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Abstract
Relapsed acute lymphoblastic leukaemia (ALL) remains a prevalent paediatric can-
cer and one of the most common causes of mortality from malignancy in children. 
Tailoring the intensity of therapy according to early stratification is a promising strat-
egy but remains a major challenge due to heterogeneity and subtyping difficulty. In 
this study, we subgroup B-precursor ALL patients by gene expression profiles, using 
non-negative matrix factorization and minimum description length which unsupervis-
edly determines the number of subgroups. Within each of the four subgroups, logistic 
and Cox regression with elastic net regularization are used to build models predict-
ing minimal residual disease (MRD) and relapse-free survival (RFS) respectively. 
Measured by area under the receiver operating characteristic curve (AUC), subgroup-
ing improves prediction of MRD in one subgroup which mostly overlaps with sub-
type TCF3-PBX1 (AUC = 0·986 in the training set and 1·0 in the test set), compared 
to a global model published previously. The models predicting RFS displayed ac-
ceptable concordance in training set and discriminate high-relapse-risk patients in 
three subgroups of the test set (Wilcoxon test p = 0·048, 0·036, and 0·016). Genes 
playing roles in the models are specific to different subgroups. The improvement of 
subgrouped MRD prediction and the differences of genes in prediction models of 
subgroups suggest that the heterogeneity of B-precursor ALL can be handled by sub-
grouping according to gene expression profiles to improve the prediction accuracy.
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1  |   INTRODUCTION

Acute lymphoblastic leukaemia (ALL) is the most common 
paediatric leukaemia.1 Although progressive developments 
in chemotherapy and treatment intensity stratification based 
on risk evaluation considerably improve the survival rate, 
achieving 90% today,2 relapsed ALL remains a prevalent 
paediatric cancer and one of the most common cause of mor-
tality from malignancy in children.3 Tailoring the intensity 
of therapy according to early identification of patients of 
high relapse risk is a promising strategy and also the major 
challenge.

Prognostic factors of paediatric ALL valuable to clinical 
decision include clinical features at diagnosis, subtypes de-
fined by cell lineage (e.g. T-ALL and B-ALL) and genetics 
(e.g. TCF3-PBX1, MLL, etc.), and early response to induc-
tion therapy.2 Genetic subtypes, deduced from immunophe-
notype, cytogenetic features and gene expression profiles 
indicate genetic alterations such as aneuploidy, indels of 
DNA segments, mutation and rearrangements of genes on 
the chromosomes.2 The alterations result in dysregulations 
of gene expression and abnormal proteins, which perturb key 
cellular processes and are associated with prognosis and drug 
resistance.4 Precise subtyping is critical for successful treat-
ment.5 There are, however, exceptions that patients with a 
low-risk genetic subtype (like ETV6-RUNX1) are not cured, 
whereas patients with a high-risk subtype (e.g. certain MLL 
rearrangements) are cured,4 suggesting patients of the same 
subtype can be further stratified. Immunophenotypic sub-
typing requires interpretation and integration of the complex 
patterns produced by flow cytometry, and no single marker 
is robust and sufficient to determine the subtypes55. Gene 
expression profiles correlate with genetic changes, and have 
been used to distinguish cell lineage and to identify some 

genetic subtypes.4 Bhojwani et al. developed logistic regres-
sion models to predict outcome by gene expression signa-
tures with no genetic subtyping because genetic subtyping 
was impossible for patients lacking known subtypes in the 
cohort and could be unnecessary for prediction of outcomes.6

ALL is genetically polyclonal at first diagnosis. After 
induction therapy, proliferative predominant clones are sup-
pressed or eliminated, but subclones acquiring mutations 
may survive if the cells resistance to specific chemothera-
peutic agents.2 The level of minimal residual disease (MRD) 
at the end of induction therapy, as a measure of disease bur-
den and therapeutic response, has been proved to be the most 
powerful indicator of relapse risk in paediatric ALL.7,8 Based 
on the level of MRD at the end of induction therapy, intensi-
fication of therapy for high-relapse-risk patients improves the 
outcomes.9 However, waiting for the measurement of MRD 
by flow cytometry at the end of induction therapy precludes 
early intervention in high-relapse-risk patients.9 An ear-
lier prediction of MRD positivity implying failed induction 
therapy will provide a further chance to tailor the induction 
method or to adopt other treatment interventions. Kang et al. 
developed MRD classifiers based on a 21-gene signature in 
pre-treatment blood or bone marrow specimens, which ef-
fectively substituted for MRD measurement at the end of in-
duction therapy in prediction of relapse-free survival (RFS).9

Paediatric ALL consists of various subtypes. Prognostic 
signatures may exist within biologic subtypes of ALL only. 
Risk stratification via subtyping often encounters embarrass-
ment when patients lack known subtypes.6 Although gene 
expression profiles provide sufficient features to define novel 
subtypes, the sample size of a subtype is usually too small to 
prevent prediction models from over-fitting because a large 
number of features introduce noise.6 Predicting outcomes 
by a gene signature globally for all subtypes is promising to 

F I G U R E  1   Flowchart of the prediction 
model combining NMF for subgrouping and 
logistic and Cox regressions for predicting 
MRD and RFS. Beside 10-fold cross-
validations, performance of the model is 
validated by predicting the early response 
and relapse in the test set
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overwhelm the problem of small sample size, but has been 
shown to be difficult for such a heterogeneous disease.6,10 
Balancing the non-linearity of subtyping and the homogene-
ity of a gene signature appeals a framework for modelling 
outcomes with the heterogeneous data of paediatric ALL.

In this study, we implement a combination of a non-linear 
subgrouping step and a regression step to predict the outcome 
of paediatric B-precursor ALL by gene expression profiles 
(Figure  1). Achieved by non-negative matrix factorization 
(NMF), the subgrouping step mimics genetic subtyping, but 
does not aim at predicting strictly the gold-standard subtypes. 
Instead, subgrouping splits the cohort into groups unsuper-
visedly to eliminate the heterogeneity of gene expression. 
Although some of the resulting subgroups overlap with the 
genetic subtypes, a subgroup that mixes with a few subtypes 
and even contains unknown subtypes is allowed. Within each 
subgroup, models predicting MRD and RFS are built by lo-
gistic regression and Cox regression with elastic net regu-
larization respectively. The two-step modelling improves the 
performance of prediction of MRD and RFS in subsets of 
the training and test cohorts. The gene sets identified by the 
logistic regression and Cox regression confirm the heteroge-
neity of B-precursor ALL.

2  |   MATERIALS AND METHODS

2.1  |  Gene expression profiles and clinical 
records

We collected gene expression data and clinical records of two 
cohorts, namely the Children's Oncology Group Clinical Trial 
P9906 (COG P9906)9,11 and the Children's Oncology Group 
1961 (COG 1961).6 The trial of COG P9906 targeted high-risk 
B-precursor ALL patients (n = 207), including patients with 
central nervous system or testicular leukaemia, excluding pa-
tients with very high-risk subtypes (BCR-ABL1 or hypodip-
loidy) and excluding patients with low-risk features (trisomies 
of chromosomes 4 or 10 and ETV6-RUNX1, if no central 
nervous system or testicular leukaemia). The patients were 
treated uniformly with a modified augmented Berlin-Frankfurt-
Münster Study Group (BFM) regimen. At the end of induction 
therapy (day 29), MRD of most patients was assessed by flow 
cytometry, where MRD positivity was defined by a threshold of 
0·01%. RFS was recorded as the number of days from the trial 
enrolment to either the first event (relapse) or last follow-up.

The COG 1961 study published gene expression data and 
clinical records of patients (n = 99) with high-risk B-precursor 
ALL, without subtypes predictive of outcome. The patients re-
ceived a standard four-drug induction therapy. The patients had 
bone marrow assessed on day 7, and were classified as slow 
early responders (M3, >25% blasts) or rapid early responder 
(M1, <5% blasts, and M2, 5% to 25% blasts). Long-term 

outcome was characterized by the time of relapse, and patients 
were classified as in complete continuous remission (CCR) for 
at least 4 years and with marrow relapse within the first 3 years.

The study was performed in accordance with the 
Declaration of Helsinki, and do not publish information 
from human participants. We obtained the gene expression 
microarray data of COG P9906 and COG 1961 from NCBI 
Gene Expression Omnibus under the accession GSE11877 
and GSE7440 respectively. We used the data of COG P9906 
as training set, and the data of COG 1961 as test set (Table 1).

2.2  |  Pre-processing of the microarray and 
gene filtering

The pre-processing of the microarrays was per-
formed using packages CustomCDF (version 1·0·5),12 

T A B L E  1   Clinical features and outcomes in the studied cohorts

Training set Test set

Clinical trial COG P99069,11 COG 19616

GEOa  accession GSE11877 GSE7440

Sample size (N) 207 99

Age (year)

>10 132 61

<10 75 38

Median 13 11

Range 1–20 1–18

Gender

Male 137 61

Female 70 38

WBC (×103 μL−1)

Median 62.3 65.8

Range 1.0–958.8 1.8–732.0

Early response to 
therapy

Day 29 MRDb <0·01% Day 7 marrow 
blasts<25%

Good response 133 42

Bad response 68 40

N/A 6 17

Long-term outcome RFSc  CCRd  for at 
least 4 years

Relapsed 75 31

None 130 28

Censored 2 40

Median (Years) 6.5 N/A

Range (Years) 0.1–15.7 N/A
aNCBI Gene Expression Omnibus
bminimal residual disease
crelapse-free survival
dcomplete continuous remission.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11877
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7440
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11877
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7440


      |  3785HUANG et al.

hgu133plus2hsentrezg (version 23·0·0)12 and gcrma (version 
2·54·0)13 in R environment (version 3·5·2). Platforms of the 
microarrays of COG P9906 and COG 1961 were Affymetrix 
Human Genome U133 Plus 2·0 Array,6,9 and we re-analysed 
the raw signal with the probes sets definition “hgu133plus2h-
sentrezg” developed by BRAINARRAY Microarray Lab 
because this definition is consistent to the up-to-date Entrez 
gene data.12 In the experimental CEL files, uninformative 
probe pairs, which gave mismatch signal intenser than per-
fect match signals in more than 90% of the samples, were 
removed. Probe set definition “hgu133plus2hsentrezg” was 
tailored according to the removal of the uninformative probe 
pairs. Probe sets were mapped to Entrez gene symbols and 
the expression levels of genes were calculated with the pack-
age gcrma.

Genes for the two cohorts were filtered using genefil-
ter (version 1·64·0)14 in R environment. A gene was kept if 
its expression exceeded background threshold (expression 
value>100) in more than 10% samples and if the coefficient 
of variation (COV) of expression was greater than 1·0. The 
numbers of genes passing the filter were 527 and 959 for 
COG P9906 and COG 1961 respectively. We used the inter-
section of the two gene sets in the subsequent analysis, which 
contained 370 genes.

2.3  |  Non-negative matrix factorization 
(NMF)

In the training set from COG P9906, the gene expression pro-
files consisted of m = 370 genes in n = 207 samples. We 
performed NMF to subgroup the samples, using package 
NMF (version 0·21·0)15 in R environment, which finds an 
approximation

where V is the m × n matrix of the gene expression profiles of the 
training set, the so-called basis components W is an m × r non-
negative matrix and the so-called coefficients H is an r × n non-
negative matrix. A critical parameter in NMF is the factorization 
rank r, which defines the number of ALL subgroups in this study. 
Because there is yet no NMF algorithm finding the optimal ap-
proximation, the standard routine of NMF performs 30 runs with 
stochastic seeding and reports the best result which achieves the 
lowest approximation error. By comparing the NMF of ranks 2 
to 12, we found out the best rank r = 4 using the criterion of 
minimum description length implemented by Squires et al.16 We 
confirmed the best rank by the consensus matrix method,17 which 
visualizes the subgrouping consensus among 30 runs for a rank.

Because the same W matrix was used in NMF of the train-
ing set and in reconstruction of NMF in the test set, in order 
to reduce the stochasticity and improve the reproducibility 

of subgrouping, we performed 60 runs for rank 4 NMF and 
constructed the W and H matrices by averaging among the 
top 20 runs with the lowest approximation error. The H ma-
trix encoded the subgroups of samples: Sample j belonged to 
subgroup i if element hi,j is the largest coefficients in column 
vector hj.

2.4  |  Logistic regression and Cox regression 
with elastic net regularization

Elastic net regularization is a combination of LASSO and 
ridge regularization. We performed the logistic regression and 
Cox regression with elastic net regularization using package 
glmnet (version 2·0–16)18,19 in R environment. NMF split the 
training set into subgroups I, II, III and IV. Within each sub-
group, a logistic regression model predicting MRD and a Cox 
regression model predicting RFS were built with parameter 
α=0·8, which assigned the mixing of LASSO and ridge regu-
larization. Parameter λ controls the strength of the regulariza-
tion that makes elastic net regression prefer simple models. 
As a result of a 10-fold cross-validation evaluated a series 
of models for different λ, a curve of the binomial deviance 
(for logistic regression) or the partial likelihood deviance (for 
Cox regression) in the cross-validation indicates two values: 
λmin, at which the curve reached the minimum, and λ1se, at 
which the error was within 1 standard error of the minimum 
(Figure S1 and S2). The model given by λmin has more co-
efficients and is usually more accuracy for the training set, 
while the model given by λ1se is more robust and performs 
better in generalization. For predicting MRD, we extracted 
the model given by λ1se (subgroups I and IV), and when the 
model given by λ1se degenerated (all coefficients zero), we 
extracted the model given by λmin (subgroups II and III). For 
predicting RFS, we extracted the simplest non-degenerated 
model, which kept only one or two coefficients, because 
most of the models given by λmin and λ1se were degenerated.

For every subgroup, performance of a logistic regression 
model in the training set was evaluated by a receiver operat-
ing characteristic (ROC) curve and the area under the ROC 
curve (AUC). Performance of a Cox regression model in the 
training set was evaluated by concordance statistic (c)20 and 
inverse probability of censoring weighting (IPCW) estima-
tion of cumulative time-dependent ROC curve.21

2.5  |  Testing the regression models

We tested the subgrouping method and regression models 
with the data from COG 1961. NMF for the gene expression 
profile of the test set was reconstructed as:

V ≈ W ⋅ H

H
�
= W

+
⋅ V

�
,
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where V′ was the matrix of the gene expression profiles of the 
test set, W was the basis component matrix which had been 
learned by NMF of the training set, and H′ was the coefficient 
matrix yet to be determined. We solved H′ as

where W+ is the Moore-Penrose pseudoinverse of W:

according to singular value decomposition of W  =  S D TT, 
where S and T are orthogonal, TT means T transposed and D 
is a diagonal matrix with the singular values. We subgrouped 
samples by finding for sample j the index of subgroup i which 
had the largest coefficient h'i,j in column vector h'j.

MRD positivity of each patient was predicted by a logistic 
regression model learned by the same subgroup of the train-
ing set. Although MRD positivity of COG 1961 was not pub-
lished, a patient was described as rapid early responder (RER) 
or slow early responder (SER), which also indicated early re-
sponse to therapy measured by the percentage of blast cells 
in bone marrow. Early response is comparable to MRD-based 
stratification, and RER signals a good outcome.22 Thus, we 
evaluated the performance of the logistic regression models 
using AUC comparing predicted MRD with early response.

RFS of each patient was predicted by a Cox regression 
model learned by the same subgroup of the training set. RFS 
of COG 1961 was not published, but a patient was described 
as in complete continuous remission (CCR) for more than 
4 years or relapsed within 3 years of initial diagnosis. Thus, 
we ran Wilcoxon test to see whether predicted relapse risk 

of the patients reported to be CCR was significantly smaller 
than that of the relapsed patients.

3  |   RESULTS

3.1  |  Subgrouping by NMF

In the training set, a meaningful rank of NMF should be 
much smaller than any of the two dimensions of the gene 
expression profiles (m = 370 and n = 207, Table S1). We ran 
NMF of ranks 2 to 12, and the minimum description length 
was minimized at rank 4 (Figure 2A), indicating that the in-
formation in the training set was effectively distilled by rank 
4 NMF. Visualization of the quality and stability of NMF by 
the consensus matrix method17 shows that rank 4 is better 
than others (Figure 2B). For the rank 4 NMF, large values of 
consensus among 30 runs are collected in four square blocks 
along the diagonal. For the rank 2 and 3 NMF, the square 
block pattern gets blurred, that is, the blocks have nested 
structure in which a few dispersed cases near the boundary 
between blocks get associated with other subgroups. When 
the rank is larger than 4, the association of dangling cases in 
different subgroups merges square blocks, reducing the over-
all number of independent blocks. For example, only four 
square blocks are clearly displayed in the consensus matrix 
for rank 5 NMF, where two blocks merge (Figure 2B, circles 
in the matrix for rank 5).

For subgrouping by rank 4 NMF, we constructed the W 
(Data S1) and H matrices by taking the average among the top 
20 runs with the lowest approximation error. The consensus 
matrix for the top 20 runs clearly displays a four-square-block 

H
�
= W

+
⋅ V

�
,

W
+
= T ⋅ D

−1
S

T
,

F I G U R E  2   Comparison of NMF of different ranks shows that the training set constitutes of four subgroups. (A) The description length of 
the gene expression profiles of NMF of different ranks, calculated by methods based on empirical histogram and based on fitted distribution. (B) 
Consensus matrices for ranks 2 to 7, averaging over 30 runs. A pixel is coloured from blue, when the pair of samples are never in the same cluster, 
to red, when the pair of samples are always in the same cluster. In consensus matrices for ranks 5 to 7, circles indicate the blocks getting merged
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pattern (Figure 3A) cleaner than that for 30 runs (Figure 2B, 
rank 4). The subgrouping (Figure 3B, the line “Subgroup”) 
was almost identical to the grouping suggested by the con-
sensus matrix (Figure  3B, the line “Consensus”), except a 
few cases. These exceptions also played the dangling cases in 
the consensus matrix (Figure 3A).

Subgroups I, II, III and IV contained 52, 31, 52 and 72 
samples respectively. Although NMF performed unsuper-
vised clustering, the subgroups were roughly overlapped with 
the genetic subtypes of paediatric B-precursor ALL published 
by COG P9906 (Figure 3B, the line “Subtype”). In subgroup 
I, there were 23 patients with subtype TCF3-PBX1, 2 with 

F I G U R E  3   Subgrouping of the training set by NMF and the association of subgroups with genetic subtypes. (A) A consensus matrix for rank 
4 NMF, averaging the top 20 from 60 runs. A pixel is coloured from blue, when the pair of samples are never in the same cluster, to red, when the 
pair of samples are always in the same cluster. On the left of the consensus matrix, the hierarchical clustering of samples is shown. (B) Annotation 
tracks for consensus, subgroups, genetic subtypes, organism parts, white blood cell at diagnosis, age, race and gender. Legends and scales of the 
tracks are shown on the right, where “Hyperdiploidy” is short for “Hyperdiploidy without trisomy of both chromosomes 4 and 10”, and “Trisomy 
of 4/10” is short for “Trisomy of both chromosomes 4 and 10”
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subtype MLL and 27 with undefined subtypes. Subgroup 
II consisted of 17 patients with subtype MLL and 14 with 
undefined subtypes. Subgroups III and IV were more het-
erogeneous than the previous two subgroups. Subgroup III 
consisted of 2 patients with subtype ETV6-RUNX1, 1 with 
subtype MLL, 5 with hyperdiploidy without trisomy of both 
chromosomes 4 and 10, 3 with trisomy of both chromosomes 
4 and 10, and 41 with undefined subtypes. Subgroup IV con-
sisted of 11 patients with hyperdiploidy without trisomy of 
both chromosomes 4 and 10, 2 with trisomy of both chro-
mosomes 4 and 10, and 59 with undefined subtypes. Beside 
overlapped with genetic subtypes, the subgroups displayed 
little association with organism parts of the samples, white 
blood counts at diagnosis and personal features like gender, 
race and ethnicity (Figure 3B).

Few associations between outcomes and subgrouping 
were detected (Figure S3). Subgroups I and IV were differ-
ent in the early response to therapy, which was MRD in the 
training set (Figure S3A) and was rapid versus slow early re-
sponse in the test set (Figure S3C). Although in RFS in the 
training set, differences were detected between subgroups I 
and IV and between subgroups III and IV (Figure S3B), we 
found no difference of distribution of CCR and relapse cases 
between subgroups in the test set (Figure S3D).

3.2  |  Logistic regression models 
predicting MRD

Elastic net regression produced a series of logistic regres-
sion models controlled by the parameter λ. According to 10-
fold cross-validations, we extracted the model of λ1se=0·171 
for subgroup I (Figure S1A, Table S2). The model gave an 
impressed performance in the training set (AUC  =  0·986, 
Figure  4A). In the test set, the model even gave a perfect 
performance (AUC = 1·0, Figure 4B).

For subgroup II, the model of λ1se had all coefficients zero 
(Figure S1B). Such a degenerated model performs poorly for 
subgroup II, since MRD in this subgroup is not uniformly 
the same status: There are 17 cases of negative MRD and 
13 cases of positive (and 1 case with unknown status). We 
extracted the model of λmin = 0·252 (Table S2), which per-
formed well in the training set (AUC = 0·937, Figure 4C). 
In the test set, the model gave an acceptable performance 
(AUC = 0·750, Figure 4D).

For subgroup III, the model of λ1se was also degenerated 
(Figure  S1C), and we extracted the model of λmin  =  0·183 
(Table  S2), which performed well in the training set 
(AUC = 0·845, Figure 4E). In the test set, the models per-
formed poorly (AUC = 0·529, Figure 4F). For subgroup IV, 
the model of λ1se = 0·211 (Figure S1D and Table S2) per-
formed well in the training set (AUC = 0·918, Figure 4G) but 
became much worse in the test set (AUC = 0·633, Figure 4H).

3.3  |  Cox regression models predicting RFS

We used Cox regression models to study the relationship 
between gene expression profiles and RFS. The cross-
validation identified models of λmin for subgroups I and IV 
only, but models of λmin for subgroups II and III and mod-
els of λ1se for all subgroups were degenerated (Figure S2). 
Although the model of λmin for subgroup I described RFS 
perfectly (Figure S4A, c = 0·946), the large number (k = 22) 
of coefficients may affect its generalization to the test set 
(Figure S4B). The model of λmin for subgroup IV performed 
(Figure S4C, c = 0·669; and Figure S4D) similarly to that 
of the simplest non-degenerated model with only one coef-
ficient (Figure 5G, c = 0·664; and Figure 5H). For consist-
ency, we extracted the simplest non-degenerated models for 
all subgroups. These models had only one or two coefficients 
(Figure 5A,C,E and G, and Table S2). In the training set, the 
concordance statistic of the models with RFS in four sub-
groups ranged from 0·664 to 0·817 (Figure S5). Performance 
in the test set was evaluated by Wilcoxon tests, showing 
whether the risk of the relapsed patients was significantly 
larger than that of patients reported to be CCR. Wilcoxon 
tests in subgroups I, II and IV yielded statistically signifi-
cance results (p  =  0·048, 0·036 and 0·016, Figure  5,B,D 
and H), suggesting the three models were well generalized 
to the test set. The model for subgroup III, however, failed 
to discriminate the CCR and relapsed patients (p  =  0·356, 
Figure 5F).

Displayed by time-dependent ROC curves, the models 
for subgroups I and II performed similar in predicting the 
1-year, 2-year and 5-year RFS (Figure 5A and C). The model 
for subgroup III, however, lost a little prediction power for 
5-year RFS (Figure  5E), the AUC of which was 0·978 for 
1-year and 2-year RFS and drops to 0·801 for 5-year RFS. 
The model for subgroup IV performed well for 1-year RFS 
(AUC = 0·891), lost most prediction power for 2-year RFS 
(AUC = 0·654) and restored the prediction power for 5-year 
prediction (AUC = 0·828, Figure 5G).

3.4  |  Genes associated with the outcomes in 
paediatric ALL

Genes providing coefficients in the regression models are 
important biomarkers for predicting outcomes in paediatric 
B-precursor ALL. Most of the significant genes are unique 
to specific subgroups and outcomes, except gene npdc1, 
which is shared by the model predicting MRD for subgroup 
III and the models predicting MRD and RFS for subgroup IV 
(Table S2).

In subgroup I, the model predicting MRD highlights 
the positive correlation of expression of cd34, dipk1c (also 
known as fam69c and c18orf51) and mrc1 (also known as 
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F I G U R E  4   Performance of logistic 
regression models predicting MRD. (A, C, 
E and G) ROC curves (red solid lines) for 
subgroups I, II, III and IV in the training set. 
The value of λ, the number of coefficients 
(k) and the area under the ROC curve 
(AUC) are shown for each subgroup. The 
diagonal dashed line is the no discrimination 
line. (B, D, F and H) ROC curves (red solid 
lines) comparing predicted MRD with early 
response for subgroups I, II, III and IV in 
the test set. The AUC is shown for each 
subgroup
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F I G U R E  5   Performance of the Cox 
regression models predicting RFS. (A, C, 
E and G) Time-dependent ROC curves for 
subgroups I, II, III and IV in the training 
set. Solid, dashed and dotted red lines 
indicate 1-year, 2-year and 5-year RFS 
respectively. The value of λ, the number of 
coefficients (k) and concordance statistic (c) 
of the Cox regression model are shown for 
each subgroup. The diagonal dashed line 
is the no discrimination line. (B, D, F and 
H) Wilcoxon tests of the Cox regression 
models in predicting relapse within 3 years 
for subgroups I, II, III and IV in the test set. 
Points indicate the risk predicted by the Cox 
regression model. Horizontal bars indicate 
the averages among CCR patients and 
among relapsed patients. The p value of a 
Wilcoxon test is shown for every subgroup
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cd206) with MRD positivity or SER. Gene cd34 encodes 
protein that may participate in the attachment of stem cells 
to the bone marrow extracellular matrix or to stromal cells, 
and has been associated to outcomes of acute myeloid leu-
kaemia (AML),23,24 but its relevance to ALL, especially to 
the subtype TCF3-PBX1, remains controversial.25,26 Gene 
mrc1 has been reported to be expressed in a group of perito-
neal leukaemia-associated macrophages.27 The performance 
of the model in the training set and the test set suggests that 
these genes are fundamental or at least highly correlated with 
fundamental pathways in the treatment and early response in 
subgroup I or subtype TCF3-PBX1. The model predicting 
RFS for subgroup I suggests genes fam241a and mgme1 are 
protective factors for the patients. mgme1 encodes a protein 
maintaining mitochondrial genome synthesis.28

In subgroup IV, the model predicting MRD has coeffi-
cients of genes npdc1, cd38, kcnk12, prx, smad1 and ptger2, 
all of which but cd38 are risk factors; the model predicting 
RFS has only one coefficient of gene npdc1. npdc1 plays a 
risk factor in both models and also in the model predicting 
MRD for subgroup III. This gene has been reported to be sig-
nificantly up-regulated at relapse of AML and has been used 
in a highly prognostic signature in AML,29,30 suggesting it is 
fundamental in leukaemia progression.

In subgroup II, the model predicting MRD reveals bre-
as1 (also known as babam2-as1) and anxa1 as risk factor 
and ddit4  l and wwc3 as protective factor. Dysregulations 
of anxa1 have been detected in multiple tumours.31,32 Gene 
wwc3 has been linked to Hippo signalling cascade related to 
tumorigenesis.33,34 The model predicting RFS suggests gene 
cerk is a protective factors for the patients. Gene cerk reg-
ulates the migration of bone marrow-derived mesenchymal 
stem cells.35 In subgroup III, although both models predict-
ing MRD and RFS perform poorly, the model predicting 
MRD identifies parp15, prxl2c, npdc1, clec14a and opn3, 
and the model predicting RFS identifies c1qtnf4 (also known 
as ctrp4) and scml1, all of which but parp15 and opn3 are 
risk factor. Expression level of opn3 has been negatively cor-
related with the activity of anti-apoptotic pathway in hepato-
cellular carcinoma.36 Gene c1qtnf4 can promote tumour cell 
survival and tumour resistance against apoptosis induced by 
chemotherapeutics.37

4  |   DISCUSSION

Paediatric ALL consists of various subtypes. Prognostic signa-
tures may exist within biologic subtypes of ALL only.6 NMF 
has been applied to leukaemia gene expression profiles previ-
ously, successfully recognizing the classes of AML, T-ALL 
and B-ALL.17 In our study, NMF is applied to subgrouping of 
a cohort of high-risk B-precursor ALL. The subgroups roughly 
overlap with subtypes determined by genetic abnormalities. 

The coincidence of NMF subgroups and genetic subtypes 
may be a consequence of specific types of dysregulation of 
the gene network, for example, it has been reported that in 
subtype ETV6-RUNX1, expression of multiple target genes is 
induced by the chimeric transcription factor ETV6-RUNX1.38 
All patients with subtype TCF3-PBX1 were classified as sub-
group I. Patients with subtype MLL were mainly classified 
as subgroup II, except a few classified as subgroups I and 
III. The models predicting MRD and RFS in subgroup I per-
formed perfectly in the training set and was generalized well 
to the test set. Roughly speaking, subtype TCF3-PBX1 has a 
clear and unique gene expression pattern that can be recog-
nized by NMF in such a sample size. Subtype MLL seems 
heterogeneous, among which some cases had gene expression 
patterns similar to subtype TCF3-PBX1 and were classified 
as subgroup I. Performance of the models predicting MRD 
and RFS in subgroup II was not as good as in subgroup I but 
still acceptable. Patients with hyperdiploidy without trisomy 
of both chromosomes 4 and 10 and patients with trisomy of 
both chromosomes 4 and 10 were dispersed in subgroups III 
and IV. The gene expression patterns of the two subgroups 
may not be clearly depicted with such a sample size. The 
poor performance in generalization of the models predicting 
MRD and RFS to the test set in the two subgroups III and IV 
also suggests the complexity of the two subgroups and these 
subtypes. Patients with subtype ETV6-RUNX1, the only two 
patients with such a low-risk subtype included in the cohort 
of COG P9906, were classified as subgroup III. There were 
many cases without known subtypes and were subgrouped 
together with known subtypes, suggesting the similarity in 
gene expression patterns. Although gene expression profiles 
provide many features to define subtypes, the sample size lim-
ited the number of subgroups that NMF is able to identify. 
The subgrouping found a good balance between over-fitting 
with many minor subtypes and a single global signature. The 
prediction performance of the model predicting MRD for sub-
group I is much better than a global model published previ-
ously (AUC = 0·8),6,9 suggesting such a divide-and-conquer 
strategy effectively picks out subgroup I whose pattern is clear 
given the available samples.

We trained the model with the cohort of COG P9906, 
and tested the models with the cohort of COG 1961. The 
early prediction of MRD is clinical relevant for adjust-
ment of therapy. COG 1961 reported the early response 
instead of MRD, and we used it to evaluate our prediction. 
Although the early response was determined on day 7 and 
the measurement was different from that of MRD, the con-
sistency of the two data sets has been verified by several 
studies.9,39,40 For the test set, the models for subgroups II, 
III and IV performed worse than for subgroup I. The worse 
performance may stem from the minor difference between 
the designs of the two clinical trials, and, more importantly, 
the heterogeneity of the genetic subtyping of both data sets. 
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COG P9906 mainly recruited high-risk B-precursor ALL 
patients, while patients in COG 1961 totally lacked known 
genetic subtypes. We subgrouped the patients in COG 1961 
by the criterion learned from the gene expression profiles 
of COG P9906. Performance of the subgrouping cannot 
be evaluated with the test set. However, the performance 
of the MRD models in the test set meets our expectation 
that logistic regression performs well in subgroup I, mod-
erate in subgroups II and IV and poor in subgroup III be-
cause subgroups II, III and IV are heterogeneous and the 
models may suffer from the small sample size after sub-
grouping. Actually, the models for subgroups II, III and 
IV performs badly only in the test set but very well in the 
training set, suggesting the problem of small sample size 
and over-fitting.

Comparison between the models predicting MRD and 
RFS regarding their performance suggests that the models 
predicting MRD are better in generalization, that is, all mod-
els predicting RFS, except the model for subgroups III, pre-
dict risk score discriminating the CCR and relapsed patients. 
The models predicting RFS involve different genes from 
the models predicting MRD, except in subgroup IV. Since 
expression profiles of different genes may be highly cor-
related, the different genes may simply result from random 
selection by the regression with elastic net regularization. 
It is also possible that early response and long-term effect 
need to be evaluated with different genes in some subtypes, 
which deserved further studies because it has been reported 
that relapses occur in some paediatric ALL patients with an 
excellent (negative) MRD.9,41

The combination method of NMF and elastic net regres-
sion implemented in this study subgroups patients with B-
precursor ALL and predicts the outcomes. Improvement of 
the prediction may be attributable to the handling of hetero-
geneity of B-precursor ALL.
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