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Abstract: Aryl hydrocarbon receptor (AHR) is an important regulator of skin barrier function. It also
controls immune-mediated skin responses. The AHR modulates various physiological functions
by acting as a sensor that mediates environment–cell interactions, particularly during immune and
inflammatory responses. Diverse experimental systems have been used to assess the AHR’s role
in skin inflammation, including in vitro assays of keratinocyte stimulation and murine models of
psoriasis and atopic dermatitis. Similar approaches have addressed the role of AHR ligands, e.g.,
TCDD, FICZ, and microbiota-derived metabolites, in skin homeostasis and pathology. Tapinarof is a
novel AHR-modulating agent that inhibits skin inflammation and enhances skin barrier function.
The topical application of tapinarof is being evaluated in clinical trials to treat psoriasis and atopic
dermatitis. In the present review, we summarize the effects of natural and synthetic AHR ligands in
keratinocytes and inflammatory cells, and their relevance in normal skin homeostasis and cutaneous
inflammatory diseases.

Keywords: aryl hydrocarbon receptor; cutaneous inflammation; immune and inflammatory re-
sponses; AHR signaling pathways; AHR endogenous and exogenous ligands

1. Introduction

The skin is the first line of defense against a multitude of pathogens and environmental
threats. The outermost layer of the epidermis, the stratum corneum, is a cornified envelope
that acts as a physical barrier, which is generated by keratinocyte terminal differentiation
and death. The process of terminal keratinocyte differentiation involves the upregulated
expression of specific proteins such as involucrin (IVL), loricrin (LOR), and filaggrin (FLG).
Any compromise of the integrity of the skin barrier function can lead to dryness, itchiness,
or flakiness (or all three). It also participates in pathogenic conditions such as atopic
dermatitis (AD) and psoriasis (PS) [1].

AD and PS are frequent inflammatory cutaneous disorders, in which deregulation of
immune cells is accompanied by alterations in keratinocyte differentiation, proliferation
and overall barrier function [2,3]. AD features a Th2-polarized immune response with
increased interleukin (IL)-4 and IL-13 levels [3]. Psoriatic lesions are characterized by
upregulation of tumor necrosis factor-α (TNF)-α and a Th17 response with numerous
IL-17-secreting cells, activated by elevated levels of IL-23 [2]. Although they are treatable
using biological therapies aimed at blocking IL-4/IL-13 in AD [4], and TNF-α/IL-23/IL17
in PS [5,6], both conditions remain uncured, and their frequent relapse episodes deteriorate
the quality of life of the patients. In addition, some major autoimmune disorders are
comorbidities for AD and PS [2,3].

Abnormal skin barrier integrity is particularly relevant for the onset of AD and is
associated with the reduced production of terminal differentiation molecules such as
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FLG [7,8]. Transepidermal water loss (TEWL) is a non-invasive in vivo measurement of
water loss across the stratum corneum, which is raised in AD patients, at both lesional
and non-lesional skin sites [9,10]. A defect in skin barrier function may facilitate aller-
gen entry and immune priming. Skin barrier dysfunction also increases colonization by
Staphylococcus aureus, which further exacerbates Th2 polarization [11]. Moreover, several
pro-inflammatory cytokines such as IL-4, IL-13, TNF-α, IL-17, and IL-22 alter the expression
of proteins involved in skin barrier function [12].

Aryl hydrocarbon receptor (AHR), also termed dioxin receptor, is a ligand-dependent
transcription factor that can be activated by a plethora of exogenous and endogenous envi-
ronmental agents, including polycyclic aromatic hydrocarbons (PAHs) and halogenated aro-
matic hydrocarbons (HAHs, or dioxins), as well as metabolites derived from L-tryptophan
(L-Trp) catabolism [13]. Every skin cell type expresses AHR, including keratinocytes, sebo-
cytes, fibroblasts, melanocytes, endothelial cells, Langerhans cells, and lymphocytes [14].
Activation of AHR upregulates the expression of barrier-related proteins and accelerates
terminal keratinocyte differentiation [15–17]. Hence, skin homeostasis, as well as cutaneous
pathological processes such as AD and PS, can be modulated by specific ligand-dependent
activation of AHR. In this review, we summarize the diverse roles of exogenous and en-
dogenous AHR ligands in skin homeostasis, as well as in the treatment of AD and PS
(Table 1).

1.1. AHR as a Sensor of Environmental Cues

The AHR was first described as a cytosolic receptor that binds PAHs, e.g., 3-
methylcholanthrene and HAHs, e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Lig-
and binding to AHR induces the synthesis of cytochrome P450 (CyPs) enzymes, which
are involved in the metabolism of xenobiotic compounds and the generation of reactive
oxygen species (ROS) [16,18]. Beyond its role as a regulator of xenobiotic metabolism,
the AHR is also an important modulator of various physiological functions associated
with the presence of endogenous, non-xenobiotic ligands, including host defense. Many
molecules have been identified as AHR ligands, suggesting that AHR contains a relatively
promiscuous ligand-binding site [19]. AHR ligands trigger a myriad of functions, and their
ultimate effects depend on several factors, including their concentration, the cell type and
cellular context, or their interaction with antagonistic molecular pathways, such as hypoxia-
inducible factor (HIF)-1α and EGFR in T cells and keratinocytes, respectively [15,20].

Although the AHR is evolutionarily conserved across metazoan phyla, it is remarkable
that the AHR exhibits interspecies differences or even among strains [21,22]. Comparison
between mouse and human AHR revealed around 86% amino acid sequence homology in
the N-terminal half of the receptor; whereas, the C-terminal half exhibits only 58% iden-
tity [23]. Most of the non-conserved changes of the AHR are found in the transcriptional
activation domain (TAD), resulting in differential protein–protein interactions with other
coactivators, corepressors, or nuclear receptors, which may result in differential gene ex-
pression regulation [24]. Indeed, studies using primary hepatocytes derived from humans,
mice, and humanized mice, which specifically express human AHR, have revealed that
the human and mouse AHR regulate different genes subsets involved in several biological
pathways [25,26]. Altogether, these results reflect the complexity of AHR function and the
difficulties of translating studies from experimental animals to human physiology.

1.2. AHR Signaling Pathways

AHR controls biological processes through genomic and non-genomic signaling events.
Genomic signaling involves a canonical and a non-canonical pathway, with the former
being the best characterized.

In the canonical pathway (Figure 1), the AHR functions as a ligand-activated tran-
scription factor that directly regulates the expression of a wide range of target genes,
named the AHR gene battery—such as CYP1A, CYP1A2, and CYP1B1 enzymes of the
CyP family [27–30]—AHR repressor (AHRR) [31], and TCDD Inducible Poly (ADP-Ribose)
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Polymerase (TIPARP) [32,33]. Regulatory regions located in the upstream of AHR gene
battery contain a DNA consensus sequence (5′-TNGCGTG-3′) known as the xenobiotic
responsive element, XRE (also known as the dioxin responsive element (DRE) or the AHR-
responsive element (AHRE)), which acts as a transcriptional enhancer and an AHR binding
site [27–30].
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Figure 1. AHR genomic signaling pathway. Before ligand binding, AHR is bound by a chaperone complex (described in
the text and the figure), which maintains its localization in the cytoplasm. Cells are exposed to different AHR ligands,
such as bioproducts of microbiota, phytochemicals, xenobiotics, or endogenous ligands, mostly derived from L-tryptophan
(L-Trp). When a ligand binds, the AHR changes its conformation and c-Src and AHR-interacting proteins (AIP) are released,
resulting in the exposure of the nuclear localization signal (NLS) in the AHR’s N-terminus, that allows docking of importin
β and mediates nucleocytoplasmic shuttling. Once in the nucleus, the ligand-activated AHR heterodimerizes with its
protein partner, the AHR nuclear translocator (ARNT), at the time it dissociates of cytoplasmic chaperone complex. (A) The
ligand–AHR–ARNT heterodimeric complex binds specific DNA sequences located in the promoter regions of target genes,
named xenobiotic responsive elements (XRE), and recruits additional coactivators and components of the transcriptional
machinery (described in the text) that are required to initiate transcription of the target gene. (B) The ligand–AHR–ARNT
complex can also interact with non-canonical AHR partners and regulate additional target genes. (A) Canonical genes
include enzymes of the cytochrome P450 (CyP) family and AHR repressor (AHRR). CyP enzymes metabolize AHR ligands
and the AHRR competes with the AHR for interaction with the ARNT and DNA binding. After transcription, the AHR is
exported out of the nucleus and is rapidly degraded by the proteasome. PAH—polycyclic aromatic hydrocarbon; HAH—
halogenated aromatic hydrocarbon; ROS—reactive oxygen species; HSP90—90 kDa heat shock protein; EDC—epidermal
differentiation complex; TF—transcriptional factor. Figure was created with BioRender.com.

Structurally, AHR belongs to the family of basic helix–loop–helix or periodic circadian
protein–AHR nuclear translocator single-minded protein (bHLH/Per-ARNT-SIM or PAS)
domain-containing transcription factors [34–36]. The bHLH motif and two PAS (A and B)
domains are located in the N-terminal region [37]. The bHLH motif is involved in DNA
binding and dimerization of proteins and the PAS domains also participate in protein–
protein interactions [37,38]. Additionally, the AHR contains a TADs in the C-terminal
region [39,40].
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In the absence of ligands, the AHR is confined in the cytosol that is associated with
diverse chaperones, including a dimer of 90 kDa heat shock protein (HSP90), the co-
chaperones p23, the AHR-interacting protein (AIP) (also known as ARA9 or X-Associated
Protein-2 (XAP-2)), and the protein kinase Src (Figure 1) [41–44]. This chaperone complex
has multiple roles towards maintaining a functional AHR as follows: it is involved in
the folding and stabilization of AHR protein, it ensures its cytoplasmic retention while
maintaining it in a high ligand-binding affinity conformation, and it protects AHR from
ubiquitylation-mediated proteasomal degradation [41,45–47].

Upon agonist binding, the AHR changes its conformation, translocates to the nucleus,
dissociates from its chaperone complex, and forms a heterodimer with a constitutively
expressed nuclear factor knowns as an AHR nuclear translocator (ARNT) or as HIF-1β
(Figure 1) [44,46,48]. The AHR–ARNT heterodimeric complex is required for AHR–DNA
binding and transcriptional function [40,49]. The AHR–ARNT–DNA complex then recruits
the following: coactivators CBP/p300, SP1, NCOA 1-3, and RIP140; kinases IKKa, MSK1,
and MSK2; components of the ATP-dependent chromatin remodeling complexes such as
BRG-1 and p-TEFβ; and RNA initiation factors required for RNA polymerase II, which
increase promoter accessibility and initiate transcription of the target genes [40,50–53].

AHR can also control the expression of genes that do not harbor XREs by interacting
with additional transcription factors that direct its recruitment to target DNA sequences,
different from canonical XREs. Non-canonical AHR partners include the estrogen receptor
(ESR), the retinoic acid receptor (RAR), the retinoblastoma protein (RB), Krüppel-like
factor 6 (KLF6), nuclear factor erythroid 2-related factor 2 (Nrf2), musculoaponeurotic
fibrosarcoma (c-Maf), and nuclear factor-κB (NF-κB) [54–59].

AHR signaling is regulated at three levels, as follows: ligand metabolism by CyP
enzymes, AHR–ARNT complex disruption by AHRR, and proteasomal degradation of the
AHR. These mechanisms limit AHR’s signaling and protect cells from prolonged exposure
to high concentrations of agonists.

Many AHR agonists (e.g., 6-formylindolo [3,2-b]carbazole or FICZ) are substrates for
CyP enzymes downstream of the AHR, mainly CYP1A1, and are rapidly metabolized, thus
generating only transient effects. In contrast, many xenobiotic ligands (e.g., TCDD) are
stable and resistant to degradation. As a consequence, xenobiotic ligands have extended
half-lives, driving prolonged AHR activation that has to be counteracted by additional
control mechanisms [60,61].

Furthermore, the AHRR inhibits AHR signal transduction in two ways. First, the
AHRR competes with the AHR for interaction with ARNT and XRE binding which, in
turn, decreases gene expression [31,62]. Second, the AHRR has activity as a transcriptional
repressor, recruiting co-repressors such as ANKLA2, HDAC4, and HDAC5, when the
AHRR–ARNT–DNA complex is formed [63]. AHR’s transcriptional activity is affected by
HIF1α interaction with the ARNT, which is independent of AHRR-mediated inhibition [20].
When the AHR–ARNT complex is disassembled from DNA, the AHR is exported from the
nucleus and subjected to proteasomal degradation [64,65].

Several AHR-mediated non-genomic pathways, independent of DNA binding, have
been identified recently. AHR ligand activation also produces an increase in intracellular
Ca2+ concentration [66], interacts with E3 ubiquitin ligases (promoting the proteasomal
degradation of target proteins) [67], or triggers phosphorylation cascades, driven by Src
kinases upon its release from the AHR–chaperone cytoplasmic complex [42,43].

2. Role of AHR Function in Skin Immune System

The AHR plays a relevant role in many immune and inflammatory processes, such
as multiple sclerosis, rheumatoid arthritis, asthma, inflammatory bowel disease (IBD),
chloracne, AD, and PS [12,68–72]. The AHR is a critical regulator of the balance between
proinflammatory or autoimmune Th17 cells and both immunosuppressive or tolerogenic
Treg and T regulatory type 1 (Tr1) cell populations, which is determined by the cellu-
lar microenvironment and the presence of specific ligands (Figure 2). TCDD-induced
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AHR activation promotes transactivation of FoxP3 gene in vitro, and expansion of the
CD4+CD25+FoxP3+ Treg-cell compartment in vivo. Moreover, AHR activation leads to
epigenetic changes in the FoxP3 locus, and the expression of additional transcription fac-
tors required for the induction of functional FoxP3+ Treg cells, such as decapentaplegic
homolog (Smad)1 and Aiolos [73–75] (Figure 2). Besides, the AHR synergizes with c-Maf
and transactivates IL-10 and IL-21 in Tr1 cells [20,56,74], and facilitates RORγt-mediated
IL-22 transcription in Th17 cells [76,77]. Moreover, the AHR is essential for IL-22 secretion
by innate lymphocytes, including γδ T cells and innate lymphoid cells (ILC) 3 popula-
tions [77–79].
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Figure 2. Effects of AHR signaling in keratinocytes and different T cell subsets. AHR expression depends on T helper
(Th) cell subsets. In naïve CD4+ T cells (Th0), Th1 cells, and Th2 cells, AHR expression is negligible. Th17 express the
highest AHR levels and regulatory T (Treg) cells and T regulatory type 1 (Tr1) cells show intermediate levels. AHR’s
activation exerts multiple effects on T cells. Engagement by particular ligands—such as 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD), 6-formylindolo [3,2-b]carbazole (FICZ), L-kynurenine (L-Kyn), indole-3-carbinol (I3C), or 3,3′-diindolylmethane
(DIM) (indicated in red)—activate transcriptional programs, which regulate the effector functions of AHR-expressing T cell
subsets. In Th17 cells, the AHR enhances interleukin (IL)-17A, IL-17F, and IL-22 release, in cooperation with RAR-related
orphan receptor (ROR)γt. The AHR upregulates IL-1 receptor type 1 (IL-1R1) expression in Th17 cells. The AHR also
inhibits signal transducer and activator of transcription (STAT)1 and STAT5, which negatively regulates the Th17 program,
and together with STAT3, induced Aiolos expression that resulted in IL-2 silencing. In Tr1 cells, the AHR interacts with
musculoaponeurotic fibrosarcoma (c-Maf) to induce the expression of IL-10 and IL-21, and with STAT3 to drive CD39
expression and its own expression, which acts as a positive feedback loop. The AHR also upregulates the expression of
granzyme B and promotes hypoxia-inducible factor (HIF)-1α degradation. Similarly, the AHR induces IL-10 and CD39 in
Treg cells, upregulates the expression of forkhead box (Fox)P3, and mothers against decapentaplegic homolog (Smad)1
and Aiolos. Smad1 controls the expression of FoxP3 and Aiolos cooperates with FoxP3 to repress IL-2 transcription. In
keratinocytes, the AHR triggers the expression of genes of the epidermal differentiation complex (EDC) (described in the
text) which encodes involucrin (IVL), loricrin (LOR), and filaggrin (FLG) proteins, among others. IFNγ—interferon gamma;
TGF-β—transforming growth factor beta; CD39—cluster of differentiation 39; P—phosphorylation; eATP—extracellular
adenosine triphosphate; eADP—extracellular adenosine diphosphate. Figure was created with BioRender.com.
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Interestingly, different ligands trigger the interaction of the AHR with different tran-
scriptional partners, leading to AHR recruitment to different target DNA sequences, thereby
inducing different biological responses [75,80]. For example, FICZ promotes in vivo Th17
differentiation and exacerbates experimental autoimmune encephalomyelitis (EAE), while
TCDD treatment increases the pool of Treg and promotes IL-10 secretion by Tr1 cells,
ameliorating disease progression [75]. However, the immunosuppressive effect of TCDD
depends on the timing of administration in the EAE model, and both ligands—TCDD
and FICZ—can upregulate the Th17 program in vitro, with the magnitude of response
depending on AHR affinity [80]. Overall, these compelling data demonstrate that AHR
activation can be modulated by multiple factors, and it can play differential roles, even in
the same pathology.

Regarding the skin immune system, the AHR exerts a major role in several immune
cell populations. Murine skin harbors several populations of residents and recruited γδ

T cells that play essential roles in the development of PS and AD [81]. Dermal IL-17-
secreting γδ T cells, as well as epidermal dendritic γδ T cells, express AHR [82]. Using
the model of IL-23-induced skin inflammation, we demonstrated that CD69 expression
controls AHR-mediated IL-22 expression in Th17 and γδ T cells [78]. CD69 regulates
L-Trp uptake by the amino acid transporter L-type amino acid transporter 1 (LAT1), thus
controlling the intracellular pool of AHR ligands, such as FICZ, in T cells. Moreover, the
chemical inhibitor of AHR (CH-223191) was effective in the control of skin inflammation
induced by intradermal administration of IL-23, blocking the secretion of IL-22 by Th17
and dermal γδ T cells [78]. The inhibition of the LAT1 amino acid transporter effectively
blocks IL-17 and IL-22 secretion by Th17 and γδ T cells, thus preventing imiquimod (IMQ)
and IL-23-induced skin inflammation [83]. LAT1 also mediates the L-Kyn efflux or influx
in the blood barrier and immune cells, thus playing a major role in the regulation of AHR
activation [84,85] (Figure 1).

In addition, the expression of AHR is essential for dendritic epidermal γδ T cell
maintenance in mouse skin [86] and also contributes to the persistence of skin resident
memory T cells (TRM) [87]. TRM cells can be CD8+ T cells or CD4+ T cells, which enter the
epidermis and dermis, respectively, during infection or inflammation, and become long-
lived tissue-resident populations [88]. These memory T cells are distinct from circulating
effector memory and central memory populations found in circulation. TRM cells provide
the earliest response to secondary challenges, playing a critical role in skin defense [88].
However, aberrant TRM cell activation contributes to the chronicity of skin inflammatory
diseases such as AD and PS [88]. TRM cells remain in resolved PS lesions, secreting IL-17A
and IL-22 that may cause relapse [89]. Repeated exposure to AD triggering factors also
induces TRM cells, which secrete multiple cytokines in addition to Th2 response, including
IL-17 and IL-22, and play a role in the recurrence and chronicity of AD [90]. Despite the
relevance of AHR in the expression of IL-17 and IL-22 cytokines, the role of different AHR
ligands or AHR inhibition in the control of TRM expansion and function has not been
assessed in PS or AD.

The AHR is also a critical regulator of Langerhans cells activation and function. Mice
with specific deletion of AHR in langerin-expressing cells show reduced number and
activation of Langerhans cells while enhancing Th2 and Tr1 responses upon epicutaneous
protein sensitization [91]. AHR affects the balance between the inflammatory M1 and anti-
inflammatory M2 phenotypes, increasing the secretion of proinflammatory cytokines [92].
The specific ligands involved in AHR regulation in dendritic cells (DCs) and macro-phages
populations in the skin, during homeostasis and inflammation, are not identified yet.

AHR Function in the Epidermis

The AHR is involved in many aspects of skin physiology, such as detoxification,
cellular homeostasis, skin pigmentation, and skin immunity [14]. Human keratinocytes
express high levels of AHR in homeostasis, but its expression is increased in inflammatory
conditions, such as PS and AD [93,94]. Both AHR and ARNT colocalize in the nuclei of
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keratinocytes at the lower epidermis of psoriatic lesions, suggesting activation of the AHR
pathway [93]. AHR upregulates the production of skin barrier proteins in vivo and in vitro,
accelerating epidermal terminal differentiation of keratinocytes [95–97]. AHR triggers the
expression of genes of the epidermal differentiation complex (EDC), which includes the
cornified envelope precursor gene family, the S100A proteins, and the fused gene family.
Cornified envelope precursor gene family codes for barrier-related molecules, such as
LOR, IVL, late cornified envelope protein genes (LCEs), and small proline-rich protein
genes (SPRRs). Most S100A proteins, such as S100A7 (psoriasin), exert antimicrobial and
proinflammatory effects, especially in PS. The fused gene family includes FLG, FLG2, and
hornerin (HRNR) genes, among others [12,17,97–99]. AHR upregulates the expression
of OVO-like 1 (OVOL1) transcription factor, promoting its cytoplasm-to-nucleus translo-
cation [99,100]. Both FLG and LOR are upregulated by the AHR–OVOL1 axis; whereas,
IVL upregulation by AHR is independent of OVOL1 [98,100]. The generation of ROS is
involved in the AHR’s regulation of epidermal terminal differentiation [101].

Mice with full genetic deletion of Ahr, [102] as well as mice expressing constitutively
active AHR in keratinocytes [103], show alterations in the epidermis and cutaneous inflam-
mation that resemble AD, suggesting the relevance of fine-tuning the AHR pathway in the
skin. Severe defects in desquamation and epidermal barrier function are also observed in
mice with targeted ablation of Arnt in keratinocytes [104]. Mice with full genetic deletion
of Ahr also show an exacerbated form of PS, induced by IMQ, which could be reproduced
by the specific genetic deletion of Ahr in keratinocytes, but not in immune cells, indicating
its major role in curbing epidermal differentiation in psoriatic skin [105]. Interestingly,
AHR protein expression and activation are downregulated in psoriatic microvascular en-
dothelial cells, and specific deletion of Ahr in the endothelial compartment exacerbates skin
inflammation and neutrophil recruitment in the IMQ and IL-23-induced PS models [106].
Consistently, Ahr-deficient endothelial cells display increased ICAM-1 expression in vivo
and in vitro, which likely facilitates neutrophil recruitment to the skin [106].

The skin microbiome of Ahr-deficient mice is more variable and complex than that
of Ahr-sufficient mice, reflecting difficulties in controlling stable skin microflora [107].
Enhanced susceptibility to S. aureus infection and AD, induced by repeated epicutaneous
sensitization of tape-stripped skin with ovalbumin, was observed in mice with specific
deletion of Ahr in keratinocytes [108]. These data demonstrate that specific alterations of
AHR function in keratinocytes can lead to enhanced barrier damage and facilitate bacterial
entry, thus triggering AD.

On the other hand, a mouse line whose keratinocytes express a constitutively active
form of AHR develops AD-like phenotypes, exhibiting frequent scratching and increased
production of Th2-type cytokines by splenic lymphocytes [103]. Using this animal model,
it was demonstrated that air pollutants can induce AHR-mediated expression of the gene
encoding artemin protein, an important pruritogenic factor that is highly increased in the
skin of AD patients [109]. Hence, dysregulated AHR signaling in the skin can induce
allergic inflammation by inducing skin microbiota dysbiosis or sensing air pollutants.

3. AHR Ligands in Skin Homeostasis and Inflammation

AHR ligands can be classified into two major categories: (i) natural ligands, gener-
ated in biological systems that may have endogenous (host or microbiome) or exogenous
(dietary intake or microbiome) origin; (ii) synthetic ligands, such as xenobiotic or pharma-
ceutical agents.

3.1. Endogenous L-Tryptophan-Derived AHR Ligands

The essential amino acid, L-Trp, is a precursor to an important number of metabo-
lites with AHR-inducing activities (Table 1 and Figure 3). Besides its essential role as a
building block in protein synthesis, L-Trp acts as a precursor in four metabolic pathways
in mammalian cells, associated microbiota, and in plants, as follows: L-kynurenine (L-
Kyn), serotonin, indolic, and tryptamine [110]. These distinct pathways compete for the
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pool of available L-Trp and, specifically, convert L-Trp into L-Kyn, serotonin, indoles, and
tryptamine, respectively. About 90–95% of ingested L-Trp is converted into L-Kyn and
downstream metabolites, and around 4–6% of L-Trp is metabolized into indolic compounds,
as a result of various physiochemical and biological processes in which the gut microbiota
is critical. Only 1–2% of L-Trp is metabolized into serotonin (5-hydroxytryptamine) and
about 1% or less goes towards the production of tryptamine, which can be initiated by
either the host or the microbiota [110].
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Figure 3. Summary of natural AHR agonist synthesis pathways in mammalian cells, associated microbiota, and dietary
plants. HOST—endogenous L-tryptophan (L-Trp) metabolism via the L-kynurenine (L-Kyn), serotonin (5-HT), and
tryptamine pathways; indoxyl synthesis in the liver from the diet- or microbial-derived indoles; gastric acid condensation of
dietary indoles pro-ligands produces high-affinity indolic agonists; 6-formylindolo [3,2-b]carbazole (FICZ) is generated by
L-Trp photo-oxidation, L-Trp chemical-oxidation, or by enzymatic deamination of tryptamine that yields the precursor
indole-3-acetaldehyde (IAAld). SKIN MICROBIOTA—the AHR agonist, synthesized by skin-resident microbiota, such as
Malassezia yeast species. GUT MICROBIOTA—indole-derived AHR agonists, provided by microbial metabolism of L-Trp,
which can be further metabolized to indoxyl by the host. DIETARY—polyphenol- and indole (e.g., Brassicaceae plants)-rich
foods provide exogenous ligands, either as direct AHR ligands or as pro-ligands that can be converted to AHR ligands by
the host. L-Trp metabolic routes have been designed according to the KEGG Pathway Database (https://www.genome.jp/
kegg/pathway/map/hsa00380.html (accessed on 8 October 2021) and PathBank (https://pathbank.org/view/SMP0000063
(accessed on 8 October 2021)). AHR ligands or enzymes regulated by AHR are indicated in black, and intermediate
molecules and enzymes are in grey.

The L-Kyn pathway mainly occurs in the liver, but also in some extrahepatic tissues,
e.g., the skin. AHR regulates the expression of the first two, rate-limiting enzymes of the
L-Kyn pathway, tryptophan 2,3-dioxygenase (TDO), and indoleamine 2,3-dioxygenase
(IDO), as well as the downstream enzymes kynureninase (KYNU) and kynurenine 3-
monooxygenase (Figure 3). TDO is predominantly expressed in the liver, mainly in re-
sponse to hormone signaling, controlling the levels of circulating L-Trp available for the rest
of the aforementioned metabolic pathways. There are two isoforms of IDO enzymes in mice
and humans, IDO1 and IDO2, which possess overlapping and distinct immune-regulatory

https://www.genome.jp/kegg/pathway/map/hsa00380.html
https://www.genome.jp/kegg/pathway/map/hsa00380.html
https://pathbank.org/view/SMP0000063
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functions. IDO1 is widely expressed; whereas, IDO2 is expressed only in the liver, kidney,
and DCs and B cells in the immune system [111]. During inflammation, TDO levels are
reduced and IDO levels are increased, producing L-Kyn and its downstream metabolites
that exert important functions in the immune system in inflammatory, infectious, and neo-
plastic disorders. The presence of pathogenic and inflammatory stimuli such as LPS, CpG,
and IFNγ upregulate mainly IDO1 expression, through AHR signaling in different cell
types, including monocytes, macrophages, DCs, and epithelial cells [112–114]. In addition
to L-Kyn, the IDO pathway also triggers the generation of L-Kyn-derived endogenous
AHR ligands, like kynurenic acid (KynA), xanthurenic acid, or cinnabarinic acid (Figure 3),
which in turn amplifies AHR signaling in the local environment, conforming a positive
feedback loop [112,115–120]. IDO activity results in a reduction of free L-Trp levels, limiting
microorganism growth and inhibiting T cell proliferation [114,121]. Moreover, L-Kyn in-
duces AHR-mediated upregulation of FoxP3+, driving Treg cell differentiation [122]. These
immunosuppressive functions of L-Trp-derived L-Kyn metabolite and AHR underlie the
regulation of autoimmunity and resolution of inflammation in several contexts [122–125],
but its efficacy in AD and PS is not clear.

The intra-lesional injection of IDO1-expressing fibroblasts in IMQ-induced psoriasis-
like dermatitis significantly improves the clinical lesional appearance and reduces the
infiltration of IL-17 and IL-23 by lymphocytes and DCs, respectively [126]. Accumulating
evidence indicates that IDO2 acts as a pro-inflammatory mediator of autoimmunity [127].
However, when IMQ-induced, PS-like dermatitis was assessed in Ido2-deficient mice,
skin erythema, scaling, thickness, and levels of TNF-α, IL-23p19, and IL-17A appeared
increased [128] (Table 1). These data suggest that both IDO isoforms activation could
control PS. The analysis of the Kyn-to-Trp ratio in serum samples indicates higher IDO
activity in patients with PS than in healthy controls [129]. Although myeloid DCs from
patients with PS express higher levels of IDO1 than those from healthy controls, these
cells fail to upregulate IDO in response to a combination of TNF-α, IL-1β, and IL-6. The
defective expression of IDO1 correlates with PASI in these patients [129]. The expression of
the IDO1 enzyme is mainly upregulated in cancer cells; whereas, the levels of the KYNU
enzyme are preferentially upregulated compared to IDO1 in inflammatory diseases [130].
The expression of KYNU is upregulated in keratinocytes and immune infiltrating cells
in psoriatic lesions, but not in normal skin [130,131]. IL-17 and TNF-α synergistically
enhance KYNU expression in keratinocytes [132]. These data indicate that L-Kyn is further
degraded by KYNU in PS, thus avoiding its anti-inflammatory role. In addition, L-Trp
metabolites downstream of KYNU can act as proinflammatory mediators, upregulating
several cytokines, chemokines, and cell adhesion molecules [130]. KYNU expression posi-
tively correlates with disease severity and inflammation and is reduced upon successful
treatment of PS or AD [130]. Recently, KYNU chemical inhibition was shown to effectively
alleviate the pathological phenotypes of IMQ-induced PS [130]. Importantly, KYNU knock-
down significantly blunted the induction of the inflammatory factors IL-1β, IL-6, IL-8 by
keratinocytes, but whether AHR was involved in this effect was not assessed [131]. In
addition, 3-hydroxy-L-kynurenamine (3-HKA), a biogenic amine produced by an alter-
native pathway of tryptophan metabolism (Figure 3), was protective in an experimental
mouse model of psoriasis. In vitro, 3-HKA inhibited the IFN-γ-mediated STAT1/NF-κB
pathway in both mouse and human DCs and decreased the release of pro-inflammatory
chemokines and cytokines, most notably TNF, IL-6, and IL12p70 [133]. On the other hand,
KynA negatively modulates in vitro the expression of IL-23 and IL-17 by DCs and CD4+
cells, respectively [134]. However, the in vivo effect of KynA and its dependency on AHR
has not been explored in PS or AD models.

Moreover, several reports indicated that topical administration of L-Kyn or its deriva-
tives, mainly KynA, efficiently attenuate fibrotic responses in vivo in wound healing
models [135,136]. L-Kyn and KynA exert their AHR-mediated anti-scarring effects by
the upregulation of matrix metalloproteinase (MMP)1 and MMP3 and the suppression
of type-I collagen and fibronectin expression, directly on dermal fibroblasts [135,137,138].



Cells 2021, 10, 3176 10 of 27

FICZ also inhibits collagen production and promotes collagen degradation by the AHR-
dependent upregulation of MMP1 in human dermal fibroblasts [139,140]. However, the
immunoregulatory properties of FICZ, L-Kyn, and KynA, as well as its direct effect on
keratinocytes, may provide additional mechanisms that antagonize the development of
fibrosis in vivo. A novel topical treatment for keloid scars, based on KynA delivery, is
under clinical trial [141,142]. Importantly, the relevance of dermal fibroblast activation and
collagen deposition in PS and AD has remained mostly unexplored. However, it seems
reasonable to at least test this novel anti-scarring drug, based on KynA delivery, in the
development of PS and AD experimental models.

Serotonin and tryptamine pathways are also L-Trp degradation pathways that produce
AHR agonists (Figure 3). Serotonin or 5-hydroxytryptamine (5-HT) is a monoamine neuro-
transmitter with an indolamine structure, derived from L-Trp through two enzymatic steps.
The first rate-limiting reaction of the 5-HT pathway produces 5-hydroxytryptophan (5
(OH)Trp), another AHR agonist [143]. Treatment with 5 (OH)Trp inhibits IMQ-induced pso-
riasiform dermatitis in mice and control activation in keratinocytes and splenocytes [144]
(Table 1). The serum levels of 5-HT are elevated in psoriatic patients with anxiety, correlate
with disease severity, and decrease after treatment [145,146]. The expression of 5-HT and its
receptors in psoriatic skin lesions is upregulated compared with normal skin, which might
facilitate the development of PS by promoting the proliferation of keratinocytes and acting
as an inflammatory mediator [147]. Moreover, 5-HT expression in the skin is significantly
higher in patients with eczema [148], contact allergy [149], and AD [150]. Imbalanced
5-HT expression significantly correlates with the severity and extent of disease and the
appearance of anxiety or depression (or both). Expression of the serotonin transporter
(SERT) on inflammatory cells (e.g., DCs) in the psoriatic epidermis is also increased, and
there is a positive correlation between the PS severity and the number of SERT-positive
DCs [151,152]. While the role of the 5-HT system in skin inflammation has been described,
further studies are required to evaluate the relevance of AHR activation in these pathways.

Tryptamine is an indolamine, synthesized by the enzymatic decarboxylation of L-Trp
(1% total dietary L-Trp). In mammals, tryptamine acts as an endogenous neurotransmitter
and is an AHR agonist and a CYP1A1 substrate [153]. Furthermore, tryptamine is a
precursor of downstream AHR agonists including indole-3-acetylaldehyde (IAAld) and
indole-3-acetic acid (IAA) [154], which are produced by host and microbiota metabolism
or obtained from dietary plants (Figure 3). The potential benefits of indole derivatives
are highlighted by disease amelioration in animal models of colitis and EAE [155–160].
IAA has been tested as an active agent in a novel form of photodynamic therapy used
in the treatment of acne vulgaris [161], seborrheic dermatitis [162], and multiple actinic
keratosis [163]. However, the role of tryptamine or its metabolism in PS or AD has yet to
be explored.

3.2. Endogenous Ligands Derived from Photo-Oxidation of L-Trp

L-Trp photo-oxidation triggers several photochemical products that competitively
bind to AHR, upregulating CYP1A1 expression [164]. These include IAA, IAAld, 1-(1H-
indol-3-yl)-9H-pyrido [3,4-b]indole [165], and 6-formylindolo [3,2-b]carbazole (FICZ) [166],
which has structural similarities to the potent indole ligand indolo (3,2-b)carbazole (ICZ) [167].
FICZ is an important physiological endogenous AHR agonist, with high binding affinity,
similar to that of TCDD [167]. Unlike TCDD, FICZ is rapidly metabolized by CYP1A1, thus
creating an important negative feedback loop [166,167]. FICZ may be formed intracellu-
larly in skin cells by ultraviolet (UV) irradiation-induced L-Trp oxidation and has local
effects [168]. However, systemic effects are likely, because FICZ-derived sulfate conjugates
have been detected in human urine [169]. FICZ may be formed via other pathways distinct
from L-Trp photolysis by UV light. Light-independent pathways include L-Trp oxidation
by intracellular oxidants like hydrogen peroxide (H2O2) [170]. Alternatively, enzymatic
deamination of tryptamine yields IAAld, the precursor of FICZ (Figure 3).
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Systemic administration of FICZ in the IMQ model results in attenuated psoriasiform
skin inflammation, with reduced expression of the proinflammatory mediators IL-17 and
IL-22 [105] (Table 1). Recently, two new synthetic AHR, ligands structurally related to the
natural agonists FICZ, NPD-0614-13, and NPD-0614-24, were assessed on two different
three-dimensional models of psoriasis—a reconstructed human epidermal equivalent and
a full-thickness reconstructed skin—which represents a more complex system, due to the
presence of psoriatic fibroblasts [171]. NPD-0614-13 and NPD-0614-24 counteracted the al-
tered proliferation of human primary keratinocytes stimulated with TNF-α or LPS, exerted
pro-differentiating activity, and reduced the expression of pro-inflammatory cytokines and
antimicrobial peptides [171] (Table 1). These data support NPD-0614-13 and NPD-0614-24
as new therapeutic agents in the management of PS. However, further preclinical and
clinical studies are required to evaluate the possible use of the aforementioned molecules
for the treatment of PS and AD.

3.3. Exogenous AHR Ligands: Flavonoids and Indoles as a Phytochemical Dietary Source of
AHR Ligands

Dietary AHR ligands are obtained mainly from foods with abundant L-Trp-derived
indoles and polyphenols, such as vegetables and plant by-products [172,173]. These foods
contain AHR ligands or pro-ligands. For example, indole-3-acetonitrile (I3ACN) and indole-
3-carbinol (I3C) (also known as indole-3-methanol—I3M) are weak dietary AHR ligands
but, in the acidic environment of the stomach, they undergo non-enzymatic condensation
reactions that transform them into a variety of AHR ligands, including 2-(indol-3-ylmethyl)-
3,3′-diindolylmethane, 3,3′-diindolylmethane (DIM), and ICZ [174]. Among these, ICZ
shows the highest AHR agonistic activity [175,176]. The formation of relatively potent
AHR ligands from precursors that have little or no AHR agonist activity is significant,
especially considering that most dietary ligands are relatively weak AHR ligands. These
dietary indoles and endogenous derivatives have an impact on the host immune defense
capacity and homeostasis, especially in the control of bacterial gut colonization [156,177].

Both full and keratinocyte specific Ahr-deletion mouse lines show high TEWL, a clear
parameter of defects in skin barrier integrity [107]. The removal of AHR ligands from
the diet of control mice resembles defects of skin barrier integrity observed in mice with
genetic deletion of Ahr in keratinocytes. On the other hand, the presence of I3C in the diet
was sufficient to prevent the increased TEWL detected in ageing mice [107]. These results
suggest that the regulation of skin barrier function through AHR is not exclusively due
to the effect of UV-induced AHR ligands such as FICZ, and also indicate a systemic role
for AHR ligand uptake from the diet. Interestingly, the antibiotic-mediated removal of
microbiota prevents IMQ-induced skin inflammation through downregulation of Th17
immune response in conventional mice [178,179]. The relevance of specific microbiome-
derived metabolites and AHR expression remains unexplored in the antibiotic-induced
control of experimental PS.

Dietary AHR ligands I3C and DIM were compared to FICZ in the induction of Tregs
and Th17 cells in a model of attenuated delayed-type hypersensitivity (DTH) [180] (Table 1).
Both indoles decreased the induction of IL-17 but promoted IL-10 and FoxP3 expression in
mice expressing AHR, attenuating skin inflammation. In contrast, FICZ exacerbated the
DTH response and promoted Th17 cells, through activation of AHR [180]. Systemic admin-
istration of DIM also significantly alleviates skin erythema and edema in a mouse model of
acute AD established using 2,4-dinitrofluorobenzene [181]. DIM promoted the differentia-
tion of Treg cells and inhibited the Th2 and Th17 cells activation, but without significant
effect on Th1 cells [181]. Finally, cutaneous delivery of [1-(4-chloro-3-nitrobenzenesulfonyl)-
1H-indol-3-yl]-methanol, an I3C derivative, mitigates the onset of psoriasiform lesions
by blocking MAPK/NF-κB/AP-1 activation [182], but the requirement of AHR vs. direct
targeting of NF-κB signaling target is unclear.

The isomers indigo and indirubin are two indoxyl AHR agonists isolated from human
urine [183]. In mammals, indoles produced by gut bacteria are absorbed by the host and
circulate to the liver, where they are hydroxylated by CYP2E1 to form indoxyls and then
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sulphate—conjugated by sulphotransferases [184,185]. The salts of the resulting indoxyl
sulfates are excreted in the urine. In vitro and in vivo studies with indirubin have reported
its anti-inflammatory capacity [186,187]. Accordingly, this compound has been used in
clinical trials for IBD treatment [188–190]. Additionally, since indigoids herbal remedies
have been commonly used in traditional chinese medicine for treating dermatosis and skin
lesions such as eczema, aphtha, or eruptions, a few clinical trials suggested that topical
treatment with Indigo naturalis ointment is effective in treating PS [191,192] and AD [193].
Studies on cultured primary human keratinocytes indicated that the anti-psoriatic effects
of I. naturalis extract rely on blocking keratinocyte proliferation, inducing keratinocyte
differentiation, upregulating claudin-1 expression, and enhancing the function of tight
junctions [194,195].

Polyphenols are another important group of phytochemical dietary products that
interact with AHR. Polyphenols can be flavonoids and non-flavonoids. Curcumin and
resveratrol are non-flavonoids that interact with AHR [196]. Some examples of flavonoid
ligands are quercetin, kaempferol, apigenin, naringin, chrysin, diosmin, or tangeritin.
Despite the similar chemical structures of various flavonoids, their role in controlling the
activity of AHR can be very different and their reported effects as agonists or antagonists
are sometimes contradictory. For example, many flavonoids have dual agonist–antagonist
activity, depending on their concentration, in a species- or cell line-specific manner, by
synergistic interactions with other ligands, or due to indirect activation of the AHR through
inhibition of specific CyP and accumulation of another ligand [197–200]. Importantly,
plant-based polyphenols are generally recognized as health-promoting, and some of them
can be found as constituents of commercial nutraceutical formulations. Polyphenols show
anti-inflammatory effects that have been extensively studied in IBD models [201–205]. Most
polyphenols and flavonoids display antioxidant properties due to their chemical structure,
which includes hydroxyl groups [206,207] that make them reducing agents and inhibitors
of enzymes involved in ROS generation, like microsomal monooxygenases (acting directly
on the enzyme or indirectly on other pathways or transcriptional regulation, e.g., by AHR
antagonism) [200]. Moreover, some flavonoids modulate immune responses through AHR.
For example, naringenin induces the generation of Treg cells [208] and quercetin induces
tolerogenic LPS-matured DCs [209] by AHR-mediated pathways.

3.4. Microbial-Derived AHR Ligands

Indoles can also be generated through the microbial metabolism of L-Trp. Tryptophanase-
positive commensal microbes from barrier organs (e.g., skin, digestive, or urinary tract) can
use L-Trp as a nitrogen or energy source and metabolize it into indolic derivatives, some of
which are AHR ligands or can be further transformed into higher affinity indoxyl sulfate
ligands by hepatic host enzymes as explained above [184]. Among microbiota-derived
indoxyl compounds, indoxyl-3-sulfate (I3S) is a potent ligand for human AHR, although it
exhibits a lower affinity for mouse AHR [210]. Of note, I3S is undetectable in the blood
of germ-free mice [211], indicating that its synthesis depends on commensal bacteria. I3S,
and other metabolites derived from dietary L-Trp through modification by the microbiota,
cross the blood–brain barrier and limit inflammation through AHR-driven mechanisms in
astrocytes and microglia in EAE models [212,213].

Bacterial species that produce indoles through bacterial L-Trp metabolism and their
effects on the host health have been described elsewhere [214,215]. Briefly, Lactobacilli
species, especially L. reuteri, produce AHR ligands, e.g., indole-3-aldehyde (IAld) and
indole-3-lactic acid (ILA). Additional microbial metabolites of dietary L-Trp like IAA,
IAAld, tryptamine, or 3-methylindole (skatole) are also endowed with AHR-agonistic activ-
ity [216–218]. Intestinal IAld regulates IL-22 expression in ILC3 via AHR and this stimulates
antimicrobial protein production, promoting resistance against pathogenic microorgan-
ism colonization (Candida albicans) and maintaining intestinal homeostasis [219]. Indoles
produced by Lactobacilli also contribute to homeostasis-preventing IBD pathogenesis by
inducing IL-22 in an AHR-dependent manner [220–222]. Furthermore, IAld and ILA can
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reprogram CD4+ intraepithelial lymphocytes (IELs) into CD4+ CD8αα+ double-positive
IELs, which promote tolerance to dietary antigens [223].

L-Trp metabolites derived from the microbiota also play a regulatory function in
the skin. A metagenomic study of skin microbiomes from control and AD individuals
found that L-Trp metabolism pathways are attenuated in the skin microbiome of patients
with AD [224]. Comparison of L-Trp metabolite levels between the skin of patients with
AD and that of healthy subjects showed that IAId was the only metabolite significantly
decreased on both lesional and non-lesional skin of patients with AD [225]. Furthermore,
topical application of IAId alleviated skin inflammation in a mouse model of AD in an
AHR-dependent fashion [225] (Table 1).

In addition to bacteria, yeast can also metabolize L-Trp into several potent indole AHR
ligands. Eukaryotic microbiome residents on human skin are dominated by the Malassezi-
aceae family [224]. Malassezia species produce ICZ, malassezin, indirubin, pityriacitrin,
pityriazepin, and FICZ in L-L-Trp agar culture extracts and in skin samples from patients,
but not in healthy controls [226–229]. Malassezia is a common skin-residing yeast that can
become pathogenic in diverse skin diseases. Malassezia can cause pityriasis versicolor,
also known as tinea versicolor, a superficial fungal infection of the skin characterized by
the formation of hyperpigmented or hypopigmented plaques mainly in the back, chest,
upper arms, and neck regions. While pityriasis may involve a high fungal load without
significant inflammation, Malassezia yeasts are implicated in exacerbations of AD and
seborrheic dermatitis, which are inherently inflammatory disorders. Indoles produced by
Malassezia are AHR agonists that activate the classical AHR response genes, CYP1A1 and
CYP1B1 [226–229]. However, they also exert cell-specific effects on the skin. Activation of
the AHR pathway in immortalized human keratinocytes (HaCaT), infected with different
strains of Malassezia, upregulated FLG, IVL, and transglutaminase [230], as well as IL-1β
expression [231,232]. Furthermore, Malassezia increases the levels of Toll-like receptor
2 (TLR-2), IL-1β, IL-6, IL-8, cyclooxygenase 2 (COX-2), and MMP-9 expression in infected
HaCaT cells [231,232]. Therefore, exacerbated AHR activation by Malassezia-derived ago-
nists may result in inflammation and alteration of epidermal barrier function.

3.5. Toxicity of AHR-Exogenous Ligand TCDD in the Skin

Several environmental contaminants—such as TCDD and other PAHs (e.g., biphenyls,
7,12-dimethylbenz[a]anthracene (DMBA), methylcholanthrene, or benzo[a]pyrene (B[a]P))—
are exogenous ligands of AHR. Exposure to dioxins, in particular TCDD, induces a cuta-
neous syndrome known as chloracne in humans, consisting of the development of multiple,
small skin lesions (hamartoma), lasting for 2–5 years [16,233] (Table 1). Chloracne has been
observed mainly in workers frequently exposed to high levels of dioxins. TCDD cutaneous
toxicity causes an alteration in the differentiation and proliferation of the skin, resulting
in the thickening of the interfollicular squamous epithelium, as well as metaplasia and
hyperkeratinization of the ducts of the sebaceous gland, with comedone formation [16,233].

TCDD binding to AHR upregulates CYP1A1 and CYP1B1 mRNA and protein expres-
sion in keratinocytes [234]. The enzymatic activity of CYP1A1 generates reactive oxygen
species (ROS) and can induce oxidative damage in the cells [18,101]. Because TCDD is struc-
turally stable and poorly metabolized by CYP1A1, it leads to sustained AHR activation as
well as to exacerbated ROS generation by CYP1A1 activity [18,233]. The deletion of CYP1B1
did not affect TCDD-induced ROS generation at least in endothelial cells, suggesting the
main role for the AHR-CYP1A1 axis in TCDD-induced toxicity [18]. However, additional
experiments in keratinocytes are required to understand the specific role of CYP1A1 vs.
CYP1B1 enzymes in TCDD-induced skin alterations. FICZ also induces ROS generation in
keratinocytes in an AHR-dependent fashion, driving the production of the proinflamma-
tory cytokines IL-1α, IL-1β, and IL-6 [235]. AHR activation by TCDD in primary mouse
keratinocytes upregulates the expression of the neutrophil-stimulating chemokine (C-X-C
motif) ligand 5 (CXCL5) [236]. This effect was also observed in Ahr-sufficient mice exposed
to UV light or after topical treatment with FICZ [236]. Thus, AHR is an important regulator
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of CXCL5-induced neutrophil recruitment, with implications for skin homeostasis and
inflammation. Hence, TCDD shares molecular pathways similar to FICZ, but the skin alter-
ations associated with TCDD exposure are due to its poor metabolism through CYP1A1,
which exacerbates its effects.

In vitro studies using normal human epidermal keratinocytes demonstrate that TCDD
accelerates differentiation and increases gene expression of several skin-barrier proteins,
including FLG [17,237,238]. Using an organotypic coculture system, containing primary
human fibroblasts and an immortalized human keratinocyte cell line, it was shown that
TCDD specifically altered the keratinocyte differentiation program, without affecting
proliferation and apoptosis [95]. Cotreatment with chemical or enzymatic antioxidants
blocked TCDD-mediated acceleration of keratinocyte cornified envelope formation, an
endpoint of terminal differentiation. Thus, TCDD-mediated ROS production is a critical
step in the mechanism of accelerating keratinocyte differentiation [16]. Moreover, TCDD
strongly increased IL-6 and IL-8 release in normal human epidermal keratinocytes [93].

CD4+ T cells from patients with AD and PS showed higher expression levels of AHR-
related factors, such as AHR, CYP1A1, IL-17, and IL-22. In vitro treatment with TCDD
of PBMCs and CD4+ T cells from patients with PS and AD showed upregulation of the
aforementioned AHR-related genes. In contrast, FICZ inversely affected the differentiation
of CD4+ T cells and their cytokine expression levels, as compared with TCDD [239].
These results suggest that environmental pollutants such as TCDD may contribute to the
development or exacerbation of AD and PS.

3.6. Tapinarof—A Novel Treatment for PS and AD

Tapinarof (3,5-dihydroxy-4-isopropylstilbene), previously known as GSK2894512
or WBI-1001, is a naturally derived small molecule produced by bacterial symbionts of
entomopathogenic nematodes [240,241]. It is structurally similar to the vegetal polyphenol
resveratrol but differs significantly from its activity [242]. High throughput profiling
studies revealed that tapinarof binds directly to AHR resulting in downregulation of
inflammatory cytokines, including IL-17A, IL-17F, IL-19, IL-22, IL-23, and IL-1β in the
IMQ-induced PS model [242]. Tapinarof also induces the expression of skin barrier genes
related to keratinocyte differentiation in an AHR-dependent manner, including FLG and
LOR [242,243] (Table 1). In fact, tapinarof displayed a pattern of biological responses
reminiscent of that of the AHR agonist FICZ in the IMQ model [105].

Clinical studies have demonstrated that topical application of tapinarof is efficacious
and well-tolerated in patients with AD and PS [244–246]. In addition to AHR, tapinarof
interacts with Nrf2, cannabinoid receptor type 2, and monoamine oxidase B pathways [242].
Tapinarof displays intrinsic antioxidant activity through two phenol groups that scavenge
ROS, and induces the AHR-Nrf2 transcription factor pathway, leading to the expression
of antioxidant enzyme genes [242,247]. Despite its antioxidant activity, the therapeutic
effects of tapinarof in the IMQ-mouse model of PS were not observed in Ahr-deficient
mice, suggesting that tapinarof exerts its anti-inflammatory role in PS by controlling AHR
signaling [242]. Tapinarof also inhibited T cell expansion and Th17-cell differentiation
in vitro, reducing IL-17A and IL-17F secretion, which is relevant for PS treatment [242].
Furthermore, tapinarof treatment restores the downregulation of FLG and LOR expression
induced by IL-4, a key cytokine in AD [243]. Finally, tapinarof induces AHR-mediated
secretion of IL-24, which downregulates FLG and LOR expression and alters keratinocyte
differentiation [243,248,249]. Hence, inhibition of the IL-24 signaling pathway might be
considered to improve tapinarof therapeutic effects [243].



Cells 2021, 10, 3176 15 of 27

Table 1. Role of direct AHR ligands and intermediate L-Trp-derived metabolites in psoriasis (PS) and atopic dermatitis
(AD). Molecules that have been proved to induce AHR transcriptional activity are in black, while intermediate molecules of
metabolic pathways are in grey.

Origin/Source Molecule Effects in PS or AD

L-Trp-derived metabolites of
L-kynurenine pathway

L-Kynurenine
(L-Kyn)

Ido2-deficient mice show exacerbated IMQ-induced PS [128].
Increase Kyn/Trp ratio in

PS and AD patients [129,130].

Kynurenic Acid
(Kyn A)

Suppresses IL-23/IL-17 in vitro secretion in DC/CD4+ T
cells, respectively, after LPS stimulation [134].

Xanthurenic Acid Not assessed in PS or AD.

Cinnabarinic Acid Not assessed in PS or AD.

3-Hydroxyanthralinic acid Proinflammatory role suggested in PS and AD. Induces the
expression of CCL20 and IL-8 in keratinocytes in vitro [130].

Quinolinic acid
Proinflammatory role suggested in PS and AD. Induces

chemokines and adhesion molecules in keratinocytes and
endothelial cells, respectively, in vitro [130].

3-hydroxy-L-kynurenamine (3-HKA) Protective role in IMQ-induced PS mouse model [133].

Serotonin pathway 5-Hydroxytryptophan
(5(OH)Trp) Controls IMQ-induced psoriasiform dermatitis [144].

Tryptamine pathway Tryptamine Not assessed in PS or AD.

Oxidative L-Trp metabolite 6-formylindolo [3,2-b]carbazole
(FICZ)

Attenuates IMQ-psoriasiform skin inflammation by
increasing FLG expression and reducing IL-17 and IL-22

levels [105].
Exacerbates the DTH response by promoting Th17 cells [180].

Synthetic NPD-0614-13
NPD-0614-24 Protective role in three-dimensional models of psoriasis [171].

Dietary ligands

Indole-3-acetonitrile (I3ACN) Not assessed in PS or AD.

Indole-3-carbinol (I3C)
Controls IL-17 secretion and increases Foxp3 and IL-10

expression. Controls skin inflammation in a model of DTH
[180].

Indigo Effective in the treatment of PS and AD patients [191–193].
Induce keratinocyte differentiation [194,195]

Indirubin Inhibits inflammatory reactions in DTH mouse model [187]

3,3′-diindolylmethane (DIM)

Decreases IL-17 secretion while increasing Treg
differentiation, thus controlling skin inflammation in a model

of DTH [180].
Reduces Th2 and Th17 cell proliferation, increases Treg,
attenuating atopic dermatitis-related immune responses

[181].

Microbiota indole ligands

Indole-3-acetylaldehyde (IAAld) Not assessed in PS or AD.

Indole-3-acetic acid (IAA) Not assessed in PS or AD.

Indole-3-lactic acid (ILA) Not assessed in PS or AD.

Indole-3-aldehyde (IAld)
Metabolite significantly decreased on both lesional and

non-lesional skin of patients with AD
Alleviates skin inflammation in AD mouse model [225].

Malassezia
Malassezin
Pityriacitrin
Pityriazepin

Upregulate FLG and IVL genes in keratinocytes in vitro [229].
Induce proinflammatory mediators in keratinocytes in vitro

[230,231].
Associated to exacerbated AD and seborrheic dermatitis.

Synthetic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) Induces chloracne syndrome in humans [12].

Bacterial symbionts of
entomopathogenic

nematodes

3,5-dihydroxy-4-isopropylstilbene
(Tapinarof, GSK2894512 or WBI-1001)

Protective role in the IMQ-induced PS model, by
downregulation of inflammatory cytokines, and

improvement of skin-barrier function [242].
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4. Concluding Remarks and Future Perspectives

The barrier function of the epidermis involves the correct expression and configu-
ration of multiple components, including several proteins and lipids. When properly
functioning, the epidermis layer prevents water loss and provides a barrier against the
invasion of allergens and bacteria. Environmental factors (e.g., pollutants) and UV-derived
Trp-related metabolites can trigger AHR expression in the epidermis. The controlled and
autoregulated (through CyPs activity) AHR-mediated transcriptional expression favors epi-
dermal renewal and barrier function. On the other hand, exacerbated and prolonged AHR
activation, due to failure of regulatory mechanisms, increases ROS generation and induces
secretion of proinflammatory mediators, leading to exacerbated keratinization response.
AHR expression is also relevant for immune responses, including secretion of IL-10, IL-21,
IL-17, and IL-22, for macrophage and DCs function, as well as for lymphocyte retention
and survival in the skin. In addition, endogenous or microbial-mediated metabolism of
L-Trp, either systemically or locally, can influence skin immune responses and barrier
function through AHR activation. Hence, AHR is an important player in skin integrity
and immunity in both homeostasis and disease. The development of AHR ligands that
skew the homeostasis of the skin towards keratinocyte differentiation and curb immune
responses (e.g., tapinarof, FICZ, or NPD-0614-13 and NPD-0614-24 compounds) is essential
for the control of skin inflammation. Moreover, additional checkpoints in the metabolism
of L-Trp, or its cellular uptake, emerge as important novel strategies to prevent cutaneous
diseases, likely by regulating AHR activation.

There are important issues to consider nowadays and for the future regarding the
biology of AHR and the regulation of its function in skin homeostasis and diseases. The
classical ligands, FICZ and TCDD, promote AHR degradation, and the consequences of its
depletion in the biological responses have not been evaluated, as well as the mechanism
controlling reconstitution of AHR expression. Moreover, the studies aimed at targeting the
endogenous generation of AHR specific ligands in immune cells and keratinocytes—mainly
L-Trp-derived ligands and related metabolites—are scarce. There is an opportunity for
metabolomics studies to rule out the role of AHR ligands as markers of disease progression
or relapse. Importantly, the stoichiometry of all AHR ligands, as well as their effects
induced under physiological levels, is mostly unknown. The future of AHR modulation
should also include the potential TRM modulation, as well as the generation of Tr1 and
Treg cells in PS and AD lesions. Finally, diet- or microbiota-modulation strategies to
specifically increase AHR ligands generation should be explored, not only to prevent skin
pathologies but also to control the systemic inflammation and co-morbid diseases of PS
and AD patients.
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