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Abstract: The aim of the present study was to evaluate the effects of arm-crank induced prim-
ing on subsequent 20 min Functional Threshold Power Test among 11 well-trained male cyclists
(18.8 ± 0.9 years; 182 ± 5 cm; 73.0 ± 6.6 kg; V˙O2max 67.9 ± 5.1 mL·kg−1·min−1).
Participants completed an incremental test and two maximal performance tests (MPTs) in a random-
ized order. Warm-up prior to MPTlow consisted of 20 min aerobic exercise and 25 s high-intensity
all-out arm crank effort was added to warm-up in MPThigh. Constant intensities for the first 17 min
of MPT were targeting to achieve a similar relative fatigue according to participants’ physiological
capacity before the last 3 min all-out spurt. Final 3 min all-out spurt power was 4.94 ± 0.27 W·kg−1

and 4.85 ± 0.39 W·kg−1 in MPTlow and MPThigh, respectively (not statistically different: p = 0.116;
d = 0.5). Blood lactate [La] levels just before the start were higher (p < 0.001; d = 2.6) in MPThigh

(5.6 ± 0.5 mmol·L−1) compared to MPTlow (1.1 ± 0.1 mmol·L−1). According to V˙CO2 and net
[La] data, significantly higher anaerobic energy production was detected among MPTlow condition.
In conclusion, priming significantly reduced anaerobic energy contribution but did neither improve
nor decrease group mean performance although effects were variable. We suggest priming to have
beneficial effects based on previous studies; however, the effects are individual and additional studies
are needed to distinguish such detailed effects in single athletes.

Keywords: warm-up exercise; lactic acid; anaerobic threshold; athletic performance

1. Introduction

An adequate warm-up is a key aspect of successful and sustainable performance
with better perception and lower risk of traumas [1]. Finding a balance between warm-up
induced activation and physiological benefits remains crucial for every pre-competitive
preparation. In this context, maintaining the muscles in an optimal pre-start condition
plays an important role before each competition [1]. Although higher warm-up intensities
can produce a greater priming effect, the selected intensity should not induce fatigue
among athletes. Therefore, for a beneficial outcome from the warm-up, it is suggested to
apply an individual approach, as the recovery time after warm-up may vary depending on
the individual [2,3].

In addition to increased body and muscle temperature, other systemic changes such as
metabolic, neural, and psychological conditioning are increasingly recognised as beneficial
to optimise performance [1]. According to previous studies, physiological systemic benefits,
such as accelerated oxygen uptake kinetics (V˙O2) and inhibited lactate production [4],
can be induced by distant muscles, categorised as non-primary for a particular sport [5,6].
Such priming is carried out on a systemic level and can be achieved despite smaller working
muscle mass or short effort duration. Studies have shown that pre-loading by the arms can
be compared to prior leg sprint exercise [6,7] and induce similar V˙O2 levels up to 45 min af-
ter high-intensity exercise [8]. Despite clear evidence for physiological changes, there have
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also been contradictory findings stating that non-target muscle priming does not have a ben-
eficial effect on subsequent performance [9,10]. Possible reasons pointed to were inhibited
anaerobic energy contribution, overly intensive warm-up, and insufficient recovery after
warm-up, as well as modified pacing strategies [9,10]. In contrast, performance-enhancing
effects of priming have been prescribed for small muscle group exercise [5] and researchers
are still seeking to define the optimal protocol [9,10].

High-intensity performance requires a high maximal oxygen uptake (V˙O2max) for
endurance athletes, but the true challenge is to sustain a high fraction of V˙O2max for a
prolonged time [11]. V˙O2max alone was not shown to be a good predictor of endurance
performance when athletes of similar endurance ability are compared [12]. In fact economy
at first (VT1) and second (VT2) ventilatory thresholds play a crucial role, since athletes
with nearly identical V˙O2max values can perform at different levels [11].

Aerobic training often improves submaximal thresholds such as VT1 and the VT2
as well as other physiological variables without a concomitant increase in V˙O2max [13].
The VT2 representative of the maximal lactate steady state (mLSS), has a superior rela-
tionship to endurance performance compared to V˙O2max and is suggested to be a better
indicator of aerobic endurance [13]. VT2 and mLSS describe a maximal metabolic steady
state in which lactate production and utilisation are in a fine systemic balance [14] and
improvements of VT2 were shown to enhance performance [15].

Studies have shown that athletes are capable of maintaining VT2 intensity for an
impressive amount of time. Some research limited the capacity to 60 min [16,17] but
others raised discussions about the accuracy of this statement, questioning its physiolog-
ical basis [18]. Considering athletes’ individuality and the different research methods,
work duration at mLSS intensity is suggested to be about ~20–60 min but may be depen-
dent on exercise mode and muscle mass involved [16,17]. However, as the power increases
above VT2 intensity, the duration dramatically decreases. Identifying the critical point of
maximal metabolic steady state and predicting performance capability is a main concern
for many athletes, coaches, and sports scientists. Therefore, VT2 and V˙O2max are both
used to select a tailored exercise workload [19,20].

Functional threshold power (FTP) is a frequently used additionally important perfor-
mance quality indicator [21] which is highly correlated to mLSS [21] and relative power
exertion during a mass-start bike race [22]. It is the maximum mean power, which can be
sustained for an approximately 1 h period and is a good predictor of overall performance
capacity [21]. Denham and colleagues [21] found that FTP can be evaluated by a time
efficient 20 min FTP test (FTP20), which predominantly relies on aerobic metabolism [21].
Considering previous suggestions to test upper-body high-intensity pre-loading on more
aerobic distances [10], we decided to use FTP20 to be as cycling-specific as possible for our
evaluation method.

The aim of current study was to develop an applicable warm-up protocol, that athletes
would benefit from during the competition. Secondly, to investigate the effect of upper-
body priming on subsequent primarily aerobic performance. Open-end final spurt was
included as a competitive component, considering suggestions about longer distance,
lower overall intensity, and longer recovery phase before performance (>10 min) [10].
We hypothesised that MPThigh participants have increased performance and V˙O2 kinetics.

2. Materials and Methods
2.1. Participants

Eleven competitive well-trained male cyclists (mean± SD 18.8± 0.9 years; 182± 5 cm;
73.0 ± 6.6 kg; V˙O2max 67.9 ± 5.1 mL·kg−1·min−1) (Table 1) volunteered to participate in
this study. Inclusion criteria were regular cycling at competitive level, male gender, and age
between 18 and 30 years. Exclusion criteria were chronic health issues, disease, or trauma.
The procedures of this study were approved by the local university ethics committee
(290/T-17) in accordance with the Declaration of Helsinki. All participants were required to
give their written informed consent at the first laboratory visit. Participants were instructed
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to arrive at the laboratory in a rested and adequately hydrated state at least 2 h postprandial.
They were asked to maintain their normal diet and avoid ingesting alcohol and caffeine
24 h before each laboratory visit. Moreover, only moderate training loads the day before
each test and maximal efforts at least 3 days before the laboratory visit were allowed.

Table 1. Participants’ characteristics (n = 11).

Characteristic Mean ± SD

Age (years) 18.8 ± 0.9
Height (m) 1.8 ± 0.0
Weight (kg) 73.0 ± 6.6

Total lean mass (kg) 57.5 ± 4.9
Leg lean mass (kg) 20.8 ± 2.1

BMI (kg·m−2) 22.0 ± 1.9
V˙O2max (mL·kg−1·min−1) 67.9 ± 5.1

V˙O2max (L·min−1) 5.0 ± 0.6
Pmax (W) 369.0 ± 47.9

Ventilatory threshold VT1 (W) 181.4 ± 43.3
Ventilatory threshold VT2 (W) 295.6 ± 39.9

BMI—body mass index; V˙O2max—maximal oxygen consumption.

2.2. Experimental Overview

Participants attended the laboratory on three occasions within a 3-week period,
with each visit being separated by at least 3 recovery days. On the first visit partici-
pants’ body composition was measured using dual-energy X-ray absorptiometry (DEXA)
(Hologic Discovery DXA; Massachusetts, USA) and they were introduced to the testing
equipment. To exclude any health risks associated with the maximum stress, all participants
had to perform a specialist supervised incremental cycle ergometer test as the first exertion.
In addition, they were asked to try out manual switching of power intensity with ± 5 W
and ± 50 W after completion of the incremental cycle ergometer test, to accustom them to
the Cyclus2 ergometer (RBM Elektronik-Automation GmbH; Leipzig, Germany). On two
subsequent occasions maximal performance tests (MPT) were performed. Gas exchange
variables, heart rate and blood [La] concentration were measured in all tests.

2.3. Incremental Test

On the first visit participants completed a maximal incremental cycle ergometer ex-
ercise test starting at 100 W and increments of 30 W every third minute. Incremental and
experimental tests were performed on a cycle ergometer Cyclus-2. The apparatus was
recently calibrated, and participants used their own bikes which was supported by the
system. The workload was increased until participants were no longer able to sustain the
load. Heart rate was measured continuously in all tests and was stored and analysed in
1 s intervals with a Polar H7 sensor (Polar Electro Oy; Espoo, Finland). Spirometric breath-
by-breath measures (Cortex Metamax 3B, Cortex Biophysik; Leipzig, Germany) were
measured and analysed. Laboratory ambient air temperature was 22 ◦C and relative
humidity 40%, all measurements were done at the same time of the day for each par-
ticipant. Two gas exchange thresholds (VT1, VT2) were determined by an experienced
researcher considering a disproportionate increase in V˙CO2 relative to V˙O2, ventilation
breakpoints (V-slope), visual inspection of individual plots and respiratory-exchange-ratio
(RER) value. The highest average measured O2 during the 30 s period was considered
V˙O2max. The intensity that would require 10% ∆ [VT2 plus 10% difference between the
work rate at VT2 and work rate achieved at the end of the incremental test (WRpeak)] was
subsequently calculated [19,20].

2.4. Experimental Tests

In order to objectively compare performance in two maximal cycling tests under upper-
body pre-load or common warm-up conditions, participants performed both protocols in a
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randomised order. Participants were instructed to complete both maximal tests as quick
as possible.

MPTlow and MPThigh (Figure 1) protocols started with a similar 20 min warm-up at
40% of Pmax. A 25 s high-intensity all-out arm crank effort (braking weight: 35 g·kg−1

body weight) on an upper-body hand crank ergometer (Monark Ergomedic 849E; Vansbro,
Sweden) was added for the MPThigh protocol. In both testing conditions, participants
were required to recover from the warm-up for a minimum of 10 min plus self-determined
duration, until they reported readiness for the subsequent maximal performance test.
The 20 min maximal performance bouts started with 17 min of constant work at a con-
trolled pace of 10% ∆ VT2 to cover the possible standard error from determining VT2 and
ensure a gradual increase in blood [La] concentration [18]. During the final 3 min of the
FTP20 performance, athletes were required to perform their self-paced maximal final spurt.
They were provided with a 3 s countdown before the start and instructed to increase the
pace to achieve the maximal exertion by the end of the 20 min.

Figure 1. Maximal performance test-low protocol (MPTlow) and high protocol (MPThigh).

Strong verbal encouragement was provided during both maximal tests.
Remaining time was the only information that cyclists were provided, and participants
were made unaware of implemented power (W); the power display was covered to exclude
any numerical comparison.

Blood [La] concentration (EKF-Diagnostic; Barleben, Germany) was determined for
both conditions at rest (baseline), after the warm-up (immediately after, + 3′, + 5′), after the
anaerobic priming load (immediately after, + 3′, + 4′, + 5′, + 7′), during the test (immediately
before, + 5′, + 10′, + 15′), and during recovery (immediately after MPT, + 3′, + 4′, + 5′,
+ 7′, + 9′, + 11′, + 13′, + 15′) (total of 21 samples in MPThigh and 16 in MPTlow protocol).
Arterialised blood samples (20 µL) were taken from a pre-warmed fingertip. The finger
was always cleansed with alcohol, and the first drop of blood was removed to prevent
contamination of the sample. At the same time as the [La] measurements, participants
were asked to evaluate their overall and muscle fatigue using the 20-point Borg scale [23].
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2.5. Statistical Analyses

Data management and analysis were performed using IBM SPSS Statistics Data Editor
23.0 (New York, USA). The distribution of each variable was examined for the assump-
tion of normality using the Shapiro–Wilk test, visual inspection of descriptive statistics,
and z-score. All measured data was considered normally distributed. Parametric methods
such as paired samples t-test and 2-way repeated measures ANOVA test with p < 0.05 as
the level of significance were used to explore, investigate the data, and compare groups,
because all measured data was normally distributed. Correlations were determined using
Pearson’s correlation coefficient (r). The magnitudes of the correlation coefficients were
stratified into groups comprising negligible (r < 0.30), low (0.30 < r < 0.50), moderate (0.50
< r < 0.70), high (r > 0.7) [24]. Data are expressed as mean ± standard deviation (SD),
presented with effect size (η2) and confidence intervals (CI). Effect size of Cohen d = 0.2
was considered as ‘small’, d = 0.5 ‘medium’, and d = 0.8 ‘large’ [25]. Partial Eta squared for
two variables in repeated measures η2 < 0.04 was considered ‘small’, η2 = 0.25 ‘moderate’,
and η2 > 0.64 ‘strong’ [26].

A prior power analysis was performed using G*Power© software (version 3.1.9.2,
2017) for comparison between two independent means. This was based on previously
reported effect sizes 1.6 [9] and 1.7 [27], an alpha criterion of 0.05, and power of 0.8.
Beforehand analysis indicated that a total of 7 participants were required to reach 0.8
statistical power with an aim of 4.7 and 5.0 W·kg−1 with standard deviation ± 0.2.

3. Results
3.1. Self-Paced Finish

Participants completed both tests with initial 17 min mean power of 4.2 ± 0.5 W·kg−1.
Last 3 min self-paced finish MPTlow mean power was 4.94± 0.27 and 4.85± 0.39 W·kg−1 in
MPThigh, respectively, which was not statistically different (p = 0.116; d = 0.5;
CI95% = [−0.0, 0.3]) (Figure 2). Strong correlations occurred between MPTlow self-paced
finish power and incremental test values of V˙O2max (mL·kg−1·min−1) (p = 0.005; r = 0.78),
maximal relative power (W·kg−1) (p = 0.011; r = 0.73), and 10% ∆ VT2 (p = 0.016; r = 0.70).
Self-paced finish power was not correlated with self-selected recovery time after warm-
up, even though recovery time after warm-up was significantly longer in the MPThigh
condition as the strenuous priming exercise significantly delayed the feeling of readiness
from 813 ± 138 s in MPTlow to 958 ± 226 s in MPThigh (p = 0.011; d = 0.9; CI95% = [42, 249]).
A detailed data set regarding splits is presented in Table 2.

Figure 2. MPT performance (power output) in final spurt of MPTlow and MPThigh.
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Table 2. Physiological changes throughout MPTs (n = 11).

Stage Parameter MPTlow MPThigh p-Value Effect Size (95%
CI)

Warm-
up

Mean power (W·kg−1) 147.6 ± 19.1 147.6 ± 19.1
Recovery time (s) 813 ± 138 958 ± 226 0.011 * 0.94 (41.7 to 249.2)

Before
start

V˙O2 (L·min−1) 0.6 ± 0.1 0.6 ± 0.1 0.640 0.14 (−0.1 to 0.2)
V˙CO2 (L·min−1) 0.5 ± 0.1 0.5 ± 0.1 0.955 0.02 (−0.1 to 0.1)
[La] (mmol·L−1) 1.1 ± 0.4 5.6 ± 1.7 < 0.001 ** 2.67 (3.4 to 5.7)

MPT 5′
V˙O2 (L·min−1) 3.7 ± 0.6 3.7 ± 0.5 0.434 0.25 (−0.1 to 0.3)

V˙CO2 (L·min−1) 3.9 ± 0.8 3.4 ± 0.5 0.098 0.55 (−0.1 to 1.1)
[La] (mmol·L−1) 5.2 ± 0.8 6.8 ± 1.1 < 0.001 ** 1.55 (0.9 to 2.4)
Net [La] increase

(mmol·L−1) 4.0 ± 0.8 1.2 ± 0.7 < 0.001 ** 1.72 (1.7 to 4.0)

MPT 10′ V˙O2 (L·min−1) 4.3 ± 0.6 4.2 ± 0.5 0.580 0.17 (−0.1 to 0.2)
V˙CO2 (L·min−1) 4.2 ± 0.6 4.2 ± 0.5 0.413 0.26 (−0.1 to 0.3)
[La] (mmol·L−1) 6.2 ± 1.1 6.6 ± 1.8 0.191 0.42 (−0.3 to 1.2)
Net [La] increase

(mmol·L−1) 1.2 ± 0.2 −0.2 ± 1.6 0.011 * 0.93 (0.4 to 2.4)

MPT 15′ V˙O2 (L·min−1) 4.3 ± 0.7 4.3 ± 0.5 0.451 0.23 (−0.1 to 0.3)
V˙CO2 (L·min−1) 4.3 ± 0.7 4.2 ± 0.5 0.331 0.31 (−0.1 to 0.3)
[La] (mmol·L−1) 6.6 ± 1.5 6.9 ± 2.1 0.530 0.20 (−0.7 to 1.3)
Net [La] increase

(mmol·L−1) 0.4 ± 0.8 0.2 ± 0.9 0.713 0.11 (−0.8 to 1.1)

MPT 20′ V˙O2 (L·min−1) 4.6 ± 0.6 4.6 ± 0.5 0.804 0.08 (−0.2 to 0.3)
V˙CO2 (L·min−1) 4.9 ± 0.6 4.8 ± 0.6 0.456 0.23 (−0.2 to 0.4)
[La] (mmol·L−1) 11.6 ± 2.7 9.8 ± 3.4 0.073 0.60 (−0.2 to 3.8)
Net [La] increase

(mmol·L−1) 5.0 ± 2.1 2.9 ± 2.3 0.015 * 0.88 (0.5 to 3.7)

Performance
Average powersteady

(W·kg−1)
4.2 ± 0.5 4.2 ± 0.5

Average powerall-out
(W·kg−1) 4.94 ± 0.27 4.85 ± 0.39 0.308 0.32 (0.1 to 0.3)

[Lanet] (mmol·L−1) 10.8 ± 2.9 5.4 ± 2.6 < 0.001 ** 2.16 (−7.1 to−3.7)
[Lamax] (mmol·L−1) 11.9 ± 2.8 11.1 ± 2.7 0.200 0.41 (−0.5 to 2.3)

MPTlow—maximal performance test without prior loading; MPThigh—maximal performance test with prior
loading; CI—confidence interval of the difference; *—p < 0.05; **—p ≤ 0.001.

3.2. Blood Lactate Concentration

The MPThigh group was subjected to 25 s all-out arm crank exercise (mean power
259 ± 42 W), which elevated [La] to 8.1 ± 0.3 mmol·L−1 in the sixth minute after arm-
crank exercise. Although participants recovered until full readiness to perform, [La] levels
before the start were still elevated at 5.7 ± 0.5 mmol·L−1 and significantly higher in
MPThigh compared to MPTlow at 1.1 ± 0.1 mmol·L−1 (p < 0.001; d = 2.6; CI95% = [3.4, 5.7])
(Figures 3 and 4). Priming arm-crank exercise and longer recovery time significantly in-
fluenced the subsequent time course of [La], as [La] values changed differently over time
(p < 0.001; η2 = 0.51). Calculating the anaerobic contribution for each performance showed
a significantly higher net [La] increase per mean W·kg−1 in MPTlow during the first 5 min
(p < 0.001; d = 1.6), the second 5 min (p = 0.008; d = 1.0), and the final 5 min of performance
(p = 0.019; d = 0.8). Moreover, the interaction between calculated anaerobic values was also
significant (p = 0.003; η2 = 0.37), meaning body metabolic rates differed over time between
both performances. Despite the differences in metabolic rates, no correlations were found
between the last 5 min [La] and mean power during the final spurt (p > 0.05; η2 < 0.50).
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Figure 3. [La] response to both protocols.

Figure 4. Net [La] increase during MPTs.

3.3. Spirometry

Although an all-out arm crank priming exercise was imposed in MPThigh, the self-
selected recovery was sufficient to erase the elevated V˙O2 level. The values at the start
did not differ between MPThigh with 0.59 ± 0.12 L·min−1 compared to 0.56 ± 0.13 L·min−1

in MPTlow (p = 0.640; d = 0.1; CI95%=[−0.11, 0.17]). Between-group effects were also
insignificant (p = 0.57; η2 = 0.73) throughout the tests. Calculation of metabolic economy
was conducted by relating V˙O2 to mean power for each split but showed no significant
difference between groups throughout the tests (p > 0.05).

V˙CO2 values were not different at the start between MPThigh with 0.53± 0.11 L·min−1

compared to 0.53 ± 0.13 L·min−1 in MPTlow (p = 0.96; d = 0.02) and the between-group
effect was insignificant (p = 0.15; η2 = 0.15) throughout the test. RER values demonstrated
a steady-state (Figure 4) from minutes 10 to 17 of the maximal performance up to the final
spurt and reached its peak by the end of performance with no significant between-group
effect (p = 0.39; η2 = 0.10). A visualisation of spirometric values shown in Figure 5.
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Figure 5. (a) Oxygen uptake (V˙O2); (b) carbon dioxide output (V˙CO2); (c) ventilation (V˙E); (d) respiratory exchange ratio
(RER), after a usual low intensity warm up (MPTlow) and an additional 25 s all-out arm crank priming pre-load (MPThigh).

3.4. Perceived Exertion

Reported muscle type readiness which felt convenient to start the exertion was indi-
cated by 8.1 ± 1.7 points in MPThigh compared to 7.1 ± 1.4 in MPTlow (p = 0.031) according
to the Borg 20-point scale. Reported overall readiness was found insignificantly (p = 0.126)
higher at 8.0 ± 1.5 points in MPThigh compared to 7.1 ± 1.4 points in MPTlow, respectively.
Between-group effects during 15 min of recovery after the maximal performance were
insignificant for overall fatigue (p = 0.80; η2 = 0.02) and muscle fatigue (p = 0.12; η2 = 0.01),
meaning no subjectively determined benefit related to recovery could be pointed to in
either case.

4. Discussion

The aim of this study was to investigate the effect of upper-body priming exercise
prior to a 20 min Functional Threshold Power Test. Returning to the hypothesis posed at
the beginning of this study, it is now possible to state that starting the race with elevated
[La] from the same fatigue level as the non-primed group neither showed a beneficial nor
an impairing effect regarding relative power or recovery although net lactate increase was
clearly diminished in MPThigh, also no difference in V˙O2 kinetics could be observed.

The findings of the current study are consistent with those of Baker and colleagues [28]
who found that aerobic metabolism and energy production are able to support extremely
high muscle force application and power outputs—meaning that a preceding high-intensity
bout or a preliminary race will not necessarily impair a subsequent time trial.

As the race progresses, aerobic energy production becomes more dominant. Figure 3
presents an overview of [La] changes throughout the MPTs. [La] change during the
first 5 min of MPThigh was significantly lower, which means that the same performance
could be delivered with less anaerobic metabolism. If an increased demand for aerobic
energy production could be less strenuous than anaerobic production, then lower overall
fatigue during the start phase could be maintained. Apparently, this gives some space for
higher intensity at the start, although this is not supported by a recent study [10]. Moreover,
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from Figure 3 it is obvious that in MPTlow a markedly higher anaerobic energy contribution
during the final 5′ of the race could be performed, although [La] levels after 15 min were
not significantly different between both interventions (p = 0.53; d = 0.2). We suggest that
participants are used to a gradual increase of [La] such as in MPTlow, whereas in MPThigh,
[La] values already plateaued at significant levels and anaerobic energy contribution may
have been already depleted/inhibited to some part by the beginning of the final spurt.
Although FTP20 is predominantly aerobic [21], possibly the duration was still not long
enough to bring out beneficial effects of priming.

The current findings make it clear that a poor pacing strategy [9] cannot be the reason
for priming a non-beneficial effect as both groups were paced to the same fatigue levels
using the same strategy and a fixed pace. During the last 3 min, a cycling competition
reaches its culmination where no pacing can be rationalised as an all-out strategy is most
common. Pacing should instead be timed at greatest physiological response achieved by
priming and should be used as a tool to realise the potential. The 5 min split analysis did
not indicate significant difference between spirometric variable levels, although additional
analyses showed statistical differences in V˙O2, RER, and VE parameters during the first
2 min of MPT between both groups. In combination with a suitable choice of intensity a
significant improvement may be suggested due to the priming.

Correlation analysis showed that MPTlow was correlated with variables from the
incremental tests such as V˙O2max (mL·kg−1·min−1), maximal relative power (W·kg−1),
and 10% ∆ VT2 for the first 17 min. Since MPThigh did not correlate with any of these
values, it is suggested that performance becomes less predictable after priming exercise and
can easily diminish previous training. However, many studies [7,19,20,29] have shown the
physiological advantages of priming, although they cannot guarantee any improved results
during an actual race [30]. In this case, we still suggest pre-load to have beneficial effects,
which are highly individual and rather empirical methods are needed to distinguish such
effects in every single athlete. For example, four participants (26.7%) benefited from the
priming and developed higher mean power during last 3 min of the final spurt in our study.
A possible explanation for this might be the neuromuscular excitability, which was induced
on central level, since priming was performed with non-primary muscle groups. However,
previous studies prescribed neuromuscular potentiation mainly to single repetition or
sprint exercise, but endurance sport on submaximal level is not common [3].

Furthermore, the specific sport should be re-evaluated as maybe the priming produced
by bigger muscle mass can elevate [La] levels to a greater extent without causing significant
fatigue. Reverse circumstances compared to our study such as applied by Birnbaumer
et al. [5] may be more favourable to successfully increase performance.

In our study, aerobic energy contribution was facilitated at the expense of anaerobic
energy. A more economical power production due to a primed aerobic metabolism could be
beneficial in case of an energy deficit during longer distances among comparable athletes
and saving more energetic reserves for the competition state. Perceived exertion data,
overall fatigue, and peak heart rate lower than HRmax indicated that the FTP20 is too
short to induce energy depletion. Furthermore, Borg values showed statistically significant
changes for reported leg muscle fatigue levels at determined readiness to perform, but at
the same time reported overall fatigue did not show any statistical difference. Certainly,
the practical significance of a 1-point difference is not highly relevant, although it can give
an idea of altered perception after priming and that athletes are less dependent on muscle
fatigue rather than overall fatigue when determining readiness to perform. This can give
some confidence for further studies to feel free to use higher loads for priming effects as
muscle alterations cannot be the primary reason to limit readiness to perform.

The findings of this study are subject to at least two limitations. Although power
calculation showed our sample size to be enough, total number of 15–20 participants would
allow us to use regression analysis, which could be even more informative. Secondly,
some of the participants did not switch power during the final all-out spurt although
preferring to add more watts.
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5. Conclusions

In summary, priming effect is considered smaller than previously suggested and no
substantial performance enhancing warm-up protocol could be developed from the current
study design. Although priming does decrease anaerobic energy production which in
turn promotes aerobic energy production, these changes neither improved nor decreased
competitive performance.
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