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In‑Clinic and Natural Gait 
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(I‑CAN‑GO) to validate gait using 
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Traditional measurements of gait are typically performed in clinical or laboratory settings where 
functional assessments are used to collect episodic data, which may not reflect naturalistic gait and 
activity patterns. The emergence of digital health technologies has enabled reliable and continuous 
representation of gait and activity in free‑living environments. To provide further evidence for 
naturalistic gait characterization, we designed a master protocol to validate and evaluate the 
performance of a method for measuring gait derived from a single lumbar‑worn accelerometer with 
respect to reference methods. This evaluation included distinguishing between participants’ self‑
perceived different gait speed levels, and effects of different floor surfaces such as carpet and tile 
on walking performance, and performance under different bouts, speed, and duration of walking 
during a wide range of simulated daily activities. Using data from 20 healthy adult participants, we 
found different self‑paced walking speeds and floor surface effects can be accurately characterized. 
Furthermore, we showed accurate representation of gait and activity during simulated daily living 
activities and longer bouts of outside walking. Participants in general found that the devices were 
comfortable. These results extend our previous validation of the method to more naturalistic setting 
and increases confidence of implementation at‑home.

Gait is the primary means of mobility for most of the population and is a strong indicator of overall  health1–4. 
The free-living 95th percentile stride velocity has been accepted as a primary endpoint by European regulators 
for patients with Duchenne Muscular Dystrophy (DMD) and has been correlated with existing clinical assess-
ments such as the 6 min walk test (6MWT)Click or tap here to enter text. and the 4-stair climb test (4SC) with 
the added relevance of monitoring ambulatory function in the real-world5. An increase in gait speed over a 
one-year period is strongly correlated with significant reductions in both relative and absolute risk of  death1. 
Studies have also indicated that a decline in gait speed is associated with reduced cognition, diminished vitality, 
and an increased risk of falls and other injurious  events6. Due to its predictive power in a wide variety of health 
conditions, gait speed has come to be known as “the sixth vital sign” alongside respiratory rate, heart rate, blood 
pressure, temperature, and oxygen  saturation7–9. Traditional measurements of physical performance, such as 
the 6MWT and the Short Physical Performance Battery (SPPB) where walking duration is measured with stop 
watch, are typically performed in clinical or laboratory settings using functional assessment tests and clinical 
grading scales. Such tests and scales may be unreliable due to their episodic administration, subjectivity of the 
rater, and the Hawthorne  effect10,11. Additionally, in a clinical trial setting, traditional assessments might require 
multiple clinic visits increasing patient burden and risk of  attrition12,13. Thus, there is a need to derive reliable and 
stable metrics of physical performance, such as gait speed in the 95th percentile and mean gait, in naturalistic 
environments, as an alternative to traditional  assessments14,15. The emergence of digital health technologies 
(DHTs) has opened opportunities to quantify gait, physical activity, and enabled the continuous monitoring of 
patients in free-living  settings15. Furthermore, DHTs have demonstrated the potential to reduce the need for 
multiple clinic visits and patient burden by saving  time16–18. One example of DHTs are inertial sensors, which have 
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been validated for their reliability and can be comfortably worn, often minimizing their visibility by resembling 
familiar articles of clothing like fitness trackers or  watches15,19.

Validation of DHTs to support novel digital endpoints can be successful through stakeholder collaboration in 
pre-competitive initiatives combining industry and academic sponsors, regulators, manufacturers, patients, and 
healthcare providers (HCPs)20. Regulatory bodies and stakeholders have been actively investigating and advising 
on the procedures for incorporating the digital endpoints derived by DHTs within clinical use and necessary 
criteria for their acceptance as endpoints or  biomarkers20–25. The necessary steps towards acceptance and adop-
tion of novel digital endpoints include the technical and analytical validation for accuracy and reliability, as well 
as, patient experience, clinical validation, and clinical  meaningfulness26–30. While the analytical validation of 
gait and activity endpoints are generally performed during a controlled in-lab environment, where traditional 
and reference methods can be measured simultaneously with the test methods for comparison, the validation of 
these endpoints during longer, naturalistic, and free living conditions has been more  challenging7,31. Nonetheless, 
multiple DHT validation studies have shown evidence of measuring reliable gait and activity related metrics in 
both pediatric and adult  populations32–42. Scientific consortiums such as Mobilise-Ds43,44 through the Innovative 
Medicines Initiative (IMI) has focused not only on a unified approach for the validation of mobility measures 
across patient  populations45,46, but also understanding the acceptability of DHTs for remote  monitoring47 and 
research on patient-centricity to shape  development48.

We previously showed that a single lumbar-worn accelerometer can be used to reliably measure gait metrics 
during a walking task, and gait measured during free-living conditions captures useful information that cannot 
be obtained in controlled settings (e.g., clinic or laboratory)15,49. In this study entitled In-Clinic and Natural 
Gait Observations (I-CAN-GO), we provide further evidence on the reliability and performance of gait metrics 
derived by our in-house developed gait algorithm (SciKit Digital Health (SKDH) gait module)49 as a device-
agnostic gait characterization tool during various naturalistic or simulated daily activity tasks using a different 
lumbar-worn accelerometer (ActiGraph CentrePoint watch). In order to quantify the sensitivity of gait metrics 
to detect naturalistic behavior, 1) we first validate that using a single lumbar-worn accelerometer can distinguish 
between participants’ self-perceived gait speeds and the effects of different floor surfaces on gait speed, 2) we show 
that gait and activity during simulated free-living activities and longer bouts of walking can be reliably captured, 
suggesting accurate representation of gait metrics in free-living conditions, and 3) we evaluate device comfort 
and wearability, an important consideration for using wearable sensors in patient populations for extended 
 durations19,50, for tested devices in different wear locations.

Results
Different self‑paced walking speeds can be accurately captured by single lumbar‑worn 
accelerometer
During in-lab assessments, participants were asked to walk three laps on an instrumented mat with three self-
paced walking speed tasks (i.e., at their natural, fast, and slow walking speeds). During these walking tasks, 
participants wore an Ambulatory Parkinson’s Disease Monitoring (APDM) six-sensor  set51,52, as well as a sin-
gle accelerometer at their lumbar location. Gait metrics were derived from 1) GAITRite using ProtoKinetics’ 
Movement Analysis Software (PKMAS)53 (as reference), 2) APDM six-sensor set  method51 (as reference), and 
3) single lumbar-worn accelerometer using the SKDH gait  algorithm49 (as comparator). Figure 1 depicts the 
comparison of gait speed between references and comparator devices/methods using Bland–Altman plots and 
correlations across various walking speeds. Although SKDH gait underestimated gait speed compared to APDM 
and GAITRite, as also reported in previous  findings15, the Bland–Altman plots showed homogenous mean bias 
(GAITRite – SKDH gait m/s = 0.15 (26%), 0.19 (19%), 0.29 (22%); APDM – SKDH gait (m/s) = 0.05 (8%), 0.10 
(10%), 0.18 (14%) for slow, normal, fast walking speeds, respectively). The variability of SKDH gait metrics were 
higher and intraclass correlation coefficients (ICC) varied between poor to good across the gait metrics between 
APDM (range across speeds [0.59–0.84], and GAITRite (range across speeds [0.36 – 0.55], mainly due to the 
mean differences (see Supplementary Tables 1–2 for summaries).

Mixed effects model was used to test if gait metrics differed between the walking tasks and if gait metrics 
can be reliably captured with a single accelerometer device across difference walking speeds. The following 
model was tested for each gait metrics: methods (GAITRite/APDM/SKDH gait), task (slow/natural/fast), and 
their interaction were entered as independent variables (fixed effect), age was entered as covariate, participant 
as random effect. Figure 2 shows gait speed, cadence, stride duration, and stride length across multiple meth-
ods and tasks. A significant task effect was present for all gait metrics (gait speed F(152,2) = 604.85, p < 0.0001; 
cadence F(152,2) = 504.27, p < 0.0001; stride duration F(152,2) = 362.37, p < 0.0001; stride length F(152,2) = 418.03 
p < 0.0001, persisted after false discovery rate (FDR) correction for multiple comparisons), therefore, gait met-
rics derived by different methods (GAITRite, APDM, SKDH gait) were able to differentiate between different 
walking speed tasks. Gait speed and stride length showed significant method effect (gait speed F(152,2) = 44.73, 
p < 0.0001; stride length F(152,2) = 107.55, p < 0.0001; persisted after FDR correction), e.g., overall gait speed 
was estimated significantly higher in GAITRite than APDM and SKDH gait (see Supplementary Table 3 for all 
comparisons), mainly driven by the stride length. (Fig. 2). Overall, temporal gait metrics, such as cadence and 
stride duration showed excellent agreement and minimum bias across different methods; and all methods were 
able to differentiate between different walking speeds.

The floor surface affects gait metrics
To assess if gait on different floor surfaces differed, we compared the gait parameters extracted from a walk on 
a carpet and tile floors. GAITRite was placed under the carpet to capture as reference, however, GAITRite data 
was not possible to be captured for tile floor walk. Figure 3a shows the Bland–Altman plots and correlations 
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Figure 1.  Gait speed validation for natural, fast, and slow in-lab walking tasks. Between GAITRite (reference), 
APDM 6 sensor-set (reference), and SKDH gait (comparator) applied on single lumbar-worn accelerometer 
across natural, fast, and slow a shows Bland–Altman plots, red lines represent the limits of upper lower bound 
and dotted lines represent the 95%CI, blue line represents the mean difference and dotted lines represent the 
95%CI, green is 0 line, b correlations between reference and comparator methods with 95%CI in shaded area. 
The dotted line represent the equal line.
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for gait speed, reflecting homogeneous mean bias and good correlations across methods. Like different walking 
speeds, we observed homogenous mean bias across different methods (GAITRite – SKDH gait (m/s) [= 0.17 
(17%) for carpet walk; APDM – SKDH gait (m/s) = 0.08 (7%), 0.09 (8%), for carpet and tile floor walking speeds, 
respectively). Mixed effects model showed significant task effect for gait metrics, except stride length; and sig-
nificant effect of method for all gait metrics (Fig. 3b). Gait speed was underestimated by SKDH gait compared 
to GAITRite and APDM for both floor surfaces. There was no interaction effect between tasks and methods. The 
changes in gait due to floor surface differences were captured by all methodologies; i.e., higher gait speed, higher 
cadence, and faster strides were observed during tile walk compared to carpet walk (see Supplementary Table 3).

Gait metrics during simulated activity blocks and longer walking can be derived accurately 
from single lumbar‑worn accelerometer
In order to simulate naturalistic walking behavior, participants were asked to perform two sets of simulated 
activities in the lab, each consisted of combinations of walking, sitting, and standing tasks and lasted around 
7 min, as well as 20 min of free walking outside the lab (around the block) attended by a facilitator. The APDM 
six-sensor set and lumbar-worn accelerometer sensor were worn simultaneously by the participants to validate 

Figure 2.  Different walking speeds were captured by gait metrics derived from all methods. All gait metrics 
showed significant task effect, gait speed and stride length had significant differences across methods that 
persisted FDR correction; gait speed and stride length were consistently underestimated compared to GAITRite. 
There was no interaction effects between tasks and methods which suggested error did not significantly variate 
across walking tasks and devices.
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the gait metrics. Figure 4 a shows the Bland–Altman plots and correlations between gait metrics derived from 
APDM six-sensor set and SKDH gait from lumbar sensor. Gait speed shows good correlation and agreement 
between the two methods, with mean bias of 0 and 0.04 m/s (3.2%) for activity blocks and outside lab walk tasks. 
ICC values were 0.816 for activity block and 0.898 for the outside lab walk tasks. Other gait metrics also showed 
excellent agreement (see Supplementary Tables 1–2).

A mixed effects model was used to test if gait metrics differed between the simulated activity blocks and 
outside lab walks and if gait metrics can be reliably captured with a single accelerometer device across differ-
ent walking speeds. The following model was tested for each gait metric: methods (GAITRite/APDM/SKDH 
gait), task (activity blocks/outside lab walk), and their interaction were entered as independent variables (fixed 
effect), age was entered as covariate and participant as random effect. Figure. 4b depicts the gait speed and 
cadence across multiple methods and tasks. There was only a significant task effect present for all gait metrics 
(gait speed F(57,1) = 6.97, p = 0.01; cadence F(57,1) = 4.2, p = 0.05; stride duration F(57,1) = 4.05, p = 0.05; stride 
length F(57,1) = 13.11 p = 0.0006), which indicated simulated activity blocks showed only slightly higher cadence 
and lower gait speed compared to outside walk, due to shorter, smaller steps taken during the simulated activity 
blocks.

In addition to gait metrics, we investigated the total number of steps detected by APDM and SKDH gait 
applied on lumbar-worn sensor, and wrist-worn  sensor54 during simulated activity blocks and outside lab walk 
tasks. Figure 5 depicts the Bland–Altman plots and correlations of total number of detected steps during the 
20 min outside lab walk task across three devices. On average mean (SD) = 2150 (299), 2076 (277), and 1894 
(334) steps were detected during the 20 min walk with wrist-worn sensor, APDM six-sensor set, and SKDH gait 

Figure 3.  Gait metrics validation for carpet and tile floor walking. Due to the nature of the task, GAITRite 
data could not be captured for tile floor walking. Similar characteristics across methodologies were observed 
compared to different walking speed tasks; a shows homogeneous bias between methods with moderate to 
excellent agreement and good correlations, b mixed effect models showed significant different across methods 
with SKDH gait for all gait metrics, and significant task effect, except stride length. SKDH gait underestimated 
gait speed compared to other methods; and all methods were able to capture the change of gait metrics due to 
different floor walk (i.e., gait speed was significantly higher for tile walk compared to carpet).
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Figure 4.  Gait speed validation for simulated activity blocks and 20 min outside lab walk tasks. Participants 
performed two simulated activity blocks, each lasted around 7 min, as well as, 20 min outside lab walk, where 
they were let to move/walk freely around the neighborhood. The gait metrics were derived by the APDM 
six-sensor set (reference) and SKDH gait applied on the lumbar-worn sensor (comparator). There was good 
agreement and correlation for gait speed as reflected by a Bland Altman and correlation plots between APDM 
six-sensor set and single lumbar-worn accelerometer. The mean gait speed across devices and tasks are depicted 
in b. The mixed effects model showed significant task effect between methods, whereas, no method effect 
existed, showing only slightly lower gait speed during activity blocks compared to outside lab walk.
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applied on lumbar-worn ActiGraph sensor. The correlations and ICCs showed excellent agreement and cor-
relations within the 20 min walk task across methods, whereas the ICCs were poor during the in-lab simulated 
activity blocks with high correlations (Supplementary Table 2 and Supplementary Fig. 1).

Simulated in‑lab activity and 20 min walking compared to at home 7 days of data
We compared the gait speed derived from the single lumbar-worn accelerometer with SKDH gait during in-lab 
tasks resembling naturalistic walking; i.e., simulated activities and 20 min outside walk, and continuous moni-
toring for around one week. When compared using mixed effect model, there was a significant effect of task 
(F(37,2) = 12.3 p = 0.0001; F(37,2) = 12.8, p = 0.0001 for gait speed and 95th percentile of gait speed, respectively). 
The average at-home gait speed was significantly lower (paired t-test, t (18) = −4.72, p <  10−3; t (18) =  −3.97 
p <  10−3) and 95th percentile of at-home gait speed was significantly higher (t(18) = 5.65; p <  10−4; t(18) = 3.61 
p = 0.002) than both of the in-lab activities (Fig. 6a). Additionally, regression analyses were used to test if the 
in-lab gait speeds estimated the at home gait speed. The outside walk task gait speed showed trending pattern 
to predict the at home gait speed (adjusted  R2 = 0.14, F(1,17) = 4.03, β = 0.33, p = 0.06); gait speed during activ-
ity blocks predicted the at home gait speed (adjusted  R2 = 0.33, F(1,17) = 9.7, β = 0.48, p = 0.006), however, the 
explained variations were 14% and 33% (Fig. 6b). Similar behavior was observed for the relationships between 
gait speed during in-lab activities and 95th percentile of gait speed at home (see Supplementary Fig. 2). When we 
separated the at home gait speed across various bout duration (short: 10 s-30 s, medium: 30 s-60 s, long: > 60 s) 
we observed increasing gait speed with bout duration and gait speed derived from the medium and longer 
at-home bouts were in closer range with simulated activities and outside lab walking gait speed (Fig. 6c). The 
paired t-tests showed that the at-home gait speed during short bouts was significantly slower than the gait speed 
during in-lab activity blocks and 20 min walk tasks (t(18) = −5.19, p <  10−4; t(18) = −5.46 p <  10−4, respectively); 
gait speed during longer bouts was significantly higher than gait speed during in-lab activity blocks (t(18) = 3.43, 
p = 0.003), suggesting medium bouts were more reflective of in lab simulated activities, and both medium and 
longer bouts might be more relevant to outside lab walk. The regression analysis showed that the explained 
variance was relatively higher (adjusted  R2 = 0.45, F(1,17) = 15.52, β = 0.79, p = 0.001, Fig. 6d) between activ-
ity blocks and at home gait speed during medium duration bouts, and adding shorter and longer bouts to the 
model did not have a significant change. Outside lab walk and medium and longer bouts shared low variance 
(see Supplementary Fig. 2).

Figure 5.  Comparison of total number of steps detected across multiple methods during 20 min outside walk 
task. The number of detected steps were compared between APDM six-sensor set, wrist-worn sensor, as well as 
SKDH gait applied on lumbar-worn sensor. The wrist-worn sensor detected the highest number of steps, APDM 
and SKDH gait applied on lumbar-worn sensor detected slightly lower number of steps, which is expected as 
SKDH gait and APDM prioritize gait characterization over step counts. All methods were in good agreement 
and had excellent correlation between each other.
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Comfort and wearability of sensors
The comfort of wearing sensors was rated by participants both during in-lab visits and after 1 week of home 
monitoring. Overall, sensors were found acceptable and comfortable to wear; 88.2% and all participants are 
comfortable to wear lumbar and wrist sensors at home, respectively (Fig. 7a; rating 3 and above, where 0 indi-
cated tolerable enough and 5 indicated very comfortable). Similarly, participants rated how long they would be 
willing to wear the sensors continuously; 72.2 and 85% of the participants indicated they would wear lumbar 
and wrist sensors for more than 1 week (Fig. 7b). The comfort of sensors during in-lab visits was also positive: 
for both visits, participants reported positive experience with sensors’ comfort (Fig. 7c).

For this study, during the at home monitoring period, the compliance per day was defined as 18 and 10 h of 
wear time for the wrist- and lumbar-worn sensors, respectively. The average compliant days for the wrist-worn 
sensor was mean (SD) 5.79 (0.63), with range between 4 to 7 days; and the average compliant days for the lumbar-
worn sensor was mean (SD) 5.7 (0.87), with range between 3 to 7 days. Participants were also asked to report 
average sensor wear time during at home monitoring. The participant reported wear time was in concordance 
with the average percent wear time derived by the sensor data (Fig. 7d; on average 97.4 and 72% wear time were 
reported by the participants compared to the 96.5 and 64.3% wear time derived from the wrist and lumbar-worn 
sensor data, respectively). The lumbar sensor wear time is shorter than the wrist sensor as the participants were 
given the option to take the lumbar-worn sensor off during night time.

Discussion
We designed a master protocol for technology evaluation against reference standards to allow for rapid evalu-
ation of digital health technologies that assess physical activity and gait in adults aged 18 and older. In this first 
cohort of this protocol, we investigated the use of the ActiGraph Centrepoint Insight Watch in both the wrist-
worn position and the lumbar position during two in-lab assessments and a free-living period of approximately 
7 days. We aimed to (1) further validate and evaluate the performance of a method for measuring gait relying 
on a single lumbar-worn accelerometer running SKDH gait with respect to reference methods relying on six 
devices (APDM), and an instrumented walkway (GAITRite); (2) test the ability of our in-house built SKDH 
gait algorithm to distinguish between participants’ self-perception of different gait speed changes (fast walk, 

Figure 6.  Comparison of naturalistic gait speed at home and in-lab tasks. (a) Both the average and 95th 
percentile gait speed at home was significantly different than in-lab gait speed. (b) The linear regression model 
showed the outside lab walk only explained 14% of the variance at-home (b = 0.33, and Pearson’s r = 0.44), and 
activity blocks explained only slightly higher 33% of the variance at-home (b = 0.47, and Pearson’s r = 0.6). (c) 
When broken down into increasing bout lengths, the at home gait speed spans in-lab gait speeds, and (d) at 
home gait speed during medium bout durations (30 s-60 s bouts) explained the most variance in gait speed 
during activity blocks (45%, (b = 0.79, and Pearson’s r = 0.69). The dashed lines represent the equal line.
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slow walk, natural walk); (3) test SKDH gait performance against APDM during a 20 min free-walk as well as 
simulated activity block with 2 sitting, 2 standing, and 2 walking tests performed in random sequence to better 
estimate performance during future unsupervised ambulatory monitoring; (4) look at the effect of different 
floor surfaces such as carpet and tile on walking performance; and (5) compare to previous studies with differ-
ent accelerometer devices to demonstrate SKDH gait is agnostic to specific accelerometer devices across studies 
when evaluating algorithm performance. Our results show that SKDH gait performance is reliable and accurate 
with homogenous bias with respect to the reference methods and provide further evidence of its use in free-living 
conditions with different sensors.

Gait has often been called the sixth vital  sign9. Mobility and how well we walk has been shown to be correlated 
with long term health outcomes and recovery from disease. Accurately assessing mobility is thus of paramount 
importance. In previous studies, we have assessed the validity of sensor-based methods for estimating gait speed 
in a controlled setting using the GENEActiv Activ Insights  watch15,55. Technology is frequently changing both 
from hardware and software perspectives and being able to develop algorithms that are device-type agnostic 
is essential to the ability to continue to use digital health technologies to improve measurement capabilities in 
clinical trials and clinical  use56. The results of this study on both temporal and spatial metrics of gait derived using 
SKDH gait using the ActiGraph Centrepoint Watch show similar agreement as measured via ICC to reference 
standards used in previous  studies15. Similarly to previous studies, temporal metrics are more accurate com-
pared to spatial metrics, which rely on the physical inverted pendulum model for a single lumbar accelerometer. 
However, there remains good to excellent agreement between all measures of gait, concordant with previously 
published results with a different manufacturer-made sensor worn in the same  position15.

An important feature of devices that monitor gait and physical activity is the ability to detect walking at all 
walking paces from slow to fast as would happen during bouts of naturalistic walking. In this study, participants’ 
self-perception of three different walking speeds (fast, slow, natural speed) can clearly be captured with acceler-
ometers (Fig. 2). As the self-perceived walking speed increased, all methods consistently trended towards smaller 
(i.e., decrease in stride length) but longer (i.e., increase in stride duration) steps. Rather, gait speed, as a byproduct 

Figure 7.  Overall comfort assessment of wearing the sensors at home and in-lab, and total home wear time. 
Participants were asked to assess the comfort of wearing the sensors by multiple questions; (a) shows results of 
when participants were asked after 1 week of home monitoring “Please rate the overall comfort of the lumbar- 
and wrist- sensor at home where 0 means that they were only tolerable enough to participate in the study and 5 
means that you were not at all bothered.”; (b) shows participants’ willingness to wear those devices for extended 
periods of time, where more than 70% and 85% responded they would wear lumbar and wrist devices more 
than 1 week; (c) plots the overall comfort level of sensors during 2 in-lab visits (question worded similarly to 
what is shown in Fig. 7a); and (d) shows the average wear time per day recorded by the sensors compared to the 
participants’ responses to the wear time question “What percentage of the time did you wear the wrist/lumbar 
sensors?” Both methods resulted in similar results, note that the participants were given the option to take the 
lumbar sensor off during the night.
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of stride length and duration, might be the most promising gait metric, with larger effect size, to detect changes 
between different populations or therapeutic effect. There was a significant device effect on most measures as 
the overall gait speed is estimated significantly higher in the GAITRite than APDM and SKDH gait. This is likely 
due to the relatively higher accuracy of temporal vs spatial measures of gait using the SKDH gait model seen 
also in previous studies with an earlier version of the same  algorithm15. Stride duration does not differ between 
the ActiGraph Centrepoint device running SKDH gait against the reference measures but there is a significant 
difference in stride length across the three devices. Overall, however, despite the device effect, the SKDH gait 
algorithm run on accelerometry data from ActiGraph Centrepoint Insight watch at the lumbar position was 
able to show clear differences between the three different speeds of walking of this cohort of participants in lab. 
Furthermore, the error measured across tasks appears to be consistent for each device which would also further 
give confidence towards measuring different walking paces at home using the same device consistently across a 
study or to measure therapeutic effect. Additionally, the correlation appears to be strongest between the reference 
standards and SKDH gait during the slow walk task; given that most pathological diseases will likely adversely 
affect mobility from the norm rather than improve it, this may be promising for future clinical applications.

Accurately assessing mobility at home is challenging as this may require special instrumented houses or 
rooms which is labor intensive, wearing multiple sensor sets continuously which is burdensome, or installing 
other specialized equipment in peoples’ homes which presents operational and privacy  challenges45. This study 
incorporated longer duration walk activities and simulated activity blocks to replicate naturalistic behaviors while 
still undergoing reference measures. While it cannot completely replace validation in the home, these simulated 
blocks are longer and more consistent. We observed during the 20 min walks and the simulated activity blocks 
higher correlations and lower bias between gait speed as measured by SKDH gait with a single accelerometer 
against reference standards compared to during the walk tasks on the GAITRite. For step counts however, 
simulated activity blocks had lower ICCs; there was high correlation seen which could be related to bias. For 
the longer 20 min walk, the step counts had high ICC and high correlation across the devices likely due to the 
longer duration of the task and longer number of consecutive steps. Previously, we have published data, that 
replicates other studies, that stimulated walking on a GAITMat could not distinguish between younger and older 
participants in lab, likely related to a performance  effect15,57,58 of being observed during walking activities. These 
simulated activities of daily living (ADLs) and longer 20 min walking tasks newly incorporated in this master 
protocol have a higher diversity of duration of walking bouts and walking speeds compared to traditional shorter 
and episodic walking tasks (e.g. 4 m or 30 m walking tasks). The SKDH gait algorithm continues to provide good 
performance under these more diverse simulated walking conditions that are closer to naturalistic walking bouts 
outside of the clinic setting. In fact, the performance of SKDH gait algorithm by ICC comparisons is higher for 
the simulated and 20 min walk tasks compared to the instrumented gait mat walking tasks which are of shorter 
length (Fig. 6b). Thus, the algorithm performance increases with longer duration and bouts of walking, which 
are likely closer to the diversity of walking tasks in the real world. Furthermore, the simulated activity blocks 
and the 20 min walk task capture the full range of different short, medium, and long walking bouts seen in the 
at home gait data (Fig. 6c).

As part of the study procedures, we also sought to determine if there was an effect of different types of floor 
surfaces on gait parameters. Based on both results from the APDM system and SKDH gait system we detected 
a statistically significant floor surface effect in gait metrics including cadence (steps/min), gait speed (m/sec), 
stride duration (sec). In general, participants walked faster on tile than on carpet, driven by stride duration as 
the stride length was comparable between carpet and tile floors. The ICC and correlation values between devices 
suggest good concordance between the test device and reference standard. From a measurement perspective, 
this is unlikely to impact measurements of efficacy and treatment effect as long as the participant is not being 
assessed frequently on a multitude of different floor surfaces. Additionally, with the same algorithm, over time, 
with longer bouts of monitoring continuously, effects from floor surfaces such as carpet or hardwood or tile will 
likely even out. However, as decentralized elements of trials continue to grow and assessments at home increase 
such as 6 min walk test evaluation, this has important implications for standardizing the room in which a par-
ticipant may complete the assessment repeatedly as to not add an additional variable to the 6 min walk distance.

This study was conducted during the height of the COVID-19 pandemic and as a result the demographics 
of this cohort skew towards younger participants (Mean age 34 SD 9.06 years) which may affect the reports of 
participant acceptance of devices. However, because the measurements are around the devices in this study and 
not on a populational level, this does not affect the validation data but may make the study less generalizable in 
the future when trying to age-match this cohort to other studies with patients. It is important to note that this 
study serves as a proof-of-principle study around the analytical validation of the SKDH using in clinic tasks to 
reflect at home gait ranges and variations. With the small sample size, we are not generalizing the gait metrics 
on a populational level in this study but rather looking at the validity of a tool and methods to be used in future 
clinical validation studies with different patient populations. Also, as this is a Master protocol, in the future, 
populational level data could potentially be reported as the sample size for the overall study increases over time.

Future directions include applying SKDH gait to other form factors that are relevant to patient populations 
including chest  accelerometry59 which, in particular, may be of interest to patients with cardiovascular diseases 
as many implanted devices as well as externally worn ECG patches also contain an accelerometer placed in 
the sternal position. Additionally, there are some technology companies that have designed pendants that are 
worn around the neck that sit upon the chest for which this algorithm may be applied. This is important as the 
lumbar position for gait assessment comes with some downsides compared to wrist worn devices shown when 
participants are asked to consider the best type of form factor that does not intrude with day-to-day activities 
and comfort (Fig. 7). There were still 94% of participants willing to wear the wrist worn device for 1–4 weeks 
or longer than 4 weeks compared to 72% of participants willing to wear the lumbar device for 1–4 weeks or 
longer than 4 weeks. No digital health technology study can accomplish its objectives if participants are unable 
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or unwilling to wear the technology. Wearability is an important consideration for the future which may require 
different form factors coupled with statistical analysis of the data to investigate the amount of wear time required 
to assess for mobility in a particular study and target patient population to reduce participant burden.

While SKDH gait has been applied to adults as old as 85 years of age and other older populations with heart 
 failure60,61,  osteoarthritis56, and Parkinson’s  disease55,62,63, a population that has been less well studied with digi-
tal health technologies includes children under the age of 18. This is a future direction to apply the knowledge 
learnt in validation of gait in adults to pediatric populations as well as to test the validity of the gait algorithm 
against reference standards in populations with physical activity limitations to evaluate the potential impact on 
algorithm reliability and gait speed variability. This dataset combined with other datasets collected from healthy 
control participants may also be used to look for construct validity by comparing these other populations against 
age-matched healthy controls and to evaluate sensitivity of certain gait endpoints such as gait speed in detecting 
differences induced by disease.

In current clinical trials, measures such as the 6MWT, 4SC, and the SPPB have been used as performance 
outcome assessments in the clinic to measure outcomes in interventional therapeutic trials. However, these 
assessments only provide a snapshot view of a participant’s functional ability and may depend on a multitude 
of factors including length of travel to clinical trial site, motivation, and performance  effect15. Digital health 
technology offers an opportunity to measure patients in their own life and provide continuous assessment of 
their day-to-day real life fluctuations. The patient voice has greatly contributed to modern drug development; 
in multiple therapeutic areas ranging from heart failure to chronic obstructive pulmonary disease (COPD) to 
 DMD5,64,65 there is a high unmet need for measures that accurately represent how a patient is doing at home. 
The demand for validated clinical outcome assessments that can demonstrate a clinically meaningful therapeutic 
response in clinical trials is only growing. This study illustrates an example of how to analytically validate these 
types of quantitative endpoints and select digital health technologies to give confidence for further clinical 
validation in patient populations.

Conclusion
The rise in sophisticated digital health technologies has enabled reliable and continuous measurements of gait 
and activity in free-living environments opening new doors in the clinical trial and healthcare spaces. This 
study serves as a proof-of-principle study around the analytical validation of the SKDH algorithm using in-lab 
tasks to simulate the variations of activity and walking patterns that would be found at home. Our results show 
that SKDH gait performance is reliable and accurate with respect to the reference methods and provide further 
evidence of its use with different sensors. Participants reported high comfort and compliance with the DHT in 
this study. In the future, these gait and activity measurement findings can be leveraged when performing clinical 
validation and assessments of digital health technologies in patient populations.

Methods
Subjects
Twenty healthy individuals aged 25–61 years (mean (SD) age = 33.95 (9.06 years), 13F, 

Table 1), a race distribution of 13 white-identifying/7 Asian-identifying, mean (SD) of height of 168.5 (7.08) 
cm and weight of 70.11 (17.57) kg, signed informed consent prior to participation in this  study10. Participants 
did not have any significant health problems as determined by a medically qualified study doctor during initial 
intake. The study was reviewed and approved by the Advarra IRB (protocol number: Pro00043100) and was con-
ducted in accordance with relevant guidelines and regulations including the Declaration of Helsinki. Informed 
consent was obtained from all participants.

Experimental procedure
Each participant took part in two instrumented in-lab assessments about a week apart and around a 7 day 
at-home portion in between. The in-lab portion was completed at the Pfizer Innovation Research Laboratory 
(PfIRe Lab) in Cambridge, Massachusetts. During both visits, participants wore a set of 6 inertial sensors (Opal, 

Table 1.  Participant Demographics. In total, 20 adult participants were included in the study, which was 
conducted at the Pfizer Innovation Research Laboratory (PfIRe Lab), MA. Participants did not have any 
significant health problems as determined by a medically qualified study doctor during initial intake.

Number of participants (#) 20

Sex (#, F/M) 13/7

Age (years, mean ± sd)
[min-max]

33.95 ± 9.06
[25-61]

BMI (kg/m2, mean ± sd) 24.44 ± 4.67

Height (cm, mean ± sd) 168.5 ± 7.08

Weight (kg, mean ± sd) 70.11 ± 17.57

Race (#) 13 White
7 Asian

Ethnicity (#) 3 Hispanic or Latino
17 Non Hispanic or Latino
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APDM Inc., Portland, Oregon) consisting of tri-axial accelerometer, gyroscope, and magnetometer worn at the 
sternum, lumbar (approximately L4 position), and bilaterally on the wrists and the feet at a sampling rate of 
128 Hz. Two tri-axial accelerometers (ActiGraph  CentrePoint™ Insight Watch, ActiGraph, Pensacola, Florida) 
were also placed during the in-lab visits, one on the non-dominant wrist and one at the lumbar (L4 position) 
using a belt. During scripted walking tasks, participants walked on an instrumented walkway  (GAITRite®, CIR 
Systems Inc., Franklin, New Jersey) to capture foot pressure data.

Participants completed a battery of tasks. First, they were asked to: walk at a self-selected “normal” walking 
speed, at a self-selected “slow” walking speed, and then at a self-selected “fast” walking speed for 3 laps over the 
7 m mat. They were then asked to walk at a “normal” walking speed first on a thick carpet walkway and then 
on tile flooring to examine floor surface effect. The same 7 m mat was also used under the carpet but given the 
nature of the floor surface,  GAITRite® could not be deployed on the tile walk task.

Six stations were set up where participants would complete 2 walking (tossing and retrieving beanbag, trans-
ferring blocks between stations), 2 sitting (reading a short story for a minute, reading a short passage aloud), and 
2 standing tasks (rolling a dice 3 times and summing results, transferring paper crown from hook-to-hook) with 
station selection given at random as determined by the roll of a 6-sided dice. The participant would continue this 
process until 7 min passed and would repeat this a second time after a short break.

If they chose to and were deemed healthy-enough to do so, participants also participated in a 2 min elliptical 
task which served as a non-walking active task for algorithm training. Lastly, accompanied by study staff, partici-
pants completed a 20 min walk outside of the lab space wearing the 6 APDM Opals and 2 ActiGraph CentrePoint 
Insight watches at non-dominant wrist and lumbar locations. They then completed a self-developed comfort 
and wearability assessment (Supplementary Material: Comfort and Wearability Questions) and were instructed 
on how to wear the two ActiGraph CentrePoint Insight watches at home while going about their normal daily 
routines to capture free living data. The lumbar accelerometer was permitted to be removed during sleep, but 
participants were asked to wear the non-dominant wrist accelerometer continuously at home. They then returned 
to the site approximately 7 days later and repeated the battery of in lab testing and comfort and wearability 
assessment described above. In addition, participants answered comfort and wearability questions related to 
the devices they wore during the at-home monitoring period and their estimated wear time of these devices.

Algorithms and endpoint derivation
Three separate methods were used for estimating gait metrics during the performance of gait tasks in the labora-
tory. Reference gait metrics were estimated from data collected using an instrumented walkway using a vendor 
supplied proprietary algorithm (GAITRite Software version 4.8.8) with pressure data from the GAITRite® loaded 
into ProtoKinetics’ Movement Analysis Software (PKMAS Software Version 5.09C2a) for final endpoint deriva-
tion. Six inertial sensors (Opal, APDM) estimated gait metrics using proprietary algorithms (APDM Mobility 
Lab V2.0)51,52 during all in-lab tasks including the scripted gait tasks, the activity blocks, and the 20-min walk-
ing activity. Gait metrics including step count were also derived from the lumbar mounted ActiGraph tri-axial 
accelerometer using our open-source algorithm (SciKit Digital Health gait module, v0.9.7). Step counts were 
derived from the wrist-worn ActiGraph tri-axial accelerometer using the algorithm published by Bagui et al54.

Statistical analysis
The sample size is determined by ICC between gait speed obtained from the sensor data vs. gait speed obtained 
from the instrumented walkway (GAITRite®, CIR Systems Inc., Franklin, New Jersey) with null hypothesis 
derived by the median value of the lower bound of ICC for all gait metrics (8 spatial and temporal metrics) using 
the data from previous  study15. In order to reach ICC value of 0.72 with ICCnull value of 0.27 using one-tailed 
test with alpha = 0.05 and power = 0.8, 17 participants were required, therefore, 20 participants were enrolled 
(anticipating 15% attrition).

Statistical analysis was performed in SAS version 9.4 and R version 4.2.2 (2022–10-31) with following main 
packages: “lme4” for linear mixed-effect regression, “BlandAltmanLeh” for Bland–Altman plots, and “psych” 
for ICC. For each in-lab task, the gait metrics or other activity-related variables were computed as the median 
values across the steps. The gait metrics were averaged across the in-lab visits for simplicity, as the data had high 
test–retest reliability and similar results were obtained when tested per each in-lab visit (see Supplementary 
Table 5). Agreement of gait metrics between different methods were characterized with Bland–Altman plots, 
accuracy metrics such as mean (percent) and mean absolute error, as well as  ICC2,1 (two-way random effects, 
absolute agreement, with respect to single measurement). Reliability of estimated gait speed was assessed accord-
ing to the following benchmarks: ICC < 0.4 indicates poor, 0.4–0.59 fair, 0.6–0.74 good, and 0.75–1 excellent 
 reliability66. Pearson’s correlation coefficient was computed to test the similarity between gait metrics.

Linear mixed-effects models were used to test if gait metrics differed between the walking tasks and if gait 
metrics could be reliably captured with a single accelerometer device across different walking speeds as well as 
across simulated activities and outside lab walk tasks. The following model was tested for each gait metrics dur-
ing multiple speed walking tasks: methods (GAITRite/APDM/SKDH gait as categorical variables), task (slow/
natural/fast as categorical variables), and their interaction were entered as independent variable (fixed effect), 
age (as continuous variable) was entered as covariate, participant as random effect. For the comparison of simu-
lated activity blocks and outside lab walks as well as the carpet vs tile walk tasks, the same model was used with 
methods (APDM/SKDH gait and GAITRite/APDM/SKDH gait), tasks (activity block/outside lab and carpet/tile), 
and their interaction as independent variables (fixed effect), age as covariate, and participant as random effect. 
The estimated least square means (lsmeans) or mean difference with 95% CI, F- or t-values, model fit parameters, 
and degrees of freedom are reported in supplementary materials as well as in the main figures when necessary. 
The uncorrected p-values are reported unless stated otherwise, then, correction for multiple comparisons was 
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performed using false discovery rate (FDR). Paired t-tests were performed within the in-lab tasks across methods, 
within a method across the in-lab tasks, and between visits. One participant’s slow walk data for one visit was 
excluded from analysis, as there was an error in data collection for that task.

The at-home metrics were summarized with the following steps: non-compliant days (lumbar: 10 h of wear 
time, wrist: 18 h of wear time) and the first and last days of data monitoring (i.e., in-lab visit days) were excluded 
from the at-home analysis as participants performed an extensive amount of walking tasks during the in-lab 
visits. The metrics were then averaged/counted within days and averaged across days of wear. As suggested by 
multiple  studies15,67–70, the average within the monitoring period was computed only if there were at least 4 
compliant days. One participant’s lumbar at-home data was excluded as there were only 3 compliant days, and 
one participant’s wrist data was lost due to device malfunction. For the gait metrics, only gait bouts that were 
longer than 10 s and with more than four detected gait cycles were included in the analysis to ensure robust gait 
characterization. The median across the steps within each gait bout was computed, then averaged across the gait 
bouts within each day, finally each daily summary was averaged across the monitoring window. Only for the 
wear time computation at-home, non-compliant days were included in the summaries, and transformed into 
percentages, so that comparison to comfort and wearability questionnaires could be performed more precisely. 
The comfort and wearability questionnaires responses are summarized using counts and percentages. Two par-
ticipants had missing data for the at-home comfort and wearability questionnaire for the lumbar device due to 
an error in the clinical data capture platform setup.

Data availability
Upon request and subject to review, Pfizer will provide the data that support the findings of this study. Subject to 
certain criteria, conditions, and exceptions, Pfizer may also provide access to the related individual de-identified 
participant data. See https:// www. pfizer. com/ scien ce/ clini cal- trials/ trial- data- and- resul ts for more information. 
Please contact the corresponding author, X.C. for the data request.
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