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Mathematical Musings on the External Anatomy of

the Novel Corona Virus®

Part 4: Models of n-Cov

Jyotirmoy Sarkar and Mamunur Rashid

What is the shape of the novel coronavirus (n-CoV) which has
turned our world upside down? Even though under a micro-
scope, it looks dull, unattractive, and even disgusting, creative
artists have attributed to it bright colors, made it look pretty,
and depicted it as a thing of beauty. What can a mathemati-
cian contribute to this effort? We take a purist’s point of view
by imposing on it a quasi-symmetry and then deriving some
consequences. In an idealistic world, far removed from real-
ity but still constrained by the rules of mathematics, anyone
can enjoy this ethereal beauty of the mind’s creation, beckon-
ing others to join in the pleasure.

Our musings end with this Part 4. We fondly hope readers
have benefited from our suggestion that they indulge in their
own musings, tell others about them, and propagate the good
virus of mathematical thinking.

Gist of Parts 1, 2 and 3!

In Part 1, we described the external shape of the n-Cov as a sphere
with three kinds of proteins protruding out of it. In Part 2, we
modeled the locations of the S-Proteins as the vertices of icosa-
hedron and dodecahedron inscribed within a sphere, and at the
midpoints of edges of the icosahedron (or the dodecahedron). In
Part 3, we studied the properties of spherical triangles, which will
aid us in locating M- and E-proteins.

Here in Part 4, we answer the challenge posed in Part 1 and offer
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More answers are
possible if you change
your perspective.

Why then nobody
depicts 15 S-Proteins in
a 2D diagram?

Here is a possible
explanation as to why
2D pictures do not depict
15 S-Proteins.

additional variations to our model.

7. How Many S-Proteins in a 2D Pictures?

Earlier, we explained that a 2D picture of the n-CoV exhibits the
protrusions that will be visible when a slab (with some thickness)
is cut out with planar cuts above and below any great circle, and
the 3D slab is flattened onto a 2D space, making the protrusions
extend out of the 2D circle. According to our model, if the slab
is very thin, it is possible to find 10 or 12 S-Proteins in the 2D
picture, as shown in Figure 1, by the thick, dashed curves—one
along the equator and the other along a meridian.

Suppose the slab is made a bit thicker and parallel to one of these
great circles. We may assume (1) the S-Proteins on the equator
and in the portion of the slab belonging to one hemisphere are
visible, but the ones in the other hemisphere are not visible, or (2)
all S-Proteins on the slab are visible irrespective of which hemi-
sphere they belong to. Then using our model, the 2D diagrams
can show 10, 12, 15, 18, 20, and 24 S-Proteins.

To elaborate, if you focus on the inscribed dodecahedron and
imagine rolling it so that it comes to rest with one of its pentago-
nal faces resting on the tabletop, then the equator passes through
10 (height-wise middlemost) edge-centers. This is shown in Fig-
ure 1 by the dashed equatorial line. There are five near-neighbors
on vertices that belong to the upper half and five more equally
far neighbors on vertices that belong to the bottom half. This ex-
plains 10, 15, or 20 S-Proteins in a 2D picture. Alternatively, as
in Figure 3 of Part 2, we may hold the inscribed icosahedron so
that its two opposite vertices occupy the north and south poles,
respectively. Then also, the equator passes through 10 S-Proteins
on edge-centers; there are five near-neighbor face-centers belong-
ing to the upper half and five more near-neighbor face-centers be-
longing to the bottom half. Regularity in angular deviations (from
the spherical center) is clear for 10 or 20 S-Proteins, but not for
15.

Perhaps angular irregularity, being not aesthetically pleasing to an
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artist, is the reason why (and because 15 is an odd number) none
of the 2D diagrams show 15 S-Proteins. But if someone did omit
every fourth S-Protein after placing 20 at regular angular intervals
of 18°, they can justify their omission based on our model.

On the other hand, if we roll the inscribed icosahedron until it
comes to rest on the tabletop or hold an inscribed dodecahedron
so that its opposite vertices occupy the north and south poles, re-
spectively, then we can count 12 S-Proteins on the equator and
6 near-neighbors on the top half and 6 in the bottom half. This
is shown in Figure 1 by the dashed line along a meridian. This
will explain 12, 18, or 24 S-Proteins in a 2D picture. Although,
according to our model, these sets of S-Proteins lack regular an-
gular deviations, who can blame the protagonists for invoking an
artistic license to make the angles equal?
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Figure 1. The number of
S-Proteins on 2D pictures
varies according to which
great circular cut is con-
sidered, how thin or thick
the slab is, and whether S-
Proteins on the slab that be-
long to only one hemisphere
or either hemisphere are as-
sumed visible.

The 3D regularity of our
model may vanish when
projected to 2D.
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A second explanation for
12, 18 or 24 S-Proteins

In a 2D depiction, 16
S-Proteins are justifiable.

We are about to take
some creative license.

1722

There is yet a third way to hold the inscribed Platonic solids—
with one edge touching the flat surface of a table and the opposite
edge at the very top vertically above the first edge. In such a
case, for either polyhedron, the middle-most planar (equatorial)
cut contains 12 S-Proteins, and they exhibit the same pattern (af-
ter a 30° rotation about the axis joining the midpoints of the top
and bottom edges) as in the second way mentioned in the previ-
ous paragraph, having 6 near-neighbors in the upper half and 6 in
the lower half. Therefore, the third way also explains 12, 18, or
24 S-Proteins in a 2D picture.

Thus, the 2D count of S-Proteins depends on where exactly the
cutting planes are placed and what assumptions are made about
visibility. As such, all 2D pictures shown in Figure 1 of Part 1,
except the one showing 16 S-Proteins, are indeed derivable us-
ing our model! To provide a mathematical basis for explaining
how 16 may also be a viable answer, one can consider a slab that
misses the center. Alternatively, the reader may construct a model
starting from a superposition of a hexahedron (cube) and its dual,
the octahedron (consisting of 26 vertices and edge-centers), and
then adding more points maintaining some form of symmetry
(such as by adding quartile points on each edge).

In conclusion, either our proposed model or one of its variations
can vindicate all 2D diagrams in Figure 1 of Part 1! Hats off to
all creative artists and scientists who produced these diagrams.

8. M-Proteins and E-Proteins: How Many? And Where?

Evidence from the diagrams available on the internet is insuffi-
cient to count the number and propose the locations of M-Proteins
and E-Proteins.  This is where we proceed with our own cre-
ative thinking, allowing two possibilities based on the variety of
pictures in Figure 1 of Part 1: The number of M-Proteins and E-
Proteins combined is either (1) about the same as, or (2) about
twice as many as the number of S-Proteins. Likewise, guided by
the pictures in Figure 1 of Part 1, we may allow M-Proteins to be
about four to twelve times more frequent than E-Proteins.
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(a) (b)

S8IM+E =S

In the first case, in which the total number of M-Proteins and E-
Proteins approximately equal the number of S-Proteins, we pro-
pose to identify a total of 60 locations (henceforth called M-E
locations) for these two types of proteins, placing them either (a)
at the first and the third quartile points of each side of SET/20
(the mid-point is already taken by another S-Protein), or (b) ex-
actly midway between each vertex and the center of each SET/20.
See Figure 2. In subcase (a), there are 30 X2 = 60 M-E locations;
in subcase (b), again 20 X 3 = 60 locations.

8.2 M+E = 28§

In the second case, in which the total number of M-Proteins and
E-Proteins approximately equals twice the number of S-Proteins,
we propose 120 M-E locations, placing them either (a) both at the
quartile points of sides and also midway between vertex and face-
center, or (b) at the centroids of the six similar right triangles (of
side lengths g(b) =~ 0.52, g(u) = 0.34,g(v) = 0.62 respectively)
into which each face of SET/20 is partitioned by the three medi-
ans. See Figure 3.

We leave it to the reader to determine how far each centroid is
from the nearest vertex, edge-center, and face-center, and also
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Figure 2. Two ways to add
60 locations for M-Proteins
and E-Proteins.

We offer two sets of 60
points as M-E locations.

| Again, two sets of 120

points for M-E locations.
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Figure 3. Two ways to add
120 locations for M-Proteins

and E-Proteins.

Can you reassemble

these 120 “triangles” to

make the sphere?

Which protein will

occupy which location?
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We impose a
Hamiltonian cycle.

to determine the side length of the regular (which we know by
invoking symmetry) hexagon formed by all six centroids.

The last subcase (b) reminds us of another application in com-
puter and information science and statistics. After determining
the 120 M-E locations (of the M-Proteins and E-Proteins), if we
remove all the S-Proteins and thereafter assign each point on the
sphere to the nearest M-E location, we will reconstruct the edges
and the medians of all SET/20, partitioning the entire sphere into
120 identical right (spherical) triangles, and thereby recover the
S-Protein locations as vertices of these right triangles. This nearest-
neighbor partitioning of space is routinely used for the classifica-
tion and discrimination of massive data into subgroups.

8.3 Separating M-Proteins and E-Proteins

Having chosen the combined locations of the M-Proteins and the
E-Proteins, the next task is to determine which protein will oc-
cupy which location. Suffices it to locate the E-Proteins, the less
frequent of the two types; the remaining M-E locations will be
allocated to M-Proteins. For the case M + E ~ S, we describe
how to locate i E-Proteins, where i divides 24; and, for the case
M + E = 2§, how to locate j E-Proteins, where j divides 40.

For the M + E = S case, abiding by our sense of regularity, we
determine E-Protein locations by imposing a Hamiltonian cycle
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connecting the vertices of an icosahedron. Hopkins (2004) [2]
proves that there are multiple, topologically distinct Hamiltonian
cycles on an icosahedron. For our purpose, we prefer using the
one that includes at least one edge of each face. See Figure 4(a).
As a (smart) bug walks on this Hamiltonian cycle, visiting every
vertex exactly once until it returns to the starting vertex, it tra-
verses exactly 12 edges, passing through 24 M-E locations. If
we pick all, alternate, every third, fourth, sixth, eighth, or twelfth
such M-E locations and assign them to E-Proteins, we can ac-
commodate 1, 2, 3, 4, 6, 8, 12, 24 E-Proteins.

Likewise, for the M + E =~ 2§ case, we determine E-Protein lo-
cations by imposing a Hamiltonian cycle connecting the vertices
of a dodecahedron (or, using duality, the face-centers of an icosa-
hedron). Again, Hopkins (2004) [2] tells us there is only one
topologically distinct Hamiltonian cycle. See Figure 4(b). This
time, as the bug walks on the Hamiltonian cycle, it traverses ex-
actly 20 edges, passing through 40 M-E locations. We pick all,
alternate, every fourth, fifth, eighth, tenth, or twentieth such M-E
locations and assign them to E-Proteins. Thus, we can accommo-
date 1, 2, 4, 5, 8, 10, 20, 40 E-Proteins.

Of course, we can locate other numbers of E-Proteins obtained by
adding the available numbers in the above two sets. For example,
we can locate 11 E-Proteins by placing 6 on the Hamiltonian cy-
cle of the icosahedron and 5 on that of the dodecahedron. Also,
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Figure 4. Hamiltonian cy-
cle using at least one edge
from each face of (a) an oc-
tahedron, (b) A dodecahe-
dron. Printed on each face is
the number of its edges used
in the cycle.

You can make an
appropriate choice based
on your estimate of the
number of E-Proteins.

There is only one
topologically distinct
Hamiltonian cycle.
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We only focus on the
locations, not the lengths
of protrusions.

Because insistence on
perfect symmetry fails,
we have settled for
quasi-symmetry.

To show impossibility,
we need a logical proof.
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in each case, we could inscribe a tetrahedron, octahedron, or hex-
ahedron (cube) inside the sphere and, by rotating it appropriately,
match its vertices to the nearest M-E locations to be assigned to
4, 6, or 8 E-Proteins. (We say a match is good if it minimizes the
sum of squared (or absolute) distances between the desired and
the available points.)

9. Illustrating the Locations of the Three Types of Proteins

Now we reach the climax of our musings. We illustrate the place-
ment, according to our model, of 62 S-Proteins, 6 E-Proteins, and
54 M-Proteins in Figure 5 following the strategy shown in Fig-
ures 2(a) and 4(a). Diametrically opposite (antipodal) points (that
are not visible from this point of view) have the exact same type
of protein. We only focus on the locations of the visible pro-
teins and restrain from usurping the specialties of creative artists.
We leave it to the reader to draw the corresponding diagrams for
other choices of numbers of these three types of proteins that our
model, or one of its cousins, declares viable.

Here, we have proposed a model for the external anatomy of the
n-CoV focusing only on the numbers and locations of three major
kinds of protrusions that emerge from its spherical core. We say
nothing about the internal components, and absolutely nothing
about the functioning of any of the components, leaving those
important tasks to experts more qualified than us. Mathematical
symmetry principles guide our model’s construction to the extent
possible. We explained that insistence on perfect symmetry fails
to account for enough protrusions. Thereafter, settling for quasi-
symmetry, we have proposed 62 S-Proteins and their locations on
the sphere. Finally, we gave multiple options to locate 60 (or 120)
M- and E-Proteins. We have classified these latter locations into
two types depending on various proposals for their number.

9.1 Alternative Proposals

If someone proposes to locate a total of 90 M- and E-Proteins,
we can convince them such a task is impossible to achieve while
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maintaining 62 S-Proteins and our adopted form of quasi-symmetry.
The reason is simple: The number 90 cannot be written as m20 +
n60, where m, n are integers, and 20 is the number of faces of
an icosahedron (and vertices of a dodecahedron) while 30 is the
number of edges of an icosahedron (or a dodecahedron) and edge
is already bisected by an S-Protein. Neither can you write 90 as
m12 + n60.

If another person proposes to locate a total of 100 M- and E-
Proteins, we can show the impossibility of that goal as well. Even
though 100 = 2(20)+ 1(60), it is not possible to write 100 as k12+
160, with integers k, [, for there are 12 vertices of an icosahedron
(and faces of a dodecahedron). The astute reader may propose
an alternative approach to accommodate 90 or 100 M- and E-
Proteins.

In short, the proposed total number of M- and E-Proteins must be
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Figure 5. Locating 62 S-
Proteins, 6 E-Proteins and
54 M-Proteins according to
the recipe given in Figure
2(a) and Figure 4(a).

What our model cannot
do, perhaps another
model can and vice
versa.
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How do bees make
honeycombs?

The intermediate value
theorem guarantees a

unique solution.

The M-Proteins on the
boundaries are counted

1728

on two faces.

a multiple of 60. We have already shown how to pick 60 and 120
M-E locations. If someone else insists that there ought to be 180
M-Proteins and 60 E-Proteins, we have a strategy to achieve that
target. We borrow from Darwin (1859) [1] an explanation of how
bees make honeycombs with hexagonal cross-sections. For the
moment, we leave aside the vertices of the icosahedron and focus
on its face-centers and edge-centers. Around each of the 20 face-
centers, we allow spherical hexagons whose all three opposite
pairs of sides are orthogonal to the three medians. Around each
of the 30 edge-centers, we allow spherical hexagons whose one
pair of opposite sides are orthogonal to the two medians incident
at that edge-center (accounting for four vertices), and the remain-
ing pair of opposite vertices are on the edges. These hexagons
keep growing bigger and bigger at the same rate until their sides
overlap. Then we stop. (The intermediate value theorem guar-
antees a unique stop.) Clearly, all spherical hexagons are equal
in size with a side length of approximately g(u)/ V3 = 0.200344
(if you think the hexagon is planar), but more accurately (because
the hexagon is spherical) the sides are of length

W= g(g_l (%) %) = (.2004225.

In other words, if we think the hexagon is planar, it is not such a
bad approximation.

The vertices of the hexagons are the M-Protein locations. See the
larger (orange) bullets in Figure 6. On each SET/20, there are six
M-Proteins in the interior and six on the boundary shared with
another adjacent SET/20. Hence, altogether there are (6 + 6/2) X
20 = 180 M-Protein locations.

Next, in the interior of each SET/20, we propose to locate three
E-Proteins on the medians closer towards the vertices, exactly w
units away (along geodesics) from the nearest two interior M-
Proteins on that same SET/20. See the smaller (yellow) bullets in
Figure 6. Each such E-Protein is closest to a vertex of the icosa-
hedron. Thus, looking atop each vertex of the icosahedron, we
see at a fixed distance about g(v) — V3w = 0.2734233 from the
vertex five E-Proteins at a regular angular spread of 72°; then, a
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little further away (at a distance about g(b) —w = 0.3261364 from
the vertices) we see 5 M-Proteins angularly midway between the
E-Proteins; and finally still further away at a distance (the ex-
act value of which we leave to the attentive reader to figure out)
slightly more than g(v) — \/3w/ 2 = 0.4469264 from the vertices)
ten more M-Proteins, not forming a regular decagon, but a cyclic
decagon with sides alternating in the ratio 1: V3.

In subsection 6.3 (see Part 3), we justified why the mid-points of
any two adjacent edges of an icosahedron subtend an angle of 36°
at the center by invoking the golden ratio between the radius of
the circumscribing sphere and the length of the geodesic joining
these two points, Here is a simpler reason: In Figure 1 of Part 3,
where two vertices occupy the north and south poles, the equator
passes through exactly 10 midpoints of edges at regular angular
distances spanning 360° together. Hence, each must subtend 36°
at the center!
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Figure 6. A strategy to
cate 180 M-Proteins and
E-Proteins.

lo-
60

Looking atop each vertex
of the icosahedron, we

see beautiful patterns.

| A global view offers a

simpler explanation.
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Dear readers,
begin/continue your own
musings.
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Epilogue

Having presented some beautiful gems gleaned from the ocean

of mathematical ideas as a bouquet of offering to our dear read-

ers during this stay-at-home pandemic period, we must now say

farewell. We sincerely hope that attentive readers are sufficiently

equipped to begin/continue their own musings on topics of rel-

evance. May we suggest that they try to construct other mod-
els, perhaps starting with a radial projection of a hexahedron and
its dual (an octahedron), and then embellish it with additional
points chosen quasi-symmetrically to ensure the sufficient num-

ber of points on the sphere to model the novel coronavirus or any

other object of this nature. Godspeed.
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