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Montelukast is a selective leukotriene receptor antagonist that is widely used to treat
bronchial asthma and nasal allergy. To clarify the association between montelukast and
neuropsychiatric adverse events (AEs), we evaluated case reports recorded between
January 2004 and December 2018 in the Food and Drug Administration Adverse Event
Reporting System (FAERS). Furthermore, we elucidated the potential toxicological
mechanisms of montelukast-associated neuropsychiatric AEs through functional
enrichment analysis of human genes interacting with montelukast. The reporting odds
ratios of suicidal ideation and depression in the system organ class of psychiatric disorders
were 21.5 (95% confidence interval (CI): 20.3–22.9) and 8.2 (95% CI: 7.8–8.7),
respectively. We explored 1,144 human genes that directly or indirectly interact with
montelukast. The molecular complex detection (MCODE) plug-in of Cytoscape detected
14 clusters. Functional analysis indicated that several genes were significantly enriched in
the biological processes of “neuroactive ligand–receptor interaction.” “Mood disorders”
and “major depressive disorder” were significant disease terms related to montelukast.
Our retrospective analysis based on the FAERS demonstrated a significant association
between montelukast and neuropsychiatric AEs. Functional enrichment analysis of
montelukast-associated genes related to neuropsychiatric symptoms warrant further
research on the underlying pharmacological mechanisms.

Keywords: montelukast, neuropsychiatric adverse events, food and drug administration adverse event reporting
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INTRODUCTION

Montelukast is a selective leukotriene receptor antagonist used to treat bronchial asthma and nasal
allergy. Although montelukast is generally well tolerated, several clinical trials and post-marketing
studies have reported serious neuropsychiatric adverse events (AEs) (Philip et al., 2009a; Philip et al.,
2009b; Kelsay, 2009; Calapai et al., 2014; Haarman et al., 2017). The potential association between
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TABLE 1 | Number of reports and reporting odds ratio related to montelukast in the FAERS (January 2004−November 2018).
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montelukast and suicidal behavior has previously been
demonstrated based on the results of a literature search of
MEDLINE, EMBASE, International Pharmaceutical Abstracts,
and the Food and Drug Administration (FDA) adverse event
reporting system (FAERS) (Schumock et al., 2011). This
information has led the FDA to issue multiple warnings
concerning an increased risk of neuropsychiatric AEs after
taking montelukast and other leukotriene antagonists,
including aggressive behavior, anxiety, depression, abnormal
dreams, excitement, hallucinations, insomnia, irritability, and
potential suicidality (Marchand et al., 2013; Perona et al.,
2016; Merck & Co, 2020). On March 4, 2020, the
United States FDA issued a safety announcement regarding
the necessity of boxed warnings about serious neuropsychiatric
AEs for montelukast (Singulair) (Food and Drug Administration
2020).

The FAERS is a spontaneous reporting system (SRS) involving
reports of AEs in a real-world setting that are voluntarily
submitted by healthcare professionals, pharmaceutical
companies, and patients. The FAERS database is publicly

available, can be downloaded from the FDA website (http://
www.fda.gov), and is used in the post-marketing safety
assessments of approved drugs. The objective of this study was
to evaluate the association between neuropsychiatric AEs using
well-established pharmacovigilance indices such as reporting
odds ratio (ROR).

The pharmacological mechanisms causing neuropsychiatric
alterations are currently unclear (Khalid et al., 2017). Most drugs
act via interactions with several proteins encoded by different
genes. An analysis of drug–gene interactions improved our
understanding of drug toxicity (Ludovini et al., 2016). In
recent years, integrated analysis using FAERS data and
drug–gene interaction analysis data has been proposed as a
method to expand our knowledge of AEs (Wu et al., 2016; Lin
et al., 2017; Tanaka et al., 2021). To better understand the
toxicological mechanisms underlying montelukast-associated
neuropsychiatric AEs, we extracted a data set of human genes
interacting with montelukast from public databases and
constructed a drug–gene interaction network. Functional
enrichment analysis of these genes was performed to elucidate

TABLE 2 | Clusters of networks analyzed by MCODE.
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the potential toxicological mechanisms of montelukast-
associated neuropsychiatric AEs.

METHODS

Data Source
Data from April 2004 to December 2018 were extracted from the
FAERS database on the FDA website. The informatic structure of
the FAERS database is based on the international safety reporting
guidelines issued by the International Council on Harmonization
(ICH), known as ICH E2B guidelines (U. S. Department of Health
and Human Services, 2014). We integrated our database from the
FAERS dataset using FileMaker Pro Advanced software
(FileMaker, Inc., Santa Clara, CA, United States), according to

the ASCII Entity Relationship Diagram, which is publicly
available from the FDA website (https://www.fda.gov).

Following the FDA’s recommendation, we excluded duplicate
reports of the same patient from different reporting sources from
the analysis and extracted reports. Drugs in FAERS are classified
into four categories: primary suspect drug (PS), secondary suspect
drug (SS), concomitant (C), and interacting (I), according to the
anticipated degree of involvement for AEs. Only reports with the
PS drug code were included in this analysis.

Definition of Adverse Events
AEs were coded with terms found in the Medical Dictionary for
Regulatory Activities (MedDRA, https://www.meddra.org),
which is the dictionary for terminology used in the FAERS
database. This study relied on the definitions provided by

FIGURE 1 | Top four gene interaction networks based on the MCODE plug-in of Cytoscape.
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MedDRA version 21.0. To evaluate montelukast-associated AEs,
we utilized the system organ classes (SOCs) of “psychiatric
disorders,” “general disorders and administration site
conditions,” “nervous system disorders,” “respiratory, thoracic
and mediastinal disorders,” and “gastrointestinal disorders”
(Table 1). The preferred terms (PTs) related to each SOC are
summarized in Table 1.

Signal Detection
We used the ROR to analyze the association betweenmontelukast
and AEs. The ROR is the ratio of the odds of reporting an AE
relative to all other AEs associated with the drug of interest
compared with the reporting odds for all other drugs in the
FAERS database (Poluzzi et al., 2012). ROR is calculated based on
the two-by-two contingency table. RORs are expressed as point
estimates with 95% confidence interval (CI). The signal was
considered positive when the lower limit of 95% CI was >1
and the number of reports was ≥2 (Poluzzi et al., 2012).

Drug−gene Interaction Network
The drug−gene interaction network was constructed on the basis of
drug−gene and gene−gene interactions. Montelukast-associated
genes were retrieved from DGIdb (drug–gene interaction
database, https://www.dgidb.org), DSigDB (drug signatures
database, http://dsigdb.tanlab.org), and STITCH (https://stitch.
embl.de). The indirectly associated genes were retrieved from
iRefIndex 15.0 (“9606. mitab,” https://irefindex.vib.be) (Razick
et al., 2008). Molecular complex detection (MCODE) is an
approach for detecting highly interconnected regions in
protein−protein interaction networks (Bader and Hogue, 2003).
The clusters likely to be involved in common biological function
were investigated using the MCODE plug-in (version 1.5.1) of
Cytoscape version 3.7 (http://cytoscape.org). This plug-in was
utilized to choose hub modules of the gene−gene interaction
network in Cytoscape with a degree cutoff � 2, node score cutoff
� 0.2, k-core � 2, and Max. Depth from seed � 100 as the criteria.
Next, we used “clusterProfiler (version 1.4.0),” an R package, to

FIGURE 2 | Dot plot of KEGG functional enrichment analysis.
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perform functional analysis and visualization of functional profiles
for genes and gene clusters. We used the Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis to explore the
biological significance. KEGG enrichment analysis was performed
using clusterProfiler with organism � “hsa,” pvalueCutoff � 0.05,
pAdjustMethod � “BH,” and qvalueCutoff � 0.1. The thresholds in
the KEGG enrichment analysis are pvalueCutoff � 0.05 and
qvalueCutoff � 0.1. The default thresholds in the KEGG
enrichment analysis are pvalueCutoff � 0.05 and qvalueCutoff �
0.2. Lin et al. applied pvalueCutoff � 0.05 and qvalueCutoff (not
listed) (Lin et al., 2017). We could not find a gold standard for the
thresholds. Finally, disease enrichment analysis based on DisGeNET
was performed using the function enrichDGN in the R package
named DOSE: Disease Ontology Semantic and Enrichment analysis
(version 3.2).

RESULTS

The FAERS database contains 11,527,470 reports from January
2004 to December 2018. After excluding duplicates according to

the FDA recommendations, 9,702,166 were analyzed. The RORs
of suicidal ideation, suicide attempts, and depression in the SOC
of psychiatric disorders were 21.5 (95% CI: 20.3–22.9), 9.5 (95%
CI: 8.5–10.5), and 8.2 (95% CI: 7.8–8.7), respectively.

We primarily searched DGIdb (drug–gene interaction
database, https://www.dgidb.org), DSigDB (drug signatures
database, https://dsigdb.tanlab.org), and STITCH (https://
stitch.embl.de) and retrieved 26 genes (ABCC1, AHR, ALOX5,
ATAD5, ATG4B, CCL11, CYP2C8, CYSLTR1, CYSLTR2, IL13,
IL4, IL5, KDM4A, LTA4H, LTB4R, LTB4R2, LTC4S, PLA2G1B,
POLH, POLI, POLK, PPP1CA, S1PR1, S1PR3, S1PR4, SLCO2B)
that interact with montelukast directly. All the genes of “9606.
mitab” from iRefIndex 15.0 (https://irefindex.vib.be) were
integrated into a network with 20,877 nodes and 429,350
edges. The genes that directly or indirectly interact with the
above 26 genes were integrated into a network with 1,144 nodes
and 35,384 edges. MCODE plug-in found 14 clusters (Table 2).
To translate the network into biological insights, we further
performed functional enrichment analysis using the KEGG
pathways. The top four clusters stratified by biological process
are shown in Figure 1 (Supplemental Figures 1A–D).

FIGURE 3 | Dot plot of DisGeNET disease enrichment analysis.
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The genes interacting with montelukast were enriched in a
number of gene sets involved in “neuroactive ligand−receptor
interaction” and “chemokine signaling pathway” in cluster 1, and
“neuroactive ligand−receptor interaction” and “calcium signaling
pathway” in cluster 2 (Figure 2).

Furthermore, data retrieved from DisGeNET was used to
characterize diseases associated with montelukast. We found
significant enrichment in genes involved in the following
diseases related to montelukast (Figure 3): “pneumonia”
(adjusted p-value � 2.85 × 10–15) and “respiratory syncytial
virus infections” (adjusted p-value � 1.36 × 10–17) in cluster 1
and “mood disorders” (adjusted p-value � 1.21 × 10–12) and
“major depressive disorder” (adjusted p-value � 1.83 × 10–7) in
cluster 2.

DISCUSSION

We elucidated the AE profile of montelukast using the SOC of
psychiatric disorders associated with the drug in the FAERS
database. The lower limits of the 95% CIs of RORs related to
the SOC of “psychiatric disorders” were more than 1, and the
signal was significantly detected. Neuropsychiatric AEs have been
found to account for the most important costs associated with
comorbidity in asthma and have a negative impact on the
patients’ quality of life (Schumock et al., 2011; Chen et al.,
2016; Khalid et al., 2017), although most symptoms improve
upon stopping montelukast therapy.

To better understand the toxicological mechanisms of
montelukast-associated neuropsychiatric AEs, we curated
drug−gene interactions from public databases. A total of 1,144
human genes interacting with montelukast were investigated.
Some of these genes that were highly enriched in DisGeNET
were related to “mood disorders” and “major depressive disorder”
(Figure 3). HCRT (hypocretin neuropeptide precursor), HTR2A (5-
hydroxytryptamine receptor 2A), and KALRN (kalirin RhoGEF
kinase) genes were enriched in the modules “mood disorders”
and “major depressive disorder” in cluster 2 (Table 2). HCRT
encodes hypocretin, a hypothalamic neuropeptide precursor
protein that gives rise to two mature neuropeptides, orexin A
and orexin B, via proteolytic processing. The hypothalamic-
pituitary-adrenal (HPA) axis plays an important role in the
network mediated by stress-related neurotransmitters and have
been proposed to affect depression (Bao et al., 2012) and suicide
(Turecki et al., 2012). Hypocretins produced in the hypothalamus
(Hunt et al., 2015) have functional interactions with the HPA axis
and regulate sleep, feeding, energy balance, sexual behavior, and
stress response, which are affected in depression (Nollet and Leman,
2013). HTR2A encodes 5-HT2A receptors, which are associated
with major depressive disorder, schizophrenia, and suicidality
(Niculescu et al., 2017). KALRN is a protein-coding gene that has
been associatedwith stroke (Krug et al., 2010), coronary heart disease
(Wang et al., 2007; Beręsewicz et al., 2008; Krug et al., 2010),
schizophrenia (Hill et al., 2006; Hayashi-Takagi et al., 2010;
Bradshaw and Porteous, 2012), and adult attention-deficit/
hyperactivity disorder (Lesch et al., 2008). These findings suggest
that montelukast could increase the risk of “psychiatric disorders.”

The common AEs caused by montelukast are upper airway
infections, anaphylaxis, nausea, vomiting, diarrhea, elevated
levels of liver enzymes, agitation, anxiety, depression, sleep
disturbance, and eosinophilic granulomatosis with polyangiitis
(EGPA), also known as Churg–Strauss syndrome (Calapai et al.,
2014; Merck & Co, 2020). The presence of the ROR signal of
EGPA in our study indicates the association of EGPAwith the use
of montelukast. However, the hypothesis that EGPA is not
attributed to montelukast but to the reduction in the dose of
glucocorticoid used in combination with montelukast has
recently been accepted (Bibby et al., 2010). We considered that
the value of the ROR related to EGPA was only apparently high.

Many studies supporting an association between leukotriene-
modifying agents including montelukast and suicidality are
primarily based on reviews of individual safety reports in AE
databases which are subject to reporting bias and confounding
factors. On the contrary, case-control and cohort studies, and
clinical trials do not support an association between the two.
Ecological studies have demonstrated a lack of positive
association between leukotriene-modifying agents and suicidality
at the population level (Khalid et al., 2017). Although our study is
based on the FAERS database, it also has some limitations that are
worthmentioning. As the FAERS is an SRS, it has several limitations
including biases (under-reporting, over-reporting, missing data, and
comorbidities), a lack of detailed information about the patients, and
the exclusion of healthy individuals as a reference group. Therefore,
ROR cannot be used for assessing true risks and ranking AEs. The
risk of suicidal behavior increases among patients with respiratory
diseases such as asthma (Schumock et al., 2011; Khalid et al., 2017). It
has been elucidated how co-morbidities render FAERS data difficult
to interpret (compared with controlled study data). Another
limitation is that the SOCs in the FAERS data analysis and
“mood disorders” and “major depressive disorder” in drug–gene
analyses might not exactly represent the same clinical outcomes.
Therefore, our results from the FAERS database must be interpreted
considering these limitations. Further epidemiological studies using
a large number of patients and well-controlled trials are required to
confirm the safety risks of montelukast. When prescribing
montelukast, clinicians should carefully monitor patients who
may be at elevated risk for suicidal ideation or depression,
according to the boxed warnings.

Some limitations of our functional enrichment analysis should
also be noted. Our results do not offer any hard evidence
regarding the potential mechanisms of montelukast-associated
neuropsychiatric AEs. For now, the drug–gene interactions
investigated have not been validated in any experimental
model or in vitro and in vivo experiments because of our
currently limited knowledge about disease-associated proteins
and their interactions. Therefore, the association between
montelukast and genes should be confirmed experimentally.
Furthermore, we identified a list of 26 proteins interacting
with montelukast. However, not all genes from databases like
DGIdb are direct pharmacological targets; manymay be indirectly
affected by drugs. Our analysis uses a protein–protein interaction
network to map these 26 affected proteins to larger networks and
demonstrate that the networks are enriched in genes pertaining to
mood disorders. We seized on the genes HCRT, KALRN, and
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HTR2A to substantiate the connection to mood disorders. As
these genes are not direct targets of montelukast, this approach
must be validated by showing that a given “hotspot” in such a
protein–protein interaction network distinguishes drugs that
cause “mood disorders” from drugs that do not. The modular
assembly of drug safety subnetworks (MADSS) algorithm may be
suitable for solving this problem (Lorberbaum et al., 2015).

CONCLUSION

Our retrospective analysis demonstrated a significant
association between montelukast and neuropsychiatric AEs.
The genes that were thought to be associated with
neuropsychiatric symptoms due to their interaction with
montelukast were found to be significantly enriched in
functional categories of psychiatric disease, which necessitates
future pharmacological research.
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