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Abstract

Background: Time- and dose-to-event phenotypes used in basic science and translational studies are commonly
measured imprecisely or incompletely due to limitations of the experimental design or data collection schema. For
example, drug-induced toxicities are not reported by the actual time or dose triggering the event, but rather are
inferred from the cycle or dose to which the event is attributed. This exemplifies a prevalent type of imprecise
measurement called grouped failure time, where times or doses are restricted to discrete increments. Failure to
appropriately account for the grouped nature of the data, when present, may lead to biased analyses.

Results: We present groupedSurv, an R package which implements a statistically rigorous and computationally
efficient approach for conducting genome-wide analyses based on grouped failure time phenotypes. Our approach
accommodates adjustments for baseline covariates, and analysis at the variant or gene level. We illustrate the
statistical properties of the approach and computational performance of the package by simulation. We present the
results of a reanalysis of a published genome-wide study to identify common germline variants associated with the
risk of taxane-induced peripheral neuropathy in breast cancer patients.

Conclusions: groupedSurv enables fast and rigorous genome-wide analysis on the basis of grouped failure time
phenotypes at the variant, gene or pathway level. The package is freely available under a public license through the
Comprehensive R Archive Network.

Keywords: Grouped data, Discrete censoring, Score statistic, Efficient score, Genome-wide analysis, Multiple testing,
Heritability, Pharmacogenomics

Background
In basic science and translational studies, time-to-event
outcomes are commonly measured imprecisely or incom-
pletely due to limitations in the design or the data collec-
tion schema. For example, in mouse studies, due to prac-
tical and cost considerations, tumor progression events
are not monitored in real time. Each event is recorded as
occurring between two contiguous assessments. In clin-
ical studies, drug-induced adverse events are commonly
not reported by the date of occurrence but rather by
drug cycle. These are examples of grouped failure time
data, also referred to as grouped survival data, grouped
censored data, or simply grouped data.
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It should be noted that grouped failure time pheno-
types are not restricted to studies with time-to-event
outcomes. Cell-line cytotoxicty studies (e.g., growth-
inhibitory effects of tamoxifen on human breast cancer
cell lines [1]) are commonly designed on the basis of
a pre-specified set of doses. Events, such as the half-
maximal inhibitory concentration (IC50), are not directly
observable due to the discrete nature of the dose design.
The event of interest is observed to occur between two
consecutive doses. In the subsequent report, we do not
distinguish between time-to-event data and dose-to-event
data, and refer to them as failure time data or survival time
data.
One approach for dealing with grouped data is to use

methods designed to adjust for tied continuous survival
times in the presence of right censoring. Commonly used
methods are those proposed by Breslow and Peto [2] or
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Efron [3]. As we will demonstrate in this paper, these
methods may be biased when applied to grouped survival
data. Another approach is to use an exact likelihood [4].
However, to do so is computationally intensive and thus
not feasible for genome-wide inference.
In this paper, we present groupedSurv, an open

source R [5] package implementing a statistically rigor-
ous and computationally efficient approach proposed in
Prentice and Gloeckler [6] for genome-wide analysis with
group censored phenotypes. The package conducts anal-
yses at a variant, gene or pathway level. Through applying
groupedSurv to simulated survival data, we establish
that our approach controls type I error and yields unbi-
ased effect size estimates. We also show, by simulation,
that when methods designed for tied survival outcomes
are applied to grouped survival data, the results may be
biased. On the basis of results from computational cost
benchmarking studies on both real and simulated survival
data, we demonstrate that our package completes anal-
yses of large genome-wide association studies (GWAS),
e.g., 1,000,000 variants and n = 1000 samples, within
three minutes on a four-core computer. To illustrate the
application of our package, we conduct an analysis of a
previously published GWAS to identify common variants
associated with taxane-induced peripheral neuropathy in
breast cancer patients [7].

Implementation
Statistical considerations
Statistical model
Under the standard Cox proportional hazards model [8],
the conditional hazard function at time t > 0, given
variables xi and zi, is canonically presented as

λ(t|xi, zi) = λ0(t) exp
(
xTi β + zTi θ

)
, (1)

where λ0(t) is an unspecified baseline hazard function,
xi is a vector of variables of interest, and zi is a vector
of baseline covariates. Here, β is the parameter vector
of interest while θ is a nuisance parameter vector. Under
the grouped failure time model, the event of interest
will fall into one of r pre-specified time intervals, or be
right-censored at the beginning of one of these intervals,
denoted [ tj−1, tj), for j ∈ {1, 2, . . . , r}, where t0 = 0
and tr = ∞. The groupedSurv package employs the
regression model for grouped survival data proposed by
Prentice and Gloeckler [6], which discretizes the condi-
tional hazard function (1) according to these intervals.
Additional technical details for the model are provided in
the “Statistical model” section of Additional file 1.

Efficient score statistic
For a single variable of interest, xi, groupedSurv tests
the hypothesis H0 : β = 0 against H1 : β �= 0, under the
grouped failure time model. The test is conducted using

an efficient score statistic [9] on the basis of the observed
data, {y1 = (k1, δ1, x1, z1), . . . , yn = (kn, δn, xn, zn)}. Here,
for sample i ∈ {1, . . . , n}, ki ∈ {1, 2, . . . , r} denotes the
interval of the observed grouped outcome and δi ∈ {0, 1}
denotes the event indicator. In this notation, ki = j, δi = 1
indicates that the event occured in interval [ tj−1, tj) while
ki = j, δi = 0 indicates that the sample was right-censored
at time tj−1. Using this notation, the corresponding likeli-
hood function is

Li(yi,β , η) =
(
1 − α

exp(xiβ+zTi θ)

ki

)δi ki−1∏
j=1

α
exp

(
xiβ+zTi θ

)

j ,

(2)

where αj = exp
(
− ∫ tj

tj−1 λ(u) du
)
and η = (α, θ).

Our inferential approach differs from that described
in Prentice and Gloeckler in that we use a partitioned
score statistic. More specifically, rather than testing the
null hypothesis that all of the effect parameters are zero
(H0 : β = 0 & θ = 0), we are testing only the effect
of xi (H0 : β = 0), while treating the parameters of the
baseline covariates, θ (as well as the αj) as nuisance param-
eters. Using the efficient score function for β in the above
model, we define our efficient score statistic as

W =

( n∑
i=1

Sβ(0, η̂)

)2

n
(
Īββ(0, η̂) − Īβη(0, η̂)Īηη(0, η̂)−1Īβη(0, η̂)T

) ,

(3)

where η̂ is the maximum likelihood estimate (MLE) of the
nuisance parameter under the null hypothesis, Sβ(0, η̂) is
the score function with respect to β , Īβη(0, η̂) is the sec-
ond derivative of the score statistic with respect to β and
η (similarly for Īββ(0, η̂) and Īηη(0, η̂)), and n is the sam-
ple size. The asymptotic null distribution for the statistic
is chi-square, with degrees of freedom equal to the dimen-
sion of β . The derivation of this equation and other
technical details, including our approach for approximat-
ing the standard error of the score statistic, are provided
in Additional file 1.

Gene- and pathway-level statistics
Within the context of GWAS, what is often of inter-
est is to conduct the analysis at the level of a gene or
pathway rather than an individual variant. To allow for
flexibility in conducting these types of set-based anal-
yses, groupedSurv(), the primary function in the
groupedSurv package, optionally returns the contribu-
tion of each sample to the score statistic for each variant
tested. This enables users to employ the set-based statis-
tic of their choice. An additional function, geneStat(),
accepts a user-specified function as an argument and
computes the gene- or pathway-level statistics directly.
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If no function is specified, geneStat() implements a
sequence kernel association test (SKAT) [10, 11] statistic
by default. Technical details are provided in the “Gene-
and pathway-level statistics” section of Additional file 1.

Multiple testing
In addition to the unadjusted marginal asymptotic
P-values for the variables tested, groupedSurv returns
family-wise error rate (FWER) adjusted P-values and
local false-discovery rates (FDR). The FWER-adjusted
P-values are calculated based on the Bonferroni correc-
tion [12], while the local FDRs are based on Storey’s
Q-values [13, 14].

Software package
Design
The computational algorithms of groupedSurv are
coded in C++ [15], and the Rcpp [16] package is used to
interface with the R environment. The Rcpp package pro-
vides a series of R wrapper classes to import and load C++
code, and allows passing of R objects between R and C++.
The pthreads model is used for implementing multi-
threading. In addition to the help files for its functions, a
vignette is provided as a user tutorial.

Input data format
The package is designed to accept multiple input data
formats, including standard R data frames and matrix
objects, and gwaa.data objects from the GenABEL pack-
age [17]. Data can also be imported from binary PLINK
[18] files using the BEDMatrix package [19]. Genotype
dosage data, obtained from imputation software (e.g.,
MACH [20, 21] or IMPUTE [22]) in the form of VCF [23]
files, can be imported using the VariantAnnotation
package [24]. The package vignette provides examples for
importing each of the data formats. Note that, in the case
of missing genotypes or genotype dosage data the package
implements a complete-case analysis of each variant.

Usage
The primary function of the package, groupedSurv(),
is capable of executing multiple analyses in parallel. It
returns a data frame containing the efficient score statis-
tics, along with the (unadjusted) asymptotic P-values,
FWER-adjusted P-values, and the FDR for each of the
variables of interest.
The thetaEst() function provides MLEs for the nui-

sance parameters, i.e., the baseline survival rates for each
interval, α̂j, and the parameters for any covariates, θ̂ . The
estimates are computed under the null hypothesis, i.e.,
that the variable of interest has no effect on the time to
event. This allows these estimates to be reused to calcu-
late the efficient score statistic for any number of variables
being tested.

Evaluation
Survival data simulation
We evaluate the accuracy and computational costs of
the implemented methods using simulations. Grouped
survival data are simulated by first generating contin-
uous survival times, and then translating these into
grouped survival times. First, the variables of inter-
est, X, and two covariates, Z = (Z1,Z2), are sim-
ulated. Conditional on the realized values X = x
and Z = (z1, z2), the continuous survival time,
T , is drawn from an exponential distribution with
hazard rate exp(βx + θ1z1 + θ2z2). The censoring
time, C, is drawn from a uniform distribution over
(0, cmax).
To transform continuous times into grouped times,

we first specify a final observation time point τ . The
interval [ 0,∞) is then divided into r contiguous inter-
vals, composed of r − 1 finite intervals of equal size
spanning [ 0, τ), and a final rth interval, [ τ ,∞). The
resulting right-end points of the finite intervals repre-
sent the study observation time points. We define T∗
and C∗ as the right-end points of the intervals con-
taining T and C, respectively. Grouped survival time
is then defined as T̃ = min(T∗,C∗), and the event
indicator is given by 1{T∗ < C∗ & T̃ ≤ τ }.
Technical details for the simulation approach are
provided in the “Simulation” section of Additional
file 1.

Statistical operating characteristics
We assess the statistical operating characteristics of
our approach on the basis of empirical type I error
control, statistical power, and bias of the effect size
estimates. We also compare these characteristics to
those of the Cox proportional hazards model [8],
using either the Efron or exact likelihood methods
to adjust for tied survival times in the presence of
right censoring. We use the implementations of these
approaches provided by the survival [25] R extension
package.

Benchmarking
We conduct additional simulation studies to assess the
computational performance of groupedSurv. To this
end, we consider a range of sample sizes and variable
counts. We also assess the performance gains from
increasing the number of CPU cores used for parallel
processing. Ten thousand replicate simulations are con-
ducted for each scenario. The benchmarking analyses are
performed on a AMD OpteronTM 6180 SE Server CPU
running the Debian Stretch (9.3) AMD64 GNU/Linux. A
detailed description of the parameters of each simulation
are provided in the “Simulation” section of Additional
file 1.
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Reproducible pipeline
The knitr [26] R extension package is used to repro-
ducibly conduct the data simulation, summarize the oper-
ating characteristics, and estimate the processing bench-
marks. The scripts to reproduce the simulation and oper-
ating characteristics are provided as Additional file 2.

Data analysis
CALGB 40101 clinical and GWAS data
CALGB 40101 is a randomized phase III study compar-
ing the efficacy of two standard adjuvant therapy regimens
in women with breast cancer. It employs a two-by-two
factorial design, randomizing patients to paclitaxel ver-
sus doxorubicin and cyclophosphamide, and four versus
six cycles of therapy. Blood samples from patients who
consent to participate in a pharmacogenomic compan-
ion study (CALGB 60202) and provide usable DNA are
genotyped on the Illumina 610 quad platform. A genome-
wide analysis to identify single nucleotide polymorphisms
(SNPs) associated with paclitaxel-induced peripheral neu-
ropathy is reported by Baldwin et al. [7]. The authors
employ a cumulative dose to first grade 2 or higher
paclitaxel-induced peripheral neuropathy event as the
phenotype and conduct the analysis using the Cox score
statistic for right-censored outcomes. The Efron approxi-
mation is used to deal with any ties in the cumulative dose
outcome.
The clinical and genomic data are available for down-

load from the database of Genotypes and Phenotypes
(dbGaP) through accession phs000807.v1.p1. Additional
details about the clinical study are provided in Shulman
et al. [27]. Additional details about the GWAS data and
neuropathy phenotyping are provided in Baldwin et al. [7].

Analysis of the CALGB 40101 data using groupedSurv
The study population for our analysis consists of 859
genetically estimated European patients identified in the
CALGB 40101 GWAS publication. Four patients with no
outcome data are uninformatively censored at time 0,
effectively excluding them from the analyses. An addition
11 patients were missing baseline covariates or paclitaxel
dosing information, and were also excluded.
After limiting the population to genetically estimated

European patients with complete data, SNPs with call
rates < 95%, Hardy-Weinberg P-values < 10−8, or rela-
tive minor allele frequency (MAF) < 0.05 are removed.
Analyses are limited to autosomal SNPs only. The filtering
is conducted using the GenABEL [17] package. The final
genome-wide analysis is conducted across 500,897 SNPs.

Studymodel
SNPs are tested, under the additive genetic model,
for association with cumulative dose to paclitaxel-
induced peripheral neuropathy. Cumulative dose is mea-
sured as the number of cycles of paclitaxel received

(1, 2, 3, 4, 5 or 6) prior to neuropathy event or treatment
termination. For the analyses, body surface area (BSA) at
clinical baseline and age at registration (log base 10 trans-
formed) are used as covariates. GWAS is conducted both
with groupedSurv and the coxph() function from
the survival [25] package (using the Efron method for
ties), and the top hits, ranked by unadjusted P-values from
groupedSurv, are compared. The scripts to reproduce
the analyses are provided as Additional file 3.
Manhattan and quantile-quantile (QQ) plots are used to

visualize the empirical distribution of the resulting unad-
justed asymptotic P-values. To illustrate the effect size, we
use the non-parametricMLEs of the survival function [28]
for interval-censored outcomes provided by the icfit()
function from the interval [29] package. For regional
visualizations, LocusZoom [30] plots are generated for the
selected SNPs or genes.

Results
Statistical operating characteristics
We establish the statistical operating characteristics for
our approach by empirical assessment of the type I error
and the bias of the effect size for the simulated variant
and the nuisance parameters. The type I error simulation
results are shown in Fig. 1 for MAFs of 0.05, 0.2 and 0.5,
and event rates of 0.3, 0.5 and 0.7. Each example is based
on a sample size of n = 1000 and B = 10, 000 simu-
lation replicates. These results provide confirmation that
our approach provides type I error control.
The simulation results for the empirical bias assess-

ments are shown in Fig. 2 forMAFs of 0.05, 0.2 and 0.5. An
event rate of 0.6 and a sample size of n = 1000 is used for
each example, under both the null (effect size β = 0) and
alternative (effect size β = 1) hypotheses. Along with the
results from our approach, we provide the corresponding
results using the Efron and exact methods of adjusting for
ties in a standard right-censored analysis. Each example
consists of B = 10, 000 replicates. Our approach pro-
duces evidently unbiased estimates, regardless of MAF.
The other two approaches seemingly underestimate the
effect size forMAFs of 0.05 and 0.2, while producing unbi-
ased estimates only in the most statistically powerful case
when the MAF is 0.5 [31].
Having established control of type I error, the simulation

results for the power estimations for the grouped failure
time method are shown in Fig. 3 for MAFs of 0.05, 0.1,
0.2 and 0.5. An event rate of 0.6 and a sample size of n =
1000 is used for each example, with the effect size varying
over the range of β ∈ (−0.9, 0.9). Power is estimated at the
two-sided α = 0.05 level using B = 10, 000 replicates.
These assessments of the statistical operating character-

istics, bias, type I error, and power are also repeated for a
smaller sample size (n = 500). The results are included in
Additional file 1.
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Fig. 1 Box Plot for Type 1 Error Box plot of type 1 error of groupedSurv for different event rates and minor allele frequencies

Computational performance
To assess the computational performance of groupedSurv
in terms of parallel efficiency, we consider a sample size
of n = 1, 000, with 100,000 simulated SNPs to be tested
individually as the variables of interest. The timing results
based on 1, 4, 8, 12 and 16 CPU cores are shown in panel

(a) of Fig. 4. The squares represent the observed CPU
time using multiple cores while the circles represent the
ideal performance, calculated as CPU time using one core
divided by the number of CPU cores in each scenario.
To evaluate the performance of groupedSurv in

terms of sample size and number of variables tested,

Fig. 2 Effect Size Estimation Bias for groupedSurv and Coxph Box plot comparing bias of effect size estimation of groupedSurv and Coxph
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Fig. 3 Power for groupedSurv Power estimates for groupedSurv for different minor allele frequencies

a

b

Fig. 4 Timing benchmark plots for groupedSurv for a different numbers of CPU cores, and b different sample sizes and numbers of SNPs



Li et al. BMC Bioinformatics          (2019) 20:269 Page 7 of 11

we consider sample sizes of n = 100, 500 and 1000,
and SNP counts of 200,000, 500,000 and 1,000,000. The
models also include two baseline covariates. The compu-
tational costs for the different sample sizes and numbers
of SNPs are shown in panel (b) of Fig. 4, based on four
CPU cores.

CALGB 40101 GWAS results
The analysis is based on outcome data from 844 CALGB
40101 patients with 500,897 SNPs passing quality con-
trols. An annotated list of the top 300 SNPs, ranked by
unadjusted P-value, is provided as Additional file 4. The
QQ and Manhattan plots for all SNPs are shown in Fig. 5.
The QQ plot does not exhibit evidence of inflation.
None of the 500,897 variants meet the genome-wide

threshold of significance of 1× 10−8. We prioritize the
variants according to their corresponding unadjusted
P-values for further examination with respect to potential

biological relevance. The top 50 hits are shown in Table 1.
Figure 6 shows the non-parametric MLEs of neuropathy-
free survival by genotype for the top three hits. Survival
and regional visualization plots are provided for six addi-
tional SNPs in Additional file 1.

Discussion
On the basis of results from the application of the
groupedSurv package to simulated survival data, we
demonstrate the theoretical properties of our approach.
More specifically, we confirm that the testing rule pro-
vides proper type I error control, and that the model
estimates are asympotically unbiased.
The groupedSurv package enables fast genome-wide

inference based on grouped censored phenotypes. As
Fig. 4 illustrates, on a single core, the analysis of 1,000,000
variants and n = 1000 patients requires less than 8.5
minutes. The completion times are reduced to about 2.1,

Fig. 5 QQ and Manhattan Plot for GWAS(a) Quantile-quantile plot of expected − log10(P-values) and observed − log10(P-values) for all SNOs
analyzed, (b)Manhattan plot of − log10(P-values) for all SNPs analyzed
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Table 1 Top hits from CALGB 40101

rsID Chr:Position Annotation* Location MAF P-value β̂

rs12432793 14:75631922 FLVCR2 promoter 0.12 1.2 × 10−6 -0.81

rs17666314 2:193496633 PCGEM1/LINC01821 intergenic 0.063 1.6 × 10−6 -1.1

rs9435869 1:229252924 RHOU/RAB4A intergenic 0.15 2.5 × 10−6 -0.67

rs11015445 10:27001232 ANKRD26 intron 0.052 2.9 × 10−6 -1.1

rs4747583 10:27055768 ANKRD26 intron 0.052 2.9 × 10−6 -1.1

rs1035538 16:60045258 LINC02141 intron 0.064 3.3 × 10−6 -0.99

rs11627718 14:90630200 TTC7B intron 0.12 5 × 10−6 -0.74

rs9684260 4:65303925 LINC02232/EPHA5 intergenic 0.36 5.1 × 10−6 0.48

rs7349683 4:65332086 EPHA5 coding 0.36 5.2 × 10−6 0.48

rs6481837 10:33156436 ITGB1/NRP1 intergenic 0.39 6.3 × 10−6 -0.45

rs1286439 14:90632867 TTC7B intron 0.12 6.7 × 10−6 -0.74

rs4737264 8:55198762 XKR4 intron 0.21 7.4 × 10−6 0.53

rs9785155 8:4312184 CSMD1 intron 0.24 7.5 × 10−6 -0.54

rs10503252 8:4312237 CSMD1 intron 0.24 8.1 × 10−6 -0.54

rs10771973 12:32640040 FGD4 intron 0.32 8.1 × 10−6 0.46

rs1551124 4:65297857 LINC02232/EPHA5 intergenic 0.36 8.6 × 10−6 0.47

rs1517347 2:208649191 PTH2R intron 0.27 8.6 × 10−6 -0.5

rs1286422 14:90647193 LOC101928909 intron 0.12 8.8 × 10−6 -0.72

rs10774538 12:119965993 CIT/BICDL1 intergenic 0.14 9.5 × 10−6 -0.64

rs1842501 8:55190458 XKR4 intron 0.21 1.1 × 10−5 0.53

rs6754133 2:114779214 DPP10 intron 0.056 1.4 × 10−5 -1

rs17781082 12:67082547 LOC102724421 intron 0.42 1.4 × 10−5 0.46

rs11924857 3:150955018 CLRN1-AS1 intron 0.21 1.4 × 10−5 -0.52

rs11680024 2:49308717 FSHR/NRXN1 intergenic 0.12 1.5 × 10−5 -0.71

rs11582158 1:179507372 AXDND1 intron 0.23 1.5 × 10−5 -0.51

rs12138026 1:33487056 ZSCAN20 intron 0.1 1.7 × 10−5 -0.74

rs6999054 8:55201958 XKR4 intron 0.21 1.8 × 10−5 0.51

rs1903216 3:187911715 BCL6/LPP-AS2 intergenic 0.48 1.9 × 10−5 0.44

rs13257404 8:120112872 COL14A1 intron 0.056 1.9 × 10−5 -1

rs12403933 1:179454485 AXDND1 intron 0.23 2.1 × 10−5 -0.5

rs3862864 10:58153109 MIR3924/IPMK intergenic 0.088 2.4 × 10−5 -0.77

rs11192557 10:105692925 SORCS3/LOC101927549 intergenic 0.12 2.5 × 10−5 -0.66

rs17753508 14:65590734 FUT8 intron 0.19 3.1 × 10−5 -0.55

rs1729775 13:95105689 ABCC4 intron 0.41 3.1 × 10−5 -0.44

rs7616728 3:26664146 LRRC3B intron 0.16 3.2 × 10−5 -0.57

rs7936678 11:3610877 LOC101927708/ART5 intergenic 0.21 3.2 × 10−5 -0.52

rs10483776 14:65448149 FUT8 intron 0.19 3.6 × 10−5 -0.55

rs4530357 2:231675992 TEX44/PTMA intergenic 0.44 3.7 × 10−5 -0.41

rs2233335 8:133248822 NDRG1 intron 0.38 3.7 × 10−5 -0.44

rs12191315 NA:NA NA/NA 0.19 3.8 × 10−5 -0.52

rs4599356 4:144202300 GYPA/HHIP-AS1 intergenic 0.39 3.9 × 10−5 -0.43

rs10891842 11:115368305 CADM1 intron 0.42 4 × 10−5 0.4

rs7295447 12:119925810 CIT/BICDL1 intergenic 0.17 4.1 × 10−5 -0.55

rs11004791 10:55267443 PCDH15 intron 0.47 4.1 × 10−5 -0.39

rs2169100 NA:NA NA/NA 0.27 4.1 × 10−5 -0.45

rs6714773 2:21266211 TDRD15/LINC01822 intergenic 0.28 4.2 × 10−5 -0.49

rs1993596 8:9365634 LOC157273 intron 0.45 4.3 × 10−5 0.42

rs11075766 16:70529368 SNORD111B promoter 0.078 4.3 × 10−5 -0.77

rs929525 18:61429532 CDH20 intron 0.25 4.5 × 10−5 -0.49

rs2141236 2:155938902 NA/LINC01876 intergenic 0.34 4.5 × 10−5 0.39

Top 50 hits, ranked by unadjusted P-value from analysis of 500,897 genome-wide SNPs. Annotation information was generated by using the VariantAnnotation [24],
TxDb.Hsapiens.UCSC.hg38.knownGene [44] (based on [45]) and SNPlocs.Hsapiens.dbSNP150.GRCh38 [46] R extension packages. For intergenic SNPs,
left/right flanking genes are reported. Chr: chromosome; MAF: minor allele frequency
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Fig. 6 Non-parametric Maximum Likelihood Survival Survival plots for
the top three SNPs

1.0, 0.7 or 0.5 minutes when increasing the core count to
4, 8, 12 or 16, respectively.
As we have outlined, an alternative approach to using a

likelihood model for grouped data is to repurpose meth-
ods for adjustments for ties in continuous right censored
data. As we and others [31] have shown, these methods
may be biased if applied to grouped censored data. The
effect of sample size on this bias is illustrated in Figure S1
in Additional file 1.
Although the analysis using this approach did not iden-

tify any variants that reached the genome-wide threshold

for significance, the annotated results (Table 1) revealed
additional candidate genes undiscovered in the initial
GWAS. Among the genes listed in Table 1, many show
functions in biological pathways critical to neurite regen-
eration after chemotherapy damage and show modest to
high expression in human dorsal root ganglion, the target
peripheral nerve damaged by chemotherapy agents [32].
In particular, the genomic region containing rs9435869 is
an intriguing hit since both neighboring genes have poten-
tial relevance to chemotherapy-induced peripheral neu-
ropathy (CIPN). RHOU is a Rho GTPase that is known to
regulate cytoskeletal organization and induce filopodium
formation, a critical step in neuronal development
[33–35]. Furthermore, RAB4A, encoding a member of the
RAB GTPase family, is a regulator of vesicular recycling of
cell surface receptors through interaction with its effector
NDRG1 [36]. Mutations in NDRG1 (N-myc downstream-
regulated gene 1) have been shown to be causative in
the rare congenital subtype of Charcot-Marie Tooth Dis-
ease Type 4D, an inherited peripheral sensorimotor nerve
disorder [37–39].
Another SNP included in the top 50 hits, rs6481837,

annotated toNRP1 (neuropilin 1) which functions to con-
trol growth cone projection in developing neurons [40],
supports the hypothesis that axon guidance is impor-
tant in the development of CIPN. This gene pathway
was previously implicated with the role of EPHA5 from
the initial GWAS [27]. Genes involved in synaptic for-
mation associated to neurodevelopmental disorders of
the central nervous system, such as NRXN1 (neurexin 1)
and CADM1 (cell adhesion molecule 1), may also have
biological relevance in the context of the peripheral ner-
vous system during themanifestation of this drug-induced
neurotoxicity [41, 42]. Although these genes/variants
are promising for understanding the molecular mech-
anisms of CIPN, further in vitro investigations are
needed.
Here we note several limitations in our approach. First,

while the simulation results confirm that the MLEs are
asymptotically unbiased, the effect size estimates are
model-based and thus may be biased if the model is mis-
specified. Second, because the phenotype for the CALGB
40101 GWAS analysis is constructed via a manual review
of clinical research forms [7], the cycle attribution may
be erroneous due to incomplete or missing information.
Our approach properly accounts for the group censor-
ing mechanism, however, it may not be able to account
for such phenotyping errors. Lastly, in the analysis of
the CALGB 40101 data, we assume that the censor-
ing mechanism is uninformative. Although the censoring
induced by assignment to four versus six cycles can safely
be assumed to be uninformative as it was decided by
study randomization, other forms of censoring may be
informative, such as early dropouts due to drug sensitivity.
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If informative censoring is present, the model parameters
need to be interpreted within the context of cause-specific
hazards.
We conclude this section by considering potential future

extensions. In its current form, our approach does not
allow for time-dependent covariates. For example, BSA
at baseline is a covariate in our analysis of the CALGB
40101 GWAS. BSA, however, varies at each cycle. Pren-
tice and Gloeckner [6] note that it is possible to extend the
regression model to incorporate time-dependent covari-
ates. Another extension, that is currently partially imple-
mented, is the ability to analyze data from familial genetic
studies, in which the outcomes may be correlated. The
package incorporates a kinship frailty model [43], how-
ever, the current implementation is sensitive to departures
from model assumptions. Therefore, at present we con-
sider it as an experimental feature. A future extension of
this implementation is to make it more robust.

Conclusions
Grouped censored phenotypes are prevalent in basic,
translational and clinical science research due to the
design of, or limitations in, the data collection schema.
Failure to properly account for a grouped failure time
mechanism may lead to biased analysis results. We
present groupedSurv, an open source R package for
conducting genome-wide analyses based on grouped sur-
vival phenotypes in a statistically principled and rigorous,
and computationally efficient manner. In the context of
GWAS, the package enables analysis at the variant as well
as gene or pathway level. The package is extensively doc-
umented and freely available under a public license to the
research community.

Availability and requirements
Project name: groupedSurv
Project home page: https://CRAN.R-project.org/
package=groupedSurv
Operating system(s): Linux, Windows and OS X
Programming language: R
Other requirements: C++ 11 or higher, and supporting R
packages required for installation
License: GPL (≥ 2)
Any restrictions to use by non-academics: None

Additional files

Additional file 1: Additional descriptions of statistical model, simulation
parameters, and statistical operating characteristics and data analysis
results, including additional illustrative figures. (PDF 556 kb)

Additional file 2: knitr-generated slides showing R code used to
reproducibly conduct the data simulations, summarize the operating
characteristics, and estimate the processing benchmarks. (PDF 112 kb)

Additional file 3: knitr-generated slides showing R code used to
reproducibly conduct the analysis of the CALGB 40101 data. (PDF 145 kb)

Additional file 4: Table containing the annotated top 300 SNPs, ranked
by unadjusted P-value, from the CALGB 40101 GWAS results. (CSV 29 kb)
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