirect connection matrix would. This quickly shows
that the network is completely connected as it consists of
a single block that includes all treatments. The distance
matrix also tells us that many of the comparisons, such
as that between treatments 4 and 5, rely on nine steps
along the network and are thus quite indirect. This warns
us that many assumptions of homogeneity are necessary
to compare such treatments. It is also a warning that we
are close to disconnectedness, although this depends on
the strength of evidence. A high valued distance matrix
indicates a sparse network that would be more likely to
become disconnected if treatments were split further,
for example, by dose or frequency, or if a subset of trials
were to be removed for subgroup analysis.

Consider the complex network 3 in Figure 1, which
has 25 treatments and 22 direct pairwise comparisons.
The collected distance matrix presented in Table 6 shows
that there are four connected components and shows the
treatments in each component. In network 3, we might
be especially interested in comparisons with treatment 1
and we could use the indirect connection matrix to omit
treatments from the network that are not connected to
1, in this case, all but treatments 2, 4, and 8. Simplifying
the network by removing disconnected components can
save computational time. More importantly, it removes
the danger and distraction of interpreting disconnected
comparisons. In addition to this utility, the distance
matrix summarizes the number of steps between any
two treatments. In this case, the maximum number of
steps is seven between treatments 3 and 10, 10 and 12, 3
and 21, and 12 and 21; this suggests that these rely on
many assumptions and are more likely to become
disconnected if treatment definitions are changed or
RCTs omitted. In conjunction with uncertainty intervals
and probabilities of superiority and inferiority, this matrix
can help to interpret the strength of the conclusions of a
network meta‐analysis. Even if the statistical uncertainty
in the comparison between treatment 3 and 10 is low, for
example, we may not be as confident in the results if the
comparison was based on seven indirect steps, rather
than on a single step, which would be direct evidence.
However, the distance matrix does not tell us about the
precision or quality of the evidence along walks.
4 | DISCUSSION

We have presented a test of connectedness of networks
that is easy to automate and can be applied to any
network meta‐analysis with trials with any number of
arms. We recommend applying this test as a preliminary
step, which can be incorporated within software, to con-
duct a network meta‐analysis. Our method can quickly
inform the analyst about the number of connected com-
ponents of a network and what comparisons are possible.



TABLE 5 Distance matrix for network 2. The network is connected so collected matrix consists of single block

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 0 3 5 7 2 4 4 5 1 3 5 6 3 4 1 4 1 2 2 6 6 1 2

2 3 0 6 8 3 5 1 6 4 4 6 7 2 5 2 3 4 1 5 7 7 4 3

3 5 6 0 2 7 3 5 3 6 2 4 2 4 1 6 5 4 7 7 4 1 6 3

4 7 8 2 0 9 4 7 3 8 4 5 2 6 3 8 7 6 9 9 4 1 8 5

5 2 3 7 9 0 6 4 7 3 5 7 8 5 6 1 6 3 2 4 8 8 3 4

6 4 5 3 4 6 0 4 1 5 1 1 2 3 2 5 4 3 6 6 2 3 5 2

7 4 1 5 7 4 4 0 5 5 3 5 6 1 4 3 2 3 2 6 6 6 5 2

8 5 6 3 3 7 1 5 0 6 2 2 1 4 3 6 5 4 7 7 1 2 6 3

9 1 4 6 8 3 5 5 6 0 4 6 7 4 5 2 5 2 3 3 7 7 2 3

10 3 4 2 4 5 1 3 2 4 0 2 3 2 1 4 3 2 5 5 3 3 4 1

11 5 6 4 5 7 1 5 2 6 2 0 3 4 3 6 5 4 7 7 3 4 6 3

12 6 7 2 2 8 2 6 1 7 3 3 0 5 3 7 6 5 8 8 2 1 7 4

13 3 2 4 6 5 3 1 4 4 2 4 5 0 3 4 1 2 3 5 5 5 4 1

14 4 5 1 3 6 2 4 3 5 1 3 3 3 0 5 4 3 6 6 4 2 5 2

15 1 2 6 8 1 5 3 6 2 4 6 7 4 5 0 5 2 1 3 7 7 2 3

16 4 3 5 7 6 4 2 5 5 3 5 6 1 4 5 0 3 4 6 6 6 5 2

17 1 4 4 6 3 3 3 4 2 2 4 5 2 3 2 3 0 3 3 5 5 2 1

18 2 1 7 9 2 6 2 7 3 5 7 8 3 6 1 4 3 0 4 8 8 3 4

19 2 5 7 9 4 6 6 7 3 5 7 8 5 6 3 6 3 4 0 8 8 1 4

20 6 7 4 4 8 2 6 1 7 3 3 2 5 4 7 6 5 8 8 0 3 7 4

21 6 7 1 1 8 3 6 2 7 3 4 1 5 2 7 6 5 8 8 3 0 7 4

22 1 4 6 8 3 5 5 6 2 4 6 7 4 5 2 5 2 3 1 7 7 0 3

23 2 3 3 5 4 2 2 3 3 1 3 4 1 2 3 2 1 4 4 4 4 3 0
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If disconnected treatments are compared, results may be
numerically unstable and variances high, although high
variances are themselves a warning that treatments are
disconnected. Without an explicit test, analysts may work
out probabilities of ranks or put the effect estimates into
cost‐effectiveness analyses without realizing their
comparisons are invalid. This is a greater concern when
many networks (eg, different time points, outcomes, or
subgroups) are analyzed as it is more likely a discon-
nected network will be missed if connectedness is tested
manually.

We have also presented the distance matrix, which we
recommend presenting alongside the results of an analy-
sis. The distance matrix quantifies how indirect the
evidence on each comparison is, which is of interest as
every additional step requires further assumptions about
heterogeneity of the trial designs and populations. High
values in the distance matrix also provide a warning that
further splitting of treatments or exclusion of trials are
more likely to lead to a disconnected network. We do
not recommend downgrading comparisons that are more
indirect, only paying greater attention to the necessary
assumptions of heterogeneity along the walks for such
comparisons. As the distance matrix includes all the
information of the indirect connection matrix, we
recommend presenting only the distance matrix.
Alongside standard errors and risk of bias assessments,
it can be a useful tool to judge our confidence in the
results.

Graph theory has recently been applied to network
meta‐analysis to ease visualization and analysis.
One application is to rearrange the vertices of a
network to avoid edges that overlap and simplify network
plots.18,19 Using these rearrangements, it is easier to see
which components of the network are connected, and
the netmeta package has implemented connectedness test-
ing using an alternative algorithm.9,11 Inconsistency
between direct and indirect evidence can arise if there
are loops in the evidence network that are not entirely
due to a single multi‐arm trial.20 Graphical methods have
been proposed to identify hotspots of potential inconsis-
tency in the network but these need human judgment for



TABLE 6 Distance matrix for network 3 collected into connected subcomponents

1 2 4 8 3 5 6 10 11 12 13 14 15 16 17 19 21 22 23 24 25 7 20 9 18

1 0 3 1 2

2 3 0 2 1

4 1 2 0 1

8 2 1 1 0

3 0 3 4 7 6 5 5 2 4 4 4 1 7 6 5 4 3

5 3 0 2 4 3 3 2 1 2 2 1 2 4 3 2 1 1

6 4 2 0 6 5 1 4 2 2 2 3 3 6 5 4 3 1

10 7 4 6 0 3 7 4 5 6 6 5 6 2 1 2 3 5

11 6 3 5 3 0 6 3 4 5 5 4 5 3 2 1 2 4

12 5 3 1 7 6 0 5 3 3 3 4 4 7 6 5 4 2

13 5 2 4 4 3 5 0 3 4 4 3 4 4 3 2 1 3

14 2 1 2 5 4 3 3 0 2 2 2 1 5 4 3 2 1

15 4 2 2 6 5 3 4 2 0 2 3 3 6 5 4 3 1

16 4 2 2 6 5 3 4 2 2 0 3 3 6 5 4 3 1

17 4 1 3 5 4 4 3 2 3 3 0 3 5 4 3 2 2

19 1 2 3 6 5 4 4 1 3 3 3 0 6 5 4 3 2

21 7 4 6 2 3 7 4 5 6 6 5 6 0 1 2 3 5

22 6 3 5 1 2 6 3 4 5 5 4 5 1 0 1 2 4

23 5 2 4 2 1 5 2 3 4 4 3 4 2 1 0 1 3

24 4 1 3 3 2 4 1 2 3 3 2 3 3 2 1 0 2

25 3 1 1 5 4 2 3 1 1 1 2 2 5 4 3 2 0

7 0 1

20 1 0

9 0 1

18 1 0
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further testing.21 A recent application of graph theory was
to automatically identify potential inconsistencies to be
assessed by node‐splitting.22 We believe there are many
further such uses for graph theory in network
meta‐analysis.

One possible application would be to use graph theo-
retic methods to assess the strength of evidence on each
comparison, perhaps combining our distance matrix with
sample sizes, variance estimates, and risk of bias
assessments. The contributions matrix of Krahn et al21

also implemented in the netmeta package,11 assesses the
contribution of each trial design to each comparison but
does not assess the absolute strength of evidence or
inconsistency. The distance matrix only assesses indirect-
ness of each comparison. It may be possible to assess the
strength of each of the edges in a walk and give a single
overall assessment of the evidence informing each com-
parison. However, this may not give additional
information on top of the results of the network meta‐
analysis itself.

In summary, we have presented computationally
efficient techniques to assess the connectedness and
indirectness of evidence networks. We believe these
methods will help simplify the practice and presentation
of network meta‐analysis in the future.
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APPENDIX A

PROOF OF CONNECTEDNESS TEST

We prove that treatment vertices i and j are connected
directly or indirectly if and only if the entry I(Cn − 1)ij
is nonzero. Let G be a network with vertices v1, …, vn
and A its adjacency matrix with aij = 1 if vi and vj
(i ≠ j) are adjacent and 0 otherwise. The diagonal ele-
ments ajj = 0, ie, vj is regarded not to be connected to
itself.

Theorem 1: For any integer k, the (i, j)‐entry of Ak is
equal to the number of k‐walks from vi to vj.

Proof: We use mathematical induction. Let aij kð Þ be
the (i, j)‐entry of the matrix Ak. Theorem 1 holds obvi-
ously for A,i.e., k = 1. Suppose that it holds for Ak, then
because Ak + 1 = AAk, we have

aij kþ1ð Þ ¼ ∑
u
aiuauj kð Þ ;

where aiu is the number of all 1‐walks from vi to vu and
auj kð Þ is the number of all k‐walks from vu to vj. So

aiuauj kð Þ is the number of all (k + 1)‐walks from vi to vj that

go through vu, and hence aij kþ1ð Þ is the number of all
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(k + 1)‐walks from vi to vj. That is, Theorem 1 holds for
k + 1. □.

Then, as a corollary of Theorem 1, we have

Theorem 2: G is a connected evidence network if and
only if the matrix

Cn−1 ¼ ∑
n − 1

k¼1
Ak;

has no zeros in the nondiagonal entries. That is, for any
i ≠ j, there is a walk from vertex i to vertex j.

This completes the proof that treatment vertices i and
j are connected directly or indirectly if and only if the
entry (Cn − 1)ij, and thus I(Cn − 1)ij is nonzero.
APPENDIX B

R CODE TO PERFORM NETWORK
CONNECTEDNESS TEST AND RETURN
DISTANCE MATRIX

# Function to test whether an evidence network is con-
nected and generate the distance matrix.
# The input tr.matrix is same format as treatment matrix
“t” used in the NICE DSU TSD 2 WinBUGS code for net-
work meta‐analysis.
# An alternative to supplying tr.matrix is to supply vectors
t1 and t2. These include one entry for each arm of the trials
and t1 represents a list of trial IDs while t2 represents a list
of treatments.
require (expm).
test.connectedness.fun<−function (tr.matrix = NULL,
t1 = NULL,t2 = NULL,nameoftreatments = NULL,sort.
matrices = TRUE).
{

# tr.matrix is a matrix of rows corresponding to trials
and columns
# corresponding to treatments
if (is.null (tr.matrix) & (is.null(t1)|is.null(t2))){
stop(“Must provide tr.matrix or both t1 and t2
vectors”)

}
# Vectors t1 and t2 include one entry for each arm of
the trials
# t1 represents a list of trial IDs
# t2 represents a list of treatments
# These will be constructed if not provided
# nameoftreatments converts the numbers of t2 into

treatment names
# Construct the t1 and t2 vectors if only treatment

matrix is provided
if (is.null(t1)|is.null(t2))
{

x < −tr.matrix
for(i in 1:dim(x) [1])
{

x [i,] < −i
}

t1 < −c(x[!is.na (tr.matrix)])
t2 < −c (tr[!is.na (tr.matrix)])

}
# Build a matrix of 1 s and 0 s representing direct evi-
dence connections
n.trials<−length (unique(t1))
n.treatments<−length (nameoftreatments)
if (is.null (nameoftreatments))n.treatments<−length
(unique(t2))
adjacency.matrix<−matrix(0,nrow = n.treatments,
ncol = n.treatments)
t2 = as.numeric (as.factor(t2))
for (trial.i in unique(t1))
{

adjacency.matrix [t2[t1==trial.i],t2[t1==trial.
i]] < −1
}

# Set the diagonal to 0
diag (adjacency.matrix) < −0
# Sum the powers of the adjacency matrix to calculate
the indirect connection matrix
treatment.indirect.connection<−adjacency.matrix
for(i in 2:(n.treatments‐1))
{
treatment.indirect.connection<−treatment.indirect.con-
nection+adjacency.matrix%^%i

}
# Set all non‐zero elements to 1
treatment.indirect.connection<−treatment.indirect.
connection! = 0
# Convert to numeric
treatment.indirect.connection<−matrix (as.numeric
(treatment.indirect.connection),ncol = n.treatments)
# Calculate the distance matrix
distance.matrix<−adjacency.matrix
for(i in 2:(n.treatments‐1))
{

A.im1 < −adjacency.matrix
for(j in 1:(i‐1))
{

A.im1 < −A.im1 + adjacency.matrix%^%j
}

A.i < −A.im1 + adjacency.matrix%^%i
# Set non‐zero entries to 1
A.i [A.i! = 0] < −1
A.im1[A.im1! = 0] < −1
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distance.matrix<−distance.matrix+i*(A.i‐A.im1)
}

# Set the diagonal to zero
diag (distance.matrix) < −0
# Name the rows and columns after the treatments
if(!is.null (nameoftreatments)){

rownames (distance.matrix) < −colnames (dis-
tance.matrix) < −rownames (adjacency.
matrix) < −colnames (adjacency.matrix) < −rownames
(treatment.indirect.connection) < −colnames (treatment.
indirect.connection) < −nameoftreatments
}else{

warning(“No nameoftreatments provided”)
}

# Sort the matrices by treatment names?
if (sort.matrices==TRUE)
{

# Sort the entries in the matrices
adjacency.matrix<−adjacency.matrix [order (as.

numeric (rownames (adjacency.matrix))),order (as.
numeric (rownames (adjacency.matrix)))]

treatment.indirect.connection<−treatment.indi-
rect.connection [order (as.numeric (rownames (treatment.
indirect.connection))),order (as.numeric (rownames (treat-
ment.indirect.connection)))]

distance.matrix<−distance.matrix [order (as.
numeric (rownames (distance.matrix))),order (as.numeric
(rownames (distance.matrix)))]
}

return (list(“adjacency.matrix” = adjacency.
matrix,”indirect.connection.matrix” = treatment.indirect.
connection,”distance.matrix” = distance.matrix))
}

APPENDIX C

R CODE TO COLLECT INDIRECT
CONNECTION MATRIX INTO CONNECTED
COMPONENTS

# Recursive function to collect/sort the indirect connec-
tion and step matrices.
# into connected components.
# Simple function to collect matrices from 1st index.
# Used recursively in collect.matrix.
collect.submatrix<−function (collected.matrix).
{

# Indices of treatments connected and not connected
to first treatment
collected.treatments<−c (which (collected.
matrix[1,] > 0),which (collected.matrix[1,]==0))
# Split matrix into treatments connected and discon-
nected to first treatment
collected.matrix<−collected.matrix [collected.treat-
ments,collected.treatments]

}
# Function to collect elements of a matrix into block‐
diagonal form.
collect.matrix<−function (collected.matrix).
{
# Slightly different for first treatment.
collected.matrix<−collect.submatrix (collected.matrix).
for(j in 2:(dim (collected.matrix)[2]‐1)).
{

# If treatment is not connected to earlier treatment
then more sorting required
if (collected.matrix [j,j‐1]==0)
{

# Sort the sub‐matrix starting at current treatment
temp.collected.matrix<−collect.submatrix (col-
lected.matrix [j:n.treatments,j:n.treatments])
# Replace unsorted sub‐matrix with sorted sub‐
matrix
collected.matrix [j:n.treatments,j:n.treat-
ments] < −temp.collected.matrix
rownames (collected.matrix)[j:n.treat-
ments] < −rownames (temp.collected.matrix)
colnames (collected.matrix)[j:n.treat-
ments] < −rownames (temp.collected.matrix)

}
}
return (collected.matrix).
}

APPENDIX D

STATA CODE TO PERFORM NETWORK
CONNECTEDNESS TEST, RETURN
DISTANCE MATRIX AND IDENTIFY
CONNECTED COMPONENTS

Suppose we have data from the network illustrated in
Figure 2(a) in long format (i.e. one record per arm per
trial) with binary outcome. Variable trial identifies the
trial, trt identifies the treatment, d gives the number of
events and n gives the number of patients. Then the stan-
dard command to set up the network is.

network setup d n, studyvar (trial) trtvar (trt).
which reports (among other statistics).

Components: 2 (disconnected).
The nature of the network can be understood by printing
four matrices which are computed by network setup, pro-
vided a network version 1.2.2 (dated 21dec2015) or later is
used. (To get this, enter STATA and type net from http://
www.mrc‐bsu.cam.ac.uk/IW_Stata/meta.) Below is the
STATA log:
. matrix list network_adjacency//the adjacency matrix.
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symmetric network_adjacency.[8,8]
1 2 3 4 5 6 7 8.
1 0
2 1 0.
3 0 1 0.
4 0 0 0 0.
5 0 1 0 1 0.
6 0 0 0 0 0 0.
7 0 0 0 0 0 1 0.
8 0 0 0 0 0 0 1 0
. matrix list network_indirect_connection//the indirect
connection matrix.
symmetric network_indirect_connection.[8,8]
1 2 3 4 5 6 7 8.
1 1
2 1 1.
3 1 1 1.
4 1 1 1 1.
5 1 1 1 1 1.
6 0 0 0 0 0 1.
7 0 0 0 0 0 1 1.
8 0 0 0 0 0 1 1 1
. matrix list network_distance//the distance matrix.
symmetric network_distance.[8,8]
1 2 3 4 5 6 7 8.
1 0
2 1 0.
3 2 1 0.
4 3 2 3 0.
5 2 1 2 1 0.
6 0 0 0 0 0 0.
7 0 0 0 0 0 1 0.
8 0 0 0 0 0 2 1 0
. matrix list network_components//assigns treatments to
components.
network_components.[8,2]
c1 c2.
1 1 0.
2 1 0.
3 1 0.
4 1 0.
5 1 0.
6 0 1.
7 0 1.
8 0 1.


