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Abstract: A silica supported sulfuric acid catalyzed [3+2] cycloaddition of nitriles and 

sodium azide to form 5-substituted 1H-tetrazoles is described. The protocol can provide a 

series of 5-substituted 1H-tetrazoles using silica sulfuric acid from nitriles and sodium 

azide in DMF in 72%–95% yield. 

Keywords: silica sulfuric acid; 5-substituted 1H-tetrazoles; [3+2] cycloaddition 

 

1. Introduction 

In recent years, the growth of the tetrazole chemistry has been significant [1,2], mainly as a result of 

the central roles played by tetrazoles in coordination chemistry as nitrogen-containing heterocyclic  

ligands [3], in materials applications as specialty explosives, information recording systems, rocket 

propellants and in agrichemical applications [4,5]. In particular, tetrazoles can be used as equivalent 

replacements for carboxylic moiety in drug design, with the advantage over carboxylic moieties being 

that they are resistant to many biological metabolic degradation pathways [6]. In fact, several leading 

compounds have been synthesized and tested for pharmaceutical purposes [7–9]. Furthermore, 
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tetrazole moieties can be used as important synthons in synthetic organic chemistry due to their 

characteristic electronic property [10–12]. 

The proton acid-catalyzed cycloaddition between hydrazoic acid and nitriles has long been one of 

the main routes to 5-substituted tetrazoles. However, this standard procedure suffers a dangerous 

potential explosion with large excess amounts of harmful hydrazoic acid [13]. Consequently, it is 

urgent to improve the synthetic method of obtaining 5-substituted 1H-tetrazoles. A number of catalytic 

systems of [3+2] reaction of sodium azide and nitriles were reported by various research teams, such 

as Zn(II) salts [14–16], AlCl3 [17], Et3N·HCl [18], BF3·OEt2 [19], TBAF [20], Pd(PPh3)4 [21],  

Zn/Al hydrotalcite [22], ZnO [23], Zn-Cu alloy [24], Cu2O [25] and FeCl3-SiO2 [26]. The limitations of 

the existing protocols realized in terms of longer reaction time, stringent conditions, expensive and 

toxic metal catalysts (e.g., Pd(PPh3)4 is costly and air sensitive), tedious work-ups and unable or 

unsatisfactory recovery of catalyst. Therefore, it is necessary to develop a more efficient and 

convenient method that avoids these drawbacks and could be used both on a laboratory and industrial scale. 

Meanwhile, recyclable and efficient heterogeneous catalysts have attracted vastly soaring interest in 

the context of appealing to green synthesis. As a case in point, silica sulfuric acid is cheapest and 

easiest to be implanted for industrial use [27,28]. Because of its unique chemical and physical 

properties, silica sulfuric acid has several advantages such as nonvolatility, adjustable acidity, ease of 

handling and environmentally safe disposal. The erosion of equipment will be dramatically reduced 

when it is used as a substituent of traditional protonic acid in industry [29]. We are interested in an 

efficient and convenient formation of 5-substituted 1H-tetrazoles through nitrile and sodium azide 

catalyzed by silica sulfuric acid. To the best of our knowledge, there is no report on any solid acid catalytic 

synthesis of 5-substituted 1H-tetrazoles from nitrile and sodium azide. Herein, we wish to report a facile 

synthesis of 5-substituted 1H-tetrazoles catalyzed by silica sulfuric acid in 72–95% yield. 

2. Results and Discussion 

To begin with, the silica sulfuric acid was prepared according to Shaterian’s method [28] and the 

amount of H+ in silica sulfuric acid was titrated and calculated (0.05 g of silica sulfuric acid equal to 0.1 mmol). 

The solvents were screened and the result was shown in Table 1. Our studies subsequently showed that 

the nature of reaction solvents was extremely important for this reaction. Obviously, alcohols (Table 1, 

entries 1–2) were not suitable for this reaction. Low polar solvents such as toluene (entry 4) and chloroform 

(entry 5) both give unsatisfactory yield. Both DMF (entry 5) and DMSO (entry 6) gave excellent yields, 

therefore, DMF was chosen as the most suitable solvent because of its easier workup compared with DMSO. 

Subsequently, the effect of catalyst loading was investigated. To our interest, for the model reaction 

of benzonitriles and sodium azide, 100% mol catalyst is enough to perform cyclization. Lower catalyst 

loading (50%) would lead to longer reaction time and lower yield (Table 1, entry 7) and higher ratio 

catalyst (200%) only gave a slightly increase of yield (Table 1, entry 8). Finally, we set up the 

optimized reaction conditions that are DMF as solvent, 100% molar ratio silica sulfuric acid as catalyst, 

at refluxing temperature (Table 1, entry 5). 

With the optimized reaction conditions, we next examined the scope of silica sulfuric acid catalyzed 

cyclization for the synthesis of 5-substituted 1H-tetrazoles. The results are summarized in Table 2.  

A wide range of structurally diverse nitriles (Table 2), including aromatic (Table 2, entries 1–2, 5–7, 10) 
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and aliphatic nitriles (Table 2, entries 3, 8–9, 12) were subjected under this protocol to provide the 

corresponding 5-substituted 1H-tetrazoles in high yields. Neither the electronic nature nor the satiric 

hindrance of the substitution at the both aromatic rings had any obvious influence upon the reactivity. 

All the products in our reactions listed in Table 2 were easily characterized on the basis of physical and 

spectral data and also by comparison with authentic samples or reported ones. The structure of product 

of entry 10 was determined by X-ray crystallography and the ORTEP was shown in Figure 1 [30]. 

Table 1. SiO2-H2SO4 catalyzed [3+2] cycloaddition of benzonitriles and sodium azide in 

different solvents. 

Entry Solvent Time mol Ratio of SiO2-H2SO4 Yield (100%) 

1 Methanol 12 50% <10 
2 Ethanol 12 50% 10 
3 Toulene 12 50% 5 
4 Chloroform 12 50% No reaction 
5 DMF 5 50% 92 
6 DMSO 5 50% 89 
7 DMF 10 50% 85 
8 DMF 5 200% 93 

Table 2. Silica sulfuric acid catalyzed synthesis of 5-substituted 1H-tetrazoles through 

[3+2] cycloaddition of benzonitriles and sodium azide in DMF.  

Entry Nitriles Tetrazoles Yield (%)
1 

 

88 

2 N

Cl  

72 

3 

 
88 

4 N

Br  

79 

5 

 

88 

6 N

OMe  

N
N

NHN

OCH3

95 
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Table 2. Cont. 

Entry Nitriles Tetrazoles Yield (%)
7 

 

N
N

NHN

Br

92 

8 

 
74 

9 
N

MeO  
72 

10 
88 

11 

 

80 

12 

 

76 

Figure 1. ORTEP drawing of 10. 

 

In addition, we investigated the reusability and recycling of silica sulfuric acid. As to the model 

reaction, the catalyst was separated by simple filtration after completion of reaction. The recovered 

silica sulfuric acid was reused directly three times without significant decrease in activity. 

3. Experimental Section 

The IR spectra were recorded on a Perkin-Elmer 2000 FTIR spectrometer. 1H and 13C NMR data 

were recorded in DMSO with Bruker-AM 500 unless noted otherwise. The chemical shifts were 

reported in ppm relative to TMS. Mass spectra were recorded on a Thermo Fisher mass spectrometer 

by electrospray ionization method (ESI). Column chromatography were generally performed on silica 

gel (200–300 mesh) eluting with petroleum ether:EtOAc (20:1–1:1 v/v) and TLC inspections on silica 

gel GF254 plates with petroleum ether:EtOAc (20:1–1:1 v/v) unless noted otherwise. 

General procedure for the preparation of through nitriles and sodium azide catalyzed by silica 

sulfuric: A suspension of nitriles (1 mmol), sodium azide (1.2 mmol) and silica sulfuric acid (500 mg, 
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1 mmol) in DMF (10 mmol) was heated to reflux for 4–12 hours with stirring. After the completion of 

the reaction, the precipitate of solid acid was filtered and washed, the filtrate was evaporated under 

vacuum and the crude product was purified by recrystallization or column chromatography on silica 

gel eluting with a mixture of petroleum ether and ethyl acetate to give 5-substituted 1H-tetrazoles.  

5-Phenyl-1H-tetrazole 1: white needles, m.p. 215–216 °C. 1H NMR (500 Hz, DMSO-d6): 8.05 (s,  

2 H, Ar-H), 7.61 (s, 3 H, Ar-H) ppm. 13C NMR (125 Hz, DMSO-d6): 131.7, 129.9, 127.4, 124.6 ppm.  

ESI-MS (m/z): M-H = 145. IR: 1485, 1564, 1609, 2916 cm−1. 

5-(2-Chlorophenyl)-1H-tetrazole 2: yellowish solid, m.p. 180–181 °C. 1H NMR (500 Hz, DMSO-d6): 7.83 

(s, 1 H, Ar-H), 7.72 (s, 1 H, Ar-H), 7.65 (s, 1 H, Ar-H), 7.58 (s, 1 H, Ar-H) ppm.  
13C NMR (125 Hz, DMSO-d6): 133.1, 132.4, 132.2, 130.9, 128.3, 124.6 ppm. ESI-MS m/z 179 [M − H]−. 

IR: 1470, 1563, 1602, 2923 cm−1.  

5-(4-Bromobenzyl)-1H-tetrazole 3: white needles, m.p. 178–180 °C. 1H NMR (500 Hz, DMSO-d6): 

7.57 (s, 2 H, Ar-H), 7.28 (s, 2 H, Ar-H), 4.32 (s, 2 H, CH2–H) ppm. 13C NMR (125 Hz, DMSO-d6): 

136.3, 132.6, 132.5, 131.9, 121.2, 29.2. ESI-MS m/z 238 [M − H]−. IR: 1489, 1584, 1660, 2848 cm−1. 

5-(4-Bromophenyl)-1H-tetrazole 4: yellowish solid, m.p. 268–270 °C (decompose). 1H NMR (500 Hz, 

DMSO-d6): 17.00 (brs, 1 H, N-H), 8.01–7.98 (m, 2 H, Ar-H), 7.85−7.82 (m, 2 H, Ar-H) ppm. 
13C NMR (125 Hz, DMSO-d6): 155.0, 132.5, 128.9, 124.7, 123.6 ppm. ESI-MS m/z 224 [M − H]−.  

IR: 1482, 1561, 1604, 2850 cm−1. 

5-(4-Fluorophenyl)-1H-tetrazole 5: yellowish solid, m.p. 114–116 °C. 1H NMR (500 Hz, DMSO-d6): 

16.91 (brs, 1 H, N-H), 8.12–8.07 (m, 2 H, Ar-H), 7.50–7.45 (m, 2 H, Ar-H) ppm. 13C NMR (125 Hz, 

DMSO-d6): 163.6 (d, J = 249 Hz), 154.6, 129.5 (d, J = 8.9 Hz), 116.6 (d, J = 22.3 Hz) ppm.  

ESI-MS m/z 163 [M − H]−. IR: 1505, 1610, 2991 cm−1. 

5-(3-Methoxyphenyl)-1H-tetrazole 6: white solid, m.p. 156–158 °C. 1H NMR (500 Hz, DMSO-d6): 

16.88 (brs, 1 H, N-H), 7.64–7.62 (m, 1 H, Ar-H),7.60–7.59 (m, 1 H, Ar-H), 7.53 (t, 1 H, J = 8.05 Hz, 

Ar-H), 7.17 (ddd, 1 H, J = 0.8, 2.55, 3.4 Hz, Ar-H), 3.86 (s, 3 H, CH3-H) ppm. 13C NMR (125 Hz, 

DMSO-d6): 159.7, 155.0, 130.6, 125.2, 119.1, 117.0, 112.0, 55.3 ppm. ESI-MS m/z 175 [M − H]−.  

IR: 1490, 1564, 1711, 2843 cm−1. 

5-(2-Bromophenyl)-1H-tetrazole 7: yellowish solid, m.p. 178–179 °C. 1H NMR (500 Hz,  

DMSO-d6): 16.92 (brs, 1 H, N-H), 7.88 (dd, 1 H, J = 1.2, 1.3 Hz, Ar-H), 7.72 (dd, 1 H, J = 1.8, 1.8 Hz, 

Ar-H), 7.60 (td, 1 H, J = 1.3, 7.45 Hz, Ar-H), 7.55 (td, 1 H, J = 1.9, 7.85 Hz, Ar-H) ppm. 13C NMR 

(125 Hz, DMSO-d6): 154.6, 133.5, 132.7, 132.0, 128.1, 126.4, 121.7 ppm. ESI-MS m/z 224 [M − H]−.  

IR: 1476, 1574, 1604 cm−1. 

5-Benzyl-1H-tetrazole 8: white solid, m.p. 118–120 °C. 1H NMR (500 Hz, DMSO-d6): 16.18 (brs,  

1 H, N-H), 7.35–7.32 (m, 2 H, Ar-H), 7.28–7.25 (m, 3 H, Ar-H), 4.29 (s, 2 H, CH2-H) ppm.  
13C NMR (125 Hz, DMSO-d6): 155.2, 135.9, 128.7, 128.6, 127.0, 28.9 ppm. ESI-MS m/z 159 [M − H]−. 

IR: 1493, 1531, 1548, 2951 cm−1. 

5-(4-Methoxybenzyl)-1H-tetrazole 9: yellowish solid, m.p. 154–156 °C. 1H NMR (500 Hz, DMSO-d6): 

16.07 (brs, 1 H, N-H), 7.20–7.18 (m, 2 H, Ar-H), 6.91–6.88 (m, 2 H, Ar-H), 4.20 (s, 2 H, CH2-H), 3.70 
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(s, 3 H, CH3-H) ppm. 13C NMR (125 Hz, DMSO-d6): 158.3, 129.7, 114.1, 55.1, 28.0 ppm.  

ESI-MS m/z 189 [M − H]−. IR: 1513, 1554, 1612, 2838 cm−1. 

4-(4-(1H-Tetrazol-5-yl)phenoxy)benzaldehyde 10: yellow solid, m.p. 172–174 °C. 1H NMR  

(500 Hz, DMSO-d6): 9.97 (s, 1 H, CHO-H), 8.13 (d, 2 H, J = 9.0 Hz, Ar-H), 7.98 (d, 2 H, J = 8.5 Hz, 

Ar-H), 7.37 (d, 2 H, J = 8.5 Hz, Ar-H), 7.26 (d, 1 H, J = 8.5 Hz, Ar-H) ppm. 13C NMR (125 Hz, 

DMSO-d6): 192.1, 161.7, 157.9, 132.6, 132.5, 129.8, 120.9, 119.1, 119.0, 107.2 ppm. ESI-MS m/z 265 

[M − H]−. IR: 1496, 1596, 1616, 1700 cm−1. 

3-(1H-Tetrazol-5-yl)-2H-chromen-2-one 11: greenish solid, m.p. 244–246 °C. 1H NMR (500 Hz, 

DMSO-d6): 9.05 (s, 1 H, CH-H), 8.02 (d, 1 H, J = 7.5 Hz, Ar-H), 7.80–7.76 (m, 1 H, Ar-H), 7.56 (d, 1 H, 

J = 8.0 Hz, Ar-H), 7.53 (t, 1 H, J = 7.5 Hz, Ar-H) ppm. 13C NMR (125 Hz, DMSO-d6): 158.6, 154.1, 

144.9, 134.5, 130.5, 125.7, 118.9, 116.9, 112.8, 102.2 ppm. ESI-MS m/z 213 [M − H]−. IR: 1577, 1612, 

1697, 3299 cm−1. 

5-(4-Nitrobenzyl)-1H-tetrazole 12: Yellowish needles, m.p. 188–190 °C. 1H NMR (500 Hz,  

DMSO-d6): 8.23 (d, 2 H, J = 8.5 Hz, Ar-H), 7.58 (d, 2 H, J = 8.5 Hz, Ar-H), 4.50 (s, 2 H, CH2-H) ppm. 
13C NMR (125 Hz, DMSO-d6): 156.1, 147.1, 144.2, 130.7, 124.3, 29.2 ppm. ESI-MS m/z 204 [M − H]−. 

IR: 1349, 1536, 1584, 2719 cm−1. 

4. Conclusions  

In conclusion, we have described herein silica sulfuric acid catalyzed highly efficient, one-pot, 

protocol for the synthesis of 5-substituted 1H-tetrazoles through the [3+2] cycloaddition of various 

nitriles and sodium and azide in refluxing DMF in excellent yields. This method provides high 

conversions and yields, simplicity in operation and cost-effectiveness. Thus, we believe that this novel 

methodology will be a practical alternative to the existing procedures to cater to the needs of academia 

as well as industries. Further work is in progress to broaden the scope of this practical process. 
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