
����������
�������

Citation: Zhang, S.; Jiang, Y.; Zhang,

S.; Chen, L. Physical Properties of

Peanut and Soy Protein-Based

Emulsion Gels Induced by Various

Coagulants. Gels 2022, 8, 79. https://

doi.org/10.3390/gels8020079

Academic Editors: Bao Zhang

and Long Chen

Received: 9 January 2022

Accepted: 25 January 2022

Published: 26 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 gels

Article

Physical Properties of Peanut and Soy Protein-Based Emulsion
Gels Induced by Various Coagulants
Shaobing Zhang * , Yushan Jiang, Shuyan Zhang and Lin Chen

College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
201892062@stu.haut.edu.cn (Y.J.); 18336466993@163.com (S.Z.); linchen11251216@163.com (L.C.)
* Correspondence: shaobingzhang@126.com

Abstract: Emulsions of peanut and soy proteins, including their major components (arachin, conarachin,
glycinin and β−conglycinin), were prepared by ultrasonication (300 W, 20 min) at a constant protein
concentration (4%, w/v) and oil fraction (30%, v/v). These emulsions were then induced by CaCl2,
transglutaminase (TGase) and glucono-δ-lactone (GDL) to form emulsion gels. The optimum coagulant
concentrations were obtained for peanut and soy protein-stabilized emulsion gels, such as CaCl2 (0.15
and 0.25 g/dL, respectively), TGase (25 U/mL) and GDL (0.3% and 0.5%, w/v, respectively). For the
CaCl2-induced emulsion gels, the hardness of the β−conglycinin gel was the highest, whereas that of the
conarachin gel was the lowest. However, when TGase and GDL were used as coagulants, the strength of
the conarachin emulsion gel was the best. For the GDL-induced emulsion gels, microstructural analysis
indicated that the conarachin gel showed more homogeneous and compact structures. The gelation
kinetics showed that the storage modulus ( G′) of all the GDL-induced emulsions increased sharply
except for the arachin-stabilized emulsion. The interactive force nature varied between conarachin and
arachin emulsion gels. This work reveals that peanut conarachin could be used as a good protein source
to produce emulsion gels when suitable coagulants are selected.

Keywords: peanut proteins; soy proteins; conarachin; arachin; emulsion gel

1. Introduction

Emulsion gels have a certain mechanical strength filled with emulsion droplets. They
can be used as fat substitutes or as delivery systems to embed bioactive substances to
improve chemical stability [1,2]. According to the different gel matrices, emulsion gels
can be divided into protein-based emulsion gels, polysaccharide-based emulsion gels and
mixture-based emulsion gels. Protein-based emulsion gels are generally prepared through
two-stage processes: first, the preparation of protein emulsions, and then, the gelation of the
emulsions induced by heat, acid, salt or enzymes [3]. There are many factors affecting the
textural properties of protein-based emulsion gels, and the preparation method of protein
emulsions is one of them. In our previous study, we found that compared with high-
pressure homogenization, the peanut protein emulsion prepared by the ultrasonic method
had improved strength and microstructure after gelation [4]. Additionally, Hu et al. [5] suc-
cessfully prepared a low oil emulsion gel stabilized by defatted Antarctic krill protein using
one-step ultrasound. When whey protein [6] and soy protein [7] solutions were pretreated
by ultrasound, followed by preparation of emulsion gels, better texture properties were
obtained. These studies have indicated that ultrasonic technology has excellent application
potential in the preparation of protein-based emulsion gels.

In addition to the preparation method of protein emulsions, protein composition
significantly affected the physicochemical properties of emulsion gels. For example, in-
creasing the soy glycinin content progressively increased the gel stiffness, but significantly
decreased the water-holding capacity (WHC). Confocal laser scanning microscopic ob-
servations showed that increasing glycinin content led to the formation of emulsion gel
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network with a more inhomogenous and porous microstructure [8]. Protein composition
had a major influence on gel strength, with the strongest emulsion gels being formed at an
optimized protein composition (0.5 wt% whey protein and 1.5 wt% lactoferrin) [9]. At fixed
total protein content, higher denatured whey protein contents contributed to gels with
higher mechanical properties, e.g., fracture stress, Young’s modulus and storage modulus
(G′) [10]. Emulsion gels with whey protein isolate at the interface had the highest gel
strength (fracture stress and storage modulus), followed by the gels with sodium caseinate,
soy protein isolate (SPI), lactoferrin at the interface [11].

Peanut proteins are another important plant protein in addition to soybean proteins,
but compared with soybean proteins, the functional properties of peanut proteins are far
from being explored, which has seriously limited the applications of peanut proteins in the
food industry. Peanut proteins contain two major components: arachin and conarachin.
The ratio of arachin to conarachin varies from 0.80 to 1.68 depending on the cultivar of
peanuts [12]. Arachin contains two molecular species of arachin, I and II, which possess
the same subunit compositions but various molecular weights, 180,000 and 350,000, re-
spectively [13]. Conarachin contains conarachin I and conarachin II, which have different
subunit compositions and molecular weights [14]. Monteiro and Prakash [15] compared the
functional properties of total protein, arachin, conarachin I, and conarachin II from peanuts,
including solubility, water absorption capacity, fat absorption capacity, emulsifying prop-
erties, and foaming properties. Liu, Zhao, and Su [16] reported that conarachin had a
better emulsifying activity index, foam capacity and heat-induced gelation properties than
arachin, while arachin had a higher denaturation temperature, more compacted tertiary
conformation and lower surface hydrophobicity than conarachin. Feng et al. [17] found that
conarachin and the acid subunits of arachin were more effectively crosslinked by transglu-
taminase (TGase) than the base subunits of arachin. After TGase treatment, the solubility
of both the arachin- and conarachin-rich fractions decreased, and the thermal Td of the
conarachin-rich fraction significantly increased. More recently, Sun, Zhang, Zhang, Tian,
and Chen [18] pointed out that ultrasound-assisted extraction could change the arachin
composition and structure, thereby improving its emulsifying properties. Hu, Amakye,
He, Wang, and Ren [19] reported that both microfluidization and TGase could effectively
unfold the structures of arachin and conarachin, increase the exposed free sulfhydryl (SH)
content and surface hydrophobicity, and enhance the emulsion stability. Although some
structural and functional properties of peanut protein components have been revealed by
the above work, little has been studied regarding the preparation and characterization of
arachin/conarachin-stabilized emulsion gels.

In this work, emulsions of peanut and soy proteins, including their components,
were prepared by ultrasonic methods, and then, the emulsions were further induced
by salt (CaCl2), TGase and acid (glucono-δ-lactone, GDL) to form emulsion gels. The
texture, WHC, dynamic rheological properties and microstructure of different emulsion
gels were investigated and compared. Partial structural characteristics of these proteins
were analyzed to explore their effects on the emulsion gel properties. This study will
promote the understanding of the physical properties of peanut and soybean protein-based
emulsion gels induced by various coagulants.

2. Results and Discussion
2.1. Emulsion Characteristics

Based on our previous work [4], the optimal ultrasound conditions (300 W, 20 min)
with a constant protein concentration (4%, w/v) and oil fraction (30%, v/v) were se-
lected to prepare emulsions in this study. As shown in Figure 1, among all protein
emulsions, the peanut arachin emulsion had the largest particle size (2.79 µm), while
the soybean β−conglycinin emulsion had the smallest particle size (1.36 µm), which means
that β−conglycinin possessed the strongest emulsifying activity. Regardless of peanut or
soybean proteins, the particle size of their low molecular weight fraction-stabilized emul-
sion was smaller than that of the high molecular weight fraction emulsion. This may be
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because the low molecular weight protein fractions (such as conarachin and β−conglycinin)
can diffuse to the oil-water interface more quickly, preventing the secondary aggregation of
oil droplets and resulting in a smaller emulsion particle size. As shown in Figure 2, the Γ
of the arachin emulsion was the smallest (1.96 mg/m2), whereas that of the SPI emulsion
was the largest (4.20 mg/m2). Puppo et al. [20] reported a Γ value of 3.03 mg/m2 in an
SPI emulsion. The difference was probably caused by various emulsifying methods. In
our work, ultrasonic treatment likely facilitated the interfacial adsorption of SPI during
emulsification. Moreover, Figure 2 shows that the Γ values of SPI and its components were
significantly higher than those of peanut proteins isolate (PPI) and its components, which
indicated that the interfacial adsorption capacity of soybean proteins was stronger than
that of peanut proteins.
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Figure 1. The particle size (d4,3) of fresh emulsions stabilized by different proteins. The results are 
expressed as means and standard deviations of three replicates. Bars with different letters indicate 
significant differences (p < 0.05). 
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Figure 1. The particle size (d4,3) of fresh emulsions stabilized by different proteins. The results are
expressed as means and standard deviations of three replicates. Bars with different letters indicate
significant differences (p < 0.05).
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Figure 2. The surface protein concentration (Γ) of fresh emulsions stabilized by different proteins.
The results are expressed as means and standard deviations of two replicates. Bars with different
letters indicate significant differences (p < 0.05).

2.2. Effect of CaCl2 Concentration on Hardness and WHC of PPI and SPI Emulsion Gels

CaCl2, as a divalent salt at appropriate concentrations, can not only screen the repulsive
forces between protein molecules but also induce the crosslinking of proteins and thus
promote gelation. The amount of salt used to form an emulsion gel is a major factor in
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determining the gel structures. Figure 3A shows that with increasing CaCl2 concentration,
the hardness of the PPI emulsion gel increased slightly at the beginning and then decreased
sharply, while the WHC was gradually reduced. The optimum CaCl2 concentration was
0.15 g/dL. Figure 3B shows that the hardness of the SPI emulsion gel was gradually
enhanced with increasing CaCl2 until its concentration reached 0.25 g/dL, and the gel
hardness then decreased slightly. The same trend was observed for the WHC of the SPI
emulsion gel. By comparison, the gel hardness and WHC of the PPI emulsions were
significantly lower than those of SPI emulsions at the same CaCl2 concentrations (except
0.1 g/dL).
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The above results indicated that CaCl2 at higher concentrations was not favorable for
the gelation of PPI and SPI emulsions. Sok Line, Remondetto, and Subirade [21] found that
low Ca2+ concentrations induced β-lactoglobulin emulsion gels with a fine-stranded struc-
ture, while high Ca2+ concentrations (such as 68 mM Ca2+) reduced the WHC and changed
the structure of the emulsion gel from fine-stranded to random aggregates. Wang et al. [22]
reported that the storage modulus ( G′) of SPI emulsion gels increased gradually with
increasing Ca2+ concentration (2.5–7.5 mM) but decreased at 10 mM. The decrease in
hardness and WHC at higher Ca2+ concentrations was probably attributed to random
protein aggregation, which led to extremely large protein aggregates forming porous gel
structures [21]. It is worth noting that compared with the SPI emulsion gel, the textural
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deterioration of the PPI emulsion gel was more dramatic at higher Ca2+ concentrations,
suggesting that the aggregation of PPI might be more sensitive to the Ca2+ concentration.

2.3. Effect of TGase Concentration on Hardness and WHC of PPI and SPI Emulsion Gels

TGase can catalyze the crosslinking of lysine and glutamine residues on protein
molecules, whose strength far exceeds that of hydrophobic interactions and hydrogen
bonds [23]. Therefore, this enzyme is widely used in the preparation of cold-set protein
gels or emulsion gels. As shown in Figure 4, the hardness and WHC of the PPI and
SPI emulsion gels increased with increasing TGase concentration (from 10 to 25 U/mL),
suggesting that a more elastic network was developed at higher TGase concentrations. At
an appropriate enzyme concentration (25 U/mL), both the hardness and WHC reached the
highest values. However, excessive crosslinking between the protein molecules might result
in the expulsion of water from the emulsion gels and subsequent textural deterioration.
At the same enzyme concentration, the hardness of the PPI emulsion gel was significantly
lower than that of the SPI emulsion gel, whereas their WHCs remained similar (Figure 4).
In a recent study, Alavi, Emam-Djomeh, Salami, and Mohammadian [24] reported that the
hardness of egg white protein gels and emulsion gels increased considerably when TGase
increased from 0 to 20 U/g. A higher enzyme concentration was not used in their work.
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2.4. Effect of GDL Concentration on Hardness and WHC of PPI and SPI Emulsion Gels

The mechanism of GDL-induced protein gelation is that acidification decreases the
pH and neutralizes the surface charges of protein molecules, and a protein network is
then formed by hydrophobic interactions and other intermolecular forces [25]. Figure 5
shows that the hardness and WHC of the PPI and SPI emulsion gels first increased and
later decreased as a function of GDL concentration. For the PPI emulsion gel (Figure 5A),
both hardness and WHC were the highest at a GDL concentration of 0.3% (w/v). However,
for the SPI emulsion gel (Figure 5B), they were the highest at a GDL concentration of 0.5%
(w/v). The hardness of the PPI emulsion gel was higher than that of the SPI emulsion gel
at the respective optimum concentration, while the WHC of the former was significantly
lower. It was reported that soymilk gels induced by GDL were usually in the pH range of
5.0–5.5 [26]. Ringgenberg, Alexander, and Corredig [25] found that at a pH of approximately
5.7, the charge on the soymilk particles was sufficiently diminished to allow aggregation.
Therefore, excessive GDL would result in a lower pH in the PPI and SPI emulsions, which
was not suitable for gel formation. Moreover, a good linear relationship was observed
between the hardness and WHC of the acid-induced emulsion gels (for peanut emulsion
gel, R2 = 0.907; for soybean emulsion gel, R2 = 0.964), suggesting that gel strength played
an important role in the water holding of the gels.
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2.5. Textural Comparison of Protein-Stabilized Emulsion Gels Induced by Various Coagulants and
Protein Structural Analysis

Emulsion gels were prepared using six proteins, including PPI and its major components
(arachin and conarachin) and SPI and its major components (glycinin and β−conglycinin),
at a constant total protein concentration (4%, w/v) and oil fraction (30%, v/v). The optimal
coagulant concentrations were selected based on the above results. As shown in Figure 6,
compared to CaCl2 and GDL, the hardness of the gels formed by TGase was the highest (except
arachin emulsion gel). Tang, Chen, and Foegeding [27] reported that the application of TGase
exhibited a much higher potential to form SPI-stabilized emulsion gels with higher mechanical
strength than that of the other two coagulants (CaCl2 and GDL), which was consistent with
our results. As listed in Table 1, since the lysine content of arachin was markedly lower than
that of other proteins, it meant that the crosslinking of lysine and glutamine residues on
arachin molecules might not be sufficient. On the other hand, although the lysine content of
β−conglycinin and SPI was significantly higher than that of conarachin, the gel strength of
the latter was higher, which suggested that there were other intermolecular forces other than
the isopeptide covalent bonds in the TGase-induced emulsion gels.
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Figure 6. Textural comparison of different protein-stabilized emulsion gels induced by various
coagulants. The results are expressed as means and standard deviations of three replicates. Bars with
different letters indicate significant differences (p < 0.05).

Table 1. Amino acid composition of peanut and soy proteins including their components (Grams per
100 g of Protein). The results are expressed as means and standard deviations of two replicates. Bars
with different letters in each line indicate significant differences (p < 0.05).

PPI Arachin Conarachin SPI Glycinin β−Conglycinin

Asp 12.55 ± 0.003 b 13.12 ± 0.39 a 12.56 ± 0.33 b 12.36 ± 0.82 bc 12.23 ± 0.13 cd 12.10 ± 0.72 d

Thr 2.49 ± 0.04 d 2.18 ± 0.01 e 2.19 ± 0.002 e 3.25 ± 0.09 b 3.58 ± 0.15 a 2.8 ± 0.02 c

Ser 4.77 ± 0.01 c 4.71 ± 0.09 c 4.68 ± 0.02 c 5.01 ± 0.01 b 4.99 ± 0.13 b 5.23 ± 0.001 a

Glu 21.61 ± 0.10 d 22.64 ± 0.06 c 23.48 ± 0.09 b 21.81 ± 0.09 cd 22.59 ± 0.55 c 24.53 ± 0.03 a

Gly 4.53 ± 0.04 a 4.12 ± 0.01 c 4.212 ± 0.01 bc 4.12 ± 0.01 c 4.34 ± 0.09 b 3.31 ± 0.08 d

Ala 4.02 ± 0.02 a 4.01 ± 0.01 a 3.14 ± 0.003 c 3.66 ± 0.01 b 3.70 ± 0.08 b 3.26 ± 0.09 c

Cys 0.50 ± 0.001 ab 0.45 ± 0.05 b 0.80 ± 0.01 a 0.56 ± 0.11 ab 0.57 ± 0.17 ab 0.45 ± 0.05 b

Val 4.53 ± 0.05 bc 4.34 ± 0.01 c 4.33 ± 0.04 c 4.69 ± 0.03 b 4.97 ± 0.14 a 4.10 ± 0.02 d

Met 1.27 ± 0.002 b 0.77 ± 0.004 d 2.47 ± 0.02 a 1.14 ± 0.03 c 1.2 ± 0.02 b 0.81 ± 0.04 d

Ile 3.74 ± 0.03 c 3.57 ± 0.02 d 3.81 ± 0.02 c 4.83 ± 0.04 a 4.53 ± 0.09 b 4.75 ± 0.04 c

Leu 6.89 ± 0.03 c 6.86 ± 0.04 c 5.95 ± 0.01 d 7.40 ± 0.06 b 7.47 ± 0.03 b 7.68 ± 0.05 a

Tyr 4.45 ± 0.001 b 5.08 ± 0.01 a 1.92 ± 0.01 e 3.77 ± 0.01 c 3.70 ± 0.06 c 3.50 ± 0.002 d

Phe 5.44 ± 0.01 b 5.88 ± 0.02 a 4.38 ± 0.02 d 5.43 ± 0.03 b 5.19 ± 0.10 c 5.82 ± 0.03 a

His 3.00 ± 0.01 b 2.91 ± 0.02 b 3.21 ± 0.03 a 3.31 ± 0.0001 a 2.96 ± 0.10 b 2.91 ± 0.03 b
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Table 1. Cont.

PPI Arachin Conarachin SPI Glycinin β−Conglycinin

Lys 3.32 ± 0.06 d 2.29 ± 0.01 e 5.02 ± 0.02 c 5.98 ± 0.05 b 5.00 ± 0.12 c 6.26 ± 0.05 a

Arg 12.57 ± 0.03 c 13.05 ± 0.05 b 13.98 ± 0.04 a 7.71 ± 0.03 e 7.60 ± 0.06 e 8.09 ± 0.04 d

Pro 4.34 ± 0.18 bc 4.00 ± 0.32 c 3.85 ± 0.021 c 4.97 ± 0.022 ab 5.33 ± 0.08 a 4.31 ± 0.08 bc

Figure 7A displays the surface hydrophobicity (H0) values of all protein samples before
and after heating treatment. Before heating, the H0 values of conarachin and β−conglycinin
were significantly higher than those of other proteins. After heating, conarachin pos-
sessed the highest H0. The results implied that stronger hydrophobic interactions among
conarachin molecules could occur during gel preparation. Figure 7B shows the exposed
free sulfhydryl (SH) contents of all protein samples before and after heating treatment.
Before heating, conarachin had the highest exposed SH content (Table 1 shows the cysteine
content of conarachin was the highest as well). After heating, the exposed SH content
of all samples except conarachin was increased. The significant decrease in the exposed
SH content of conarachin was probably attributed to the formation of disulfide bonds
upon heating treatment. Therefore, it can be concluded that several key intermolecular
forces, such as isopeptide bonds, hydrophobic interactions and disulfide bonds, together
contribute to the texture of the TGase-induced emulsion gels.
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By comparison of the CaCl2-induced emulsion gels, the hardness of the β−conglycinin
gel was the highest, whereas that of the conarachin gel was the lowest. The results suggested
that hydrophobic interactions and disulfide bonds were unlikely to be the key gelation
forces when CaCl2 was used as the coagulant. Generally, the combination of Ca2+ and
protein molecules is regarded as H+/Ca2+ exchange, which neutralizes electrostatic repul-
sion and forms salt bridges, thus allowing protein molecules to form a network [28]. From
the results, it was speculated that salt bridges were not easily formed among conarachin
molecules. Although the contents of dicarboxylic amino acids (glutamic acid and aspar-
tic acid) in β−conglycinin and conarachin are similar (Table 1), the exposure of these
amino acids, which can provide more protons, to the protein surface may be different, thus
affecting H+/Ca2+ exchanges and the formation of salt bridges.

Among the emulsions using GDL as a coagulant, conarachin emulsions showed the
best gelation properties. This can be explained by the fact that when the hydrogen ions
released by GDL led to a decrease in the net charge of proteins, conarachin molecules could
form a good network structure through strong hydrophobic interactions and the formation
of more disulfide bonds. In terms of PPI and its components, the hardness of GDL-induced
emulsion gels was significantly higher than that of CaCl2-induced emulsion gels. The
microstructure and gelation kinetics of CaCl2-induced emulsion gels from different proteins
were further compared.

2.6. Microstructure of Different Protein-Stabilized Emulsion Gels Induced by GDL

Generally, the structure of a protein-based emulsion gel is regarded as a composite net-
work made up of a combination of crosslinked protein molecules and partially aggregated
droplets [1]. As shown in Figure 8, the spherical oil droplets with green fluorescence were
surrounded by a protein network with red fluorescence. There were significant microstruc-
tural differences among these samples. Basically, the emulsion gels stabilized by conarachin
and PPI showed more homogeneous and compact structures, whereas the arachin emulsion
gel exhibited an obviously porous structure and a discontinuous protein network. This
result indicated that the interactions among arachin molecules were rather weaker when
GDL was used as a coagulant, which may be due to their lower surface hydrophobicity
and exposed free sulfhydryl content. Moreover, the particle size of the original arachin
emulsion was the largest (Figure 1), and its interfacial protein concentration was the lowest
(Figure 2). At the same oil content, the larger the size of the oil droplets, the smaller the
number. Since the protein-coated oil droplets could act as active anchors to strengthen
the gel texture [1], the decrease in the number of active anchors in the arachin emulsion
gel might also be responsible for its worse network. Although the protein network of the
glycinin emulsion gel seemed to be dense, it had many large oil droplets, which might
weaken the structural strength of the emulsion gel.

2.7. Microstructure of Different Protein-Stabilized Emulsion Gels Induced by GDL

The gelation kinetics of different protein-stabilized emulsions induced by GDL were
evaluated. As shown in Figure 9A, during incubation, the storage modulus (G′) of all the
emulsions increased sharply except for the arachin-stabilized emulsion. G′ is considered
the best indicator of gel structure formation and consolidation [29]. The lower G′ value of
the arachin-stabilized emulsion was consistent with its coarse and porous structure. In the
initial stage of heating, the G′ value of the glycinin emulsion increased more rapidly than
those of other samples. However, after half an hour, the G′ values of SPI and β−conglycinin
emulsion gels became higher, which increased more dramatically in the subsequent cooling
stage (Figure 9A). Tang, Luo, Liu, and Chen [8] pointed out that G′ progressively increased
as the glycinin content increased from 0 to 100% when soy protein emulsion gels were
induced by TGase at 37 ◦C for 6 h. The inconsistent results were probably attributed to the
fact that the coagulant and incubation procedure used were different. It is important to note
that although the G′ values of conarachin and PPI were much lower than those of the SPI
and β−conglycinin emulsion gels according to dynamic rheological analysis, the hardness
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of the former was remarkably higher after storage overnight at 4 ◦C (Figure 6). The results
imply that the enhancement of intermolecular interactions by storage in conarachin and
PPI emulsion gels was higher.
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heating and cooling cycle. (B) Frequency dependence of G′ the correspondingly formed emulsion
gels after cooling.
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Frequency sweep experiments on the corresponding emulsion gels were further carried
out, which could reflect the interactive force nature in the formed emulsion gels. As
shown in Figure 9B, the G′ values of arachin and glycinin emulsion gels did not exhibit
frequency dependency in the range of 0.1–10 Hz, indicating that these emulsion gels are
mainly formed through covalent “chemical crosslinks” [30]. However, in the case of SPI,
PPI, β−conglycinin and conarachin emulsion gels, their G′ values gradually increased
with increasing frequency, indicating that these emulsion gels are mainly formed through
noncovalent “physical crosslinks”, which are breakable or deformable [31]. Wang et al. [22]
and Tang, Yang, Liu, and Chen [8] reported similar results when using various coagulants.

3. Conclusions

The various coagulant concentrations were optimized for peanut and soy protein-
stabilized emulsion gels. The soy protein gel generally had better WHC than the peanut pro-
tein gel. Among the six proteins (PPI, arachin, conarachin, SPI, glycinin and β−conglycinin),
when CaCl2 was used as a coagulant, the hardness of the emulsion gel from conarachin was
the lowest. However, when TGase and GDL were used as coagulants, the conarachin emul-
sion gel had the strongest texture. The GDL-induced conarachin emulsion gel showed more
homogeneous and compact structures. Protein structural analysis showed that conarachin
had the highest surface hydrophobicity and exposed free sulfhydryl content, which should
be responsible for the better texture of the conarachin-stabilized emulsion gel. This work
reveals that conarachin has good application potential in the preparation of emulsion gels
using TGase and GDL as coagulants.

4. Materials and Methods
4.1. Materials

Peanut seeds (4.53% water, 49.81% oil and 25.07% protein), defatted soybean meal and
soybean oil were purchased from the local market. PPI (protein content: 80.15± 1.69%) was
prepared according to the procedure of alkali-soluble and acid precipitation in our lab [4].
The oil content of the peanut seeds was determined by the Soxhlet extraction method (AOCS
Official Method, Ba 3-38, 1998). The protein contents of the peanut seeds and PPI were
determined by the Kjeldahl method (N × 5.46) (AOCS Official Method, Ba 4a-38, 1998). 8-
Anilinonaphthalene-sulphonic acid (ANS), 5,5’-dithiobis (2-nitrobenzoic acid) (DTNB), Nile
red and Fluorescein isothiocyanate (FITC) were purchased from Yuanye Bio-Technology
Co., Ltd. (Shanghai, China). GDL was purchased from Macklin Biochemical Co., Ltd.
(Shanghai, China). The microbial TGase used in this study was Baibang TGase (a solid
powder mixed with maltodextrin, with an enzyme activity of 242 U/g) donated by Qingrui
Food Technology Co., Ltd. (Shanghai, China). All other reagents were of analytical grade.

4.2. Extraction of Arachin and Conarachin from PPI

PPI was mixed with 3 times phosphate buffer solution (0.3 mol/L, pH 7.5), which was
stirred at room temperature for 1 h, followed by centrifugation (4000 r/min, 15 min) at
room temperature with a centrifuge (GL-20G, Anting Instrument Co, Ltd., Shanghai, China)
to discard the insoluble matter. The supernatant was treated in two ways to obtain arachin
and conarachin. (1) The supernatant was placed overnight at 2 ◦C and then centrifuged
(8000 r/min, 20 min) at 2 ◦C. The precipitated arachin was freeze-dried and stored in
a desiccator. (2) Ammonium sulfate was added to the supernatant until its saturation
reached 60%. The solution was stirred evenly and then centrifuged (8000 r/min, 20 min).
Ammonium sulfate was added to the supernatant until its saturation reached 85%. The
solution was stirred and then centrifuged as described above. The precipitate was dialyzed
to remove ammonium sulfate, followed by freeze drying to obtain conarachin. The protein
contents of arachin and conarachin were 84.45 ± 0.51% and 89.85 ± 0.98%, respectively.
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4.3. Extraction of Soy Protein Isolates (SPI), Glycinin and β−Conglycinin from Defatted
Soybean Meal

SPI was extracted according to the alkali-soluble and acid precipitation procedure. Soy
glycinin and β−conglycinin were prepared according to the process reported by Nagano,
Hirotsuka, and Mori [32]. The specific steps were as follows.

(1) Defatted soybean meal was mixed with 10 times deionized water, and the pH
value of the dispersions was adjusted to 8.0 with 2 M NaOH. After stirring for 1 h at
room temperature, the suspension was shaken in a water bath shaker (SHZ-88, Jiangsu
Instrument Co., Ltd., Jingyi, China) at 50 ◦C for 30 min. After centrifugation (4000 r/min,
15 min), the precipitate was discarded, and the pH of the supernatant was then adjusted to
4.5 with 2 M HCl to precipitate the soy proteins. The precipitate was then washed with
deionized water twice to remove most of HCl. The precipitated proteins were freeze-dried
as SPI (protein content: 83.60 ± 1.0%).

(2) Sodium bisulfite was added to the above supernatant to achieve a final concentra-
tion (0.98 g/L), and its pH was adjusted to 6.4 with 2 M HCl. The protein solution was
then placed overnight at 4 ◦C, followed by centrifugation (4 ◦C, 8000 r/min, 20 min). The
obtained precipitate was freeze-dried as glycinin (87.94 ± 0.66%). Next, sodium chloride
was added to the obtained supernatant to achieve a final concentration (0.25 mol/L), and
its pH was adjusted to 5.0 with 2 M HCl. The protein solution was then centrifuged at
8000 r/min for 20 min. The precipitate was discarded. Twice the volume of ice water
was added to the supernatant, and the pH was adjusted to 4.8, followed by centrifugation
(4 ◦C, 8000 r/min, 20 min). The obtained precipitate was freeze-dried as β−conglycinin
(82.37 ± 0.8%).

4.4. Preparation of Different Protein-Stabilized Emulsions by Ultrasonic Method

First, protein suspensions (4%, w/v) were prepared by dispersing the protein samples
in distilled water into a 200-mL beaker, which was gently stirred at 25 ◦C until they were
sufficiently dissolved. The pH of the dispersions was adjusted to 7.0 with 2 M NaOH. Then,
soybean oil (30%, v/v) was added to the protein suspensions. The mixture was processed
at 10,000 rpm for 2 min by a high-shear probe homogenizer (Model FA25, Fluko Equipment
Shanghai Co., Ltd., Shanghai, China). The obtained coarse emulsions were further treated
by an ultrasonic processor (Scientz-IID, NingBo Scientz Biotechnology Co., Ltd., Ningbo,
China) with an 80–170 µm of amplitude to prepare the final emulsions. The titanium probe
used had a 0.636-cm diameter. The samples were sonicated (20 min, pulse duration of
3 s and off time of 2 s) at 300 W. The sample temperature was kept below 30 ◦C in an
ice-water bath.

4.5. Emulsion Characterization

The particle size of the emulsion samples was measured according to our previous
work [4]. The surface protein concentration of the emulsion samples was measured accord-
ing to the method of Zhang and Lu [33].

4.6. Preparation of Emulsion Gels

All emulsion samples were prepared at a constant total protein concentration (4%,
w/v) and oil fraction (30%, v/v). The emulsion gels were prepared using CaCl2, TGase
and GDL were used as the coagulants in 50-mL beakers.

(1) CaCl2-induced gels. CaCl2 was added to the emulsion sample (20 mL) to achieve
final concentrations of 0.1, 0.15, 0.2, 0.25, and 0.3 g/dL. The mixture was gently stirred
and then heated for 30 min in an 80 ◦C water bath to form a gel. The gel was then cooled
immediately in cold water and stored overnight at 4 ◦C.

(2) TGase-induced gels. TGase was added to the emulsion sample (20 mL) to achieve
final concentrations of 10, 15, 20, 25 and 30 U/mL. The mixture was stirred for 3 min at
room temperature, followed by incubation in a 45 ◦C water bath for 6 h to form gels. Then,
the gels were cooled immediately and stored overnight at 4 ◦C.
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(3) GDL-induced gels. GDL was added to the emulsion sample (20 mL) to achieve a
final concentration (0.1%, 0.2%, 0.3%, 0.4%, 0.5% and 0.6% (w/v)). The mixture was gently
stirred and then heated for 30 min in an 85 ◦C water bath to form a gel. The gel was then
cooled immediately in cold water and stored overnight at 4 ◦C. The texture and WHC of
the emulsion gels were analyzed to establish the concentrations of coagulants.

4.7. Emulsion Gel Characterization
4.7.1. Dynamic Viscoelastic Measurement

Dynamic viscoelastic measurements of emulsion gels were determined at a 1.0% strain
according to our previous work [4]. The storage modulus ( G′) and loss modulus ( G′ ′)
were recorded during heating and cooling cycles at a fixed frequency of 1.0 Hz. Then,
the experiment was oscillated at 25 ◦C with a frequency from 0.1 to 10.0 Hz. G′ and G′ ′

were recorded.

4.7.2. Emulsion Gel Textural Analysis

The texture of the emulsion gels was analyzed by a texture analyzer (TA-TX2i, Stable
Micro System Ltd., Godalming, England) with a cylinder probe (P/0.5) according to our
previous work [4].

4.7.3. Emulsion Gel Water-Holding Capacity (WHC)

The emulsion gel samples (5.0–6.0 g each) were transferred to 10-mL centrifuge tubes
and centrifuged (4 ◦C, 8000 r/min, 20 min). The water on top of the tubes was carefully
removed using filter paper. The tubes containing the emulsion gels before and after
centrifugation were weighed. The WHC was calculated using Equation (1):

WHC (%) = (W 1−W)/(W 2−W)× 100% (1)

where W is the weight of the centrifuge tube; W1 is the total weight of the centrifuge tube
and emulsion gel after centrifugation; and W2 is the total weight of the centrifuge tube and
emulsion gel before centrifugation.

4.7.4. Confocal Laser Scanning Microscope (CLSM)

A confocal laser scanning microscope (FV3000, Olympus, Tokyo, Japan) equipped
with a 100× objective lens (oil immersion) was applied to observe the microstructure
of GDL-induced emulsion gels. The assay procedure was performed according to our
previous work [4].

4.8. Protein Structural Properties
4.8.1. Surface Hydrophobicity

The surface hydrophobicity (H0) of protein samples was determined using ANS as the
fluorescence probe according to our previous work [4].

4.8.2. Exposed Free SH Content

The exposed free SH content of the protein samples was determined using the 5,5’-
dithiobis (2-nitrobenzoic acid) (DTNB) reagent according to the method of Zhang, Yan,
Jiang, and Ding [34] with modifications. Ellman’s reagent was prepared by dissolving
40 mg of DTNB reagent in 10 mL of tris-glycine buffer (pH 8.0) containing 0.086 M Tris,
0.09 M glycine and 4 mM EDTA. Protein samples (30 mg) were solubilized in 10 mL of
Tris-glycine buffer, followed by centrifugation at 5000 r/min for 15 min. The protein
content of the supernatant was determined by the method of Lowry, Rosebrough, Farr, and
Randall [35]. Then, 50 µL of Ellman’s reagent was added to 3 mL of supernatant. After
incubation at room temperature for 5 min, the absorbance of the suspension was read at
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412 nm. The buffer was used as a control blank. The SH content was calculated using
Equation (2):

SH (µmol/g) =
73.53 A

C
(2)

where A is the absorbance at 412 nm and C is the protein concentration of the supernatant
(mg/gL).

4.8.3. Amino Acid Analysis

Seventeen amino acids (except for tryptophan) were analyzed using an automated
amino acid analyzer (S433D, Sykam, Germany). After hydrolyzing the protein samples at
110 ◦C for 24 h with 6 M HCl, RP-HPLC analysis with online derivation was carried out.

4.9. Statistical Analysis

The reported values are the means for at least two replicates. The significant difference
(p < 0.05) between various samples was analyzed through ANOVA by Duncan’s multiple
range tests.
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