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N6-methyladenosine (m6A) RNA methylation is one of the most common epigenetic
modifications in RNA nucleotides. It is known that m6A methylation is involved in
regulation, including gene expression, homeostasis, mRNA stability and other biological
processes, affecting metabolism and a variety of biochemical regulation processes,
and affecting the occurrence and development of a variety of diseases. Cardiovascular
disease has high morbidity, disability rate and mortality in the world, of which heart
failure is the final stage. Deeper understanding of the potential molecular mechanism of
heart failure and exploring more effective treatment strategies will bring good news to
the sick population. At present, m6A methylation is the latest research direction, which
reveals some potential links between epigenetics and pathogenesis of heart failure.
And m6A methylation will bring new directions and ideas for the prevention, diagnosis
and treatment of heart failure. The purpose of this paper is to review the physiological
and pathological mechanisms of m6A methylation that may be involved in cardiac
remodeling in heart failure, so as to explain the possible role of m6A methylation in
the occurrence and development of heart failure. And we hope to help m6A methylation
obtain more in-depth research in the occurrence and development of heart failure.
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BACKGROUND

M6A methylation is the process of methylation modification on the nitrogen atom of adenine in
RNA molecule, that is, the methyl provided by S-adenosylmethionine (SAM) is added to the N6 site
of adenosine (1). M6A methylation is the most abundant mRNA modification in eukaryotes and
is reversible. In addition, m6A methylation is involved in post transcriptional modification. There
are about 3–5 m6As in each mRNA, and there are mainly two binding forms of m6A methylation,
GC and AC, with GC accounting for about 70% and AC accounting for about 30%. The location of
m6A is mainly near the stop codon, internal long exon and 3 ’untranslated region (3′ UTR) (2–4).
M6A methylation, which accounts for only 0.2–0.6% of the total adenosine of mRNA, is the most
abundant internal chemical modification in RNA (5, 6). It plays an important role in regulating
mRNA processing and metabolism (6–8), including the processing of mRNA precursors (9–11),
mRNA output (12), mRNA stability (13), and translation (14–16), and also plays a significant role
in the modification of a large number of non-coding RNAs, such as tRNA, rRNA, snRNA, etc.,
which affect the regulation of genetic information and ultimately development in stress response,
immunity and disease (6, 17). In addition, m6A methylation can also exist in precursor RNA
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(pre-RNA). Methyltransferase is mainly responsible to act as a
Writer (such as METTL3/14 RNA methyltransferase complex)
in the regulation of m6A (18, 19). Demethylase acts as an
Eraser (such as ALKBH515 and FTO) (20, 21). The downstream
function of m6A is mediated by Reader proteins that recognize
m6A and regulate mRNA processing, such as YTH domain family
proteins and IGF2BP1-3 (9, 13, 22, 23), which finally transmit
signals to the downstream and trigger downstream biological
effects, such as promoting RNA transcription, splicing nuclear
output, stability and translation (24).

Heart failure is a complex cardiovascular syndrome, which
often occurs in the final stage of a variety of cardiovascular
diseases, or secondary to other disease states. The core of its
occurrence and development is the structural or functional
abnormalities caused by acute or chronic injury, resulting in
ventricular filling disorder or abnormal cardiac output (25, 26).
Clinically, left ventricular ejection fraction (LVEF) is often used
to classify, evaluate the condition and judge the prognosis,
therapeutic effect and carry out clinical related research.
According to different ejection fraction (EF), different treatment
schemes and even rescue measures are determined. According to
the heart failure guidelines in 2022 (25), heart failure is divided
into four categories according to different levels of LVEF: (1)
HFrEF (HF with reduced EF) is defined as LVEF ≤40%; (2)
HFimpEF (HF with improved EF) is defined as previous LVEF
≤40%, and subsequent measurement LVEF >40%; (3) HFmrEF
(HF with mildly reduced EF) is defined as LVEF 41–49%,
accompanied by elevated left ventricular filling pressure, such
as elevated natriuretic peptide or hemodynamic measurement
results; (4) HFpEF (HF with preserved EF) is defined as
LVEF ≥ 50%, accompanied by elevated left ventricular filling
pressure. The characteristics of HFpEF are: most of them are
accompanied by different degrees of inflammatory and metabolic
complications and chronic comorbidities, such as obesity,
hypertension, diabetes mellitus type 2, renal insufficiency, to
name a few; changes in cardiac structure and cardiomyocytes,
such as cardiomyocyte hypertrophy, fibrosis and inflammation;
it mainly affects left ventricular diastolic function and reduces
compliance (27); endothelial dysfunction and microvascular
complications appeared earlier and more common (28, 29).
HFrEF is characterized by acute or chronic loss of a large number
of cardiomyocytes due to myocardial ischemia and myocarditis; it
mainly affects left ventricular systolic function (30, 31). HFmrEF
and HFimpEF is the transitional stages between the two. It is easy
to progress to HFrEF, but the overall prognosis of HFrEF is better
(32). According to the global burden of diseases, injuries, and risk
factors study 2017 (GBD 2017), the number of patients with heart
failure worldwide has exceeded 6.4 million (33). With the increase
of population growth and aging, the health burden caused by
heart failure has been similar to the combined incidence rate
of lung cancer, breast cancer and prostate cancer (34). People
with hypertension, obesity, kidney disease or ventricular systolic
dysfunction before the age of 35 may have related manifestations
of heart failure after 20 years at the latest (35). In addition,
patients with heart failure had a higher incidence of sudden
cardiac death (36). What’s more, in the past 20 years, the
morbidity of heart failure with preserved ejection fraction has
increased, and its morbidity has increased significantly in both

men and women over time (34, 37). By 2030, the morbidity of
heart failure is expected to rise by 46%, affecting more than 8
million people (38). Therefore, more attention should be paid to
heart failure. The possible pathogenesis and effective treatment
targets of heart failure will become the focus of research for a long
time in the future.

The upsurge of m6A methylation research may bring new
directions and new ideas for the in-depth study of the
pathogenesis of heart failure. Targeted regulation of m6A
methylation related processes may contribute to the diagnosis,
treatment and drug development of patients with heart failure.
Therefore, in this review, we summarize the possible mechanism
of m6A methylation in the occurrence and development of
heart failure, in order to illustrate the importance of exploring
the role of m6A.

M6A METHYLATION

M6A methylation needs three main parts to complete together,
namely the Writers, the Erasers, the Readers (Figure 1).

M6A Writers
M6A Writer is completed by m6A methyltransferase complex,
namely methyltransferase like 3 (METTL3) and METTL14
and their cofactor Wilms tumor 1 associated protein (WTAP).
METTL3 contains S-adenosylmethionine (SAM) binding
domain and DPPW motif (Asn-Pro-Trp), which can transfer
methyl from SAM to N6 position of target adenosine (18, 39);
METTL14 supports METTL3 structurally by providing RNA
binding scaffolds, which greatly improves the methylation
efficiency (24). In addition, although WTAP does not have
direct catalytic activity, it participates in the localization of
METTL3-METTL14 heterodimer in nuclear spots and promotes
the accumulation of m6A (40). Finally, a ternary METTL3:
METTL14: WTAP complex was formed and relocated to the
nuclear spot (18, 41). VIRMA (protein virilizer homolog or
called KIAA1429) mediates the preferential methylation of
m6A mRNA in 3′ UTR and near termination codon, plays an
essential role in guiding regional selective methylation, and can
help METTL3 and METTL14 locate in nuclear plaque (42).
In addition, HAKAI, zinc finger CCCH type containing 13
protein (ZC3H13) and RNA binding motif protein 15 (RBM15)
have been shown to participate in and improve the abundance
of mRNA m6A (43–45). In the process of m6A methylation
of other RNA types, ZC3H13, RBM15/15b, METTL5, tRNA
methyltransferase homologue 112 (TRMTL112), METTL16, and
other methyltransferases play important roles, as well (46–48).

M6A Erasers
M6A eraser is m6A demethylase, which includes the currently
known ALKB family member 5 (ALKBH515) and fat mass and
obesity associated protein (FTO), revealing the reversibility of
RNA modification. The demethylation activity of FTO makes
contribution to the normal development of human central
nervous system and cardiovascular system (20, 49). The m6A
demethylation of FTO requires two-step oxidation reaction:
firstly, m6A is oxidized to N6 hydroxymethyladenosine (hm6A),
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FIGURE 1 | Reversible process of m6A modification and three factors - Writer, Eraser, and Reader.

and then hm6a is oxidized to N6 formyl adenosine (f6A),
which can be converted into two stable substances: formaldehyde
and formic acid, and the final product is adenosine (50).
Multifunctional nucleoprotein - splicing factor rich in proline
and glutamine (SFPQ)—can directly interact with FTO, promote
m6A demethylation effect, and participate in a variety of cell
activities, including RNA transport, apoptosis and DNA repair
(51, 52). ALKBH5 can exert oxidative demethylation effect in vivo
and in vitro, and co-locate with nuclear spots to complete RNA
regulation (53).

M6A Readers
M6A Reader binding sites are overlapped with m6A localization,
both near the stop codon of CDS and 3 ′ UTR on mRNA
(54). At present, the YT521-B homology (YTH) family of
proteins is the most widely studied in m6A Readers. Its
main feature is that it has YT domain that can stably
recognize m6A, including YTHDF1, YTHDF2, YTHDF3,
YTHDC1 and YTHDC2 (55). YTHDF plays a synergistic role
in regulating mRNA transcription and translation (56). In
addition, there are heterogenetic nuclear ribonucleoproteins
(hnRNPs), which can combine with some structures formed
by m6A reconstructed partial RNA to regulate transcription
and translation. Members include hnRNPC, hnRNPG and
hnRNPA2B1. In addition, there are readers containing the
same RNA binding domains (RBD), such as insulin like
growth factor 2 mRNA binding proteins 1–3 (IGF2BP1-3),
frame X mental retention protein (FMRP), EIF3A/H and
Prrc2a (57). EIF3A/H is preferentially crosslinked with m6A
containing mRNA rather than unmethylated RNA (58). Prrc2a
is a recently discovered reader, and the specific mechanism is
unknown (57).

RELATIONSHIP BETWEEN M6A AND
HEART FAILURE

The relationship between m6A methylation and heart failure
has gradually attracted people’s attention with the deepening

exploration of research. M6A is maladjusted in heart failure
and plays a key role in cardiovascular diseases, such as
ventricular septal and atrioventricular defects, hypertrophic
cardiomyopathy, arrhythmia, coronary heart disease, ischemic
heart failure and so on (49, 59–61). For example, up regulation
of m6A methylation can promote compensatory myocardial
hypertrophy, while down regulation is related to eccentric
cardiomyocyte remodeling and dysfunction (62). As an m6A
Eraser, the FTO protein expression is reduced, which can make
more m6A complete transcription and reduce the contractility
of cardiomyocytes (59). The overexpression of FTO can enhance
myocardial contractility, improve cardiac function and delay
the development of heart failure by demethylating contraction
genes, such as, sarcoplasmic reticulum (SR) -Ca2+ ATPase 2a
(SERCA2a), ryanodine 2 (RyR2), myosin heavy chain (MYH)
6/7, and increasing their protein expression level, and even
reversing cardiac fibrosis and inducing angiogenesis in heart
failure after myocardial infarction. M6A methylase METTL3
can promote cardiomyocyte hypertrophy in vitro and in vivo.
And increasing m6A methylation will promote compensatory
cardiomyocyte hypertrophy, while reducing m6A methylation
will induce eccentric cardiomyocyte remodeling and dysfunction
(63). The level of m6A in dilated cardiomyopathy patients
with heart failure is higher than that in patients without heart
failure (64). Therefore, m6A methylation is closely related to the
occurrence and development of heart failure.

POSSIBLE MECHANISM OF M6A
METHYLATION IN THE OCCURRENCE
AND DEVELOPMENT OF HEART
FAILURE

We will explore the possible mechanism of m6A in the
occurrence and development of heart failure from the aspects
of calcium homeostasis, inflammatory response, autophagy,
oxidative stress, neurohumoral regulation, vascular endothelial
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FIGURE 2 | Possible mechanism of m6A methylation in heart failure.

dysfunction, renin angiotensin aldosterone system activation and
so on (65) (Figure 2).

m6A Methylation and Calcium
Homeostasis
Dysregulation of calcium homeostasis in cardiomyocytes is
considered to be one of the main causes of heart failure. It not
only affects the systolic and diastolic function of cardiomyocytes
(i.e., the decline of cardiac pump function), but also affects the
transmission of ECG signals (i.e., arrhythmia) and myocardial
apoptosis and hypertrophy.

Under normal circumstances, myocardial contraction is
completed through excitation contraction coupling. After the
action potential is transmitted to the cardiomyocyte membrane
and enters the T-tube depression, it triggers the opening of
L-type calcium channel (LTCC), and some calcium ions flow
into cardiomyocytes, acting on the calcium ion channel of
SR, triggering the release of a large amount of calcium ions
from sarcoplasmic reticulum, so that the calcium ion level in
cardiomyocytes quickly reaches the peak, that is, calcium ion
spark. The sum of time and space of calcium ion sparks is
called calcium ion transient. Subsequently, calcium ions bind to
troponin on the fine myofilament, causing changes in the spatial
conformation of the fine myofilament, exposing the binding sites
of actin and myosin on the thick myofilament, and the two
bind to complete a myocardial contraction. However, when heart
failure occurs, on the one hand, due to the reduction of SERCA2a

function, the increase of RyR leakage, the increase of Na+-Ca2+

exchange (NCX) function competing with SERCA2a for Ca2+,
the Ca2+ released by SR after LTCC activation is reduced, which
can not meet the transient of calcium ions in cardiomyocytes,
resulting in the significant decrease of myocardial contractility
(66). On the other hand, cardiomyocyte hypertrophy causes the
prolongation of action potential and affects the synchronous
release of calcium ions (67). This is the mechanism of HFrEF or
systolic heart failure. After myocardial contraction, the calcium
concentration in the sarcoplasma is rapidly reduced through
SERCA2a and plasma membrane NCX pump, so that the thick
and thin muscle filaments are dissociated after restoring the
original conformation, and finally complete cardiac relaxation
(68). However, failing cardiomyocytes often can not ensure the
coordination and rapidity of diastolic process, which may lead
to normal ventricular systolic function and abnormal diastolic
filling (69–71). This is HFpEF or diastolic heart failure.

In the process of heart failure, the expression of m6A
demethylase FTO in cardiomyocytes decreases, the expression
of writing proteins such as METTL4/14 increases, and the
content of m6A in failed heart and hypoxic cardiomyocytes
increases (59, 72). By affecting the transcriptional expression of
contractile protein SERCA2a, it leads to abnormal regulation
of calcium homeostasis, so as to reduce myocardial contractile
function. In vivo and in vitro studies show that FTO can improve
the amplitude of Ca2+, accelerate the attenuation of Ca2+,
shorten the sarcomere, reduce the increase of m6A induced by
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ischemia, and improve the corresponding systolic dysfunction
of cardiomyocytes. After enrichment and screening of pathways,
FTO can selectively act on pathways related to cardiac sarcomere
tissue, myofibril assembly, calcium treatment and contraction,
and can cause various heart diseases, such as hypertrophic
cardiomyopathy, ventricular septal defect, atrioventricular defect,
arrhythmia and coronary heart disease (59, 61). Cardiomyocyte
hypertrophy is accompanied by the increase of m6A methylation
level. In this process, the overexpression of m6A RNA methylase
METTL3 plays an important role in increasing the levels of
mitogen activated protein (MAP) 3K6, MAP4K5 and MAPK14,
which leads to cardiomyocyte hypertrophy (62, 63). In vitro
experiments confirmed that inhibition of METTL3 could
effectively block cardiomyocyte hypertrophy (73–75). Nearly
a quarter of transcripts in human heart are related to m6A
methylation, and FTO gene knockout can lead to impaired
cardiac function (76).

In conclusion, m6A methylation may play a promoting
role in the occurrence and development of heart failure
by affecting calcium regulation related genes, affecting
myocardial calcium homeostasis, myocardial contractility,
cardiac contraction and relaxation.

m6A Methylation and Inflammatory
Response
Vascular endothelial cells play an important role in
cardiovascular diseases and normal physiological metabolism,
such as participating in angiogenesis, promoting wound
healing, inducing smooth muscle cell proliferation and fibrosis,
and reactive oxygen species (ROS) participate in vascular
inflammatory response. Among them, inflammatory response
has always been the key point of cardiovascular disease research.
ROS plays a significant role in inflammatory response.

Endothelial cells are the main cell type involved in
coordinating the pathological changes of heart failure, and their
surface is often the direct place of a variety of inflammatory
reactions (75). During the occurrence and development of
heart failure, chronic inflammatory reaction can continuously
promote the abnormal changes of myocardial structure and
function (71, 77). Therefore, a variety of pro-inflammatory
factors on the surface of vascular endothelial cells are closely
related to the occurrence and development of heart failure.
For example, VCAM1, an adhesion molecule activated on the
surface of endothelium, can promote leukocyte adhesion and
epithelial cell migration and trigger intravascular inflammatory
response by binding with ligands on leukocyte membrane
(78, 79). VCAM1 can promote the production of ROS and
promote the occurrence of heart failure by activating matrix
metalloproteinase to cause ventricular remodeling (80). ROS
can directly damage the cell membrane, induce cardiomyocyte
apoptosis, cause damage to myocardial systolic and diastolic
function, reduce cardiac output, increase ventricular filling
pressure, cause ventricular dilation and ventricular remodeling,
and promote the further development of heart failure. VCAM1
can promote the differentiation and infiltration of immune cells,
which is positively correlated with the risk of heart failure

and promote the development of heart failure (81–83). In
addition, T lymphocytes (mainly T1 cells) can infiltrate into
myocardial tissue, possibly through the production of interferon-
α, transforming myocardial fibroblasts to γ-smooth muscle
actin fibroblast (84). The transformation of γ-smooth muscle
actin fibroblasts further causes the proliferation of myocardial
fibroblasts, leads to ventricular dilation and intensifies ventricular
remodeling, which may also be related to the occurrence and
development of heart failure (85). M6A methylase METTL14
can bind to FOXO1 and mediate its m6A methylation to
induce the inflammatory response of endothelial cells (EC)
(86). FOXO1 is an important transcription factor, which
can promote the promotion of transcription and affect the
occurrence and development of heart failure by directly acting
on the promoter regions of VCAM1 and intercellular adhesion
molecule-1 (ICAM1).

As we all know, cardiac hypertrophy is the main sign of heart
failure. MiRNA molecules, such as non-coding RNA members,
can also play an essential role in the pathological changes of
heart failure by mediating myocardial hypertrophy, and can be
modified by m6A (87). For example, Let-7, miR-126, miR-143-3p
and miR-221/222 can affect the function of endothelial cells
and vascular smooth muscle cells in angiogenesis. Let-7, miR-
25 and miR-375 have been proved to play key roles in
the pathogenesis of a variety of cardiovascular diseases, and
participate in the regulation of apoptosis, autophagy, oxidative
stress, inflammatory response and calcium treatment, so as to
participate in the occurrence of heart failure (88–91). Therefore,
the study of m6A methylation of these molecules is particularly
important, which may help to further explore the pathogenesis
of heart failure.

M6A Methylation and Autophagy
As we all know, during the occurrence and development of
heart failure, with the activation of nerve body fluid and
the increase of hemodynamic load, myocardial compensatory
hypertrophy increases the volume of cardiomyocytes and the
number of mitochondria, so as to maintain close to normal
cardiac output and supply the needs of the body and tissue cells.
However, when the myocardium is irreversibly and continuously
hypertrophic, the cardiomyocytes are gradually in the state of
ischemia and hypoxia, and can not bear the continuous pressure
load, decompensated heart failure eventually occurring.

Autophagy is a process in which eukaryotic cells play
a degradation function through lysosomes to inactivate
and phagocytize proteins and cell components. It plays an
important role in normal physiological function, proliferation,
death and maintaining intracellular homeostasis. The main
processes include: forming phagocytic vesicles of phospholipid
bilayer, phagocytizing and wrapping damaged organelles and
abnormally expressed proteins to form autophagosomes, which
are the landmark products of autophagy; then, the vesicles are
transported to the lysosome and combined with the lysosome to
form autophagic lysosomes, which are finally degraded (92, 93).
In mammalian cells, autophagy currently known includes at least
three different pathways: macro-autophagy, micro-autophagy
and chaperone mediated autophagy (CMA) (94, 95). Among
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them, the difference among the three mainly lies in the process
of binding with lysosomes: macro-autophagy is that cytoplasmic
components are directly attached to lysosomes and then directly
degraded by lysosomal hydrolases; Micro-autophagy is the
invagination of lysosomal membrane, which is engulfed by
lysosomes after forming vesicles; CMA enters the lysosome
through lysosomal associated membrane protein 2A (LAMP-2A)
receptor in the form of complex with the help of chaperone
proteins such as Hsc-70 (96, 97).

Autophagy plays a vital role in the occurrence and
development of heart failure guided by myocardial hypertrophy
(98, 99). Some biomolecules promote autophagy, which helps
to inhibit myocardial hypertrophy and delay the process of
heart failure, such as cathepsin-L and activated protein kinase
(AMPK) (100). AMPK can activate T cell nuclear factor (NFAT),
MAPK, nuclear factor kappa B (NF-κB), FOXO and MuRF1
to antagonize myocardial hypertrophy caused by increased
pressure load and RAS system (101–103). Over activation or
inactivation of autophagy induced by some biomolecules will
promote myocardial hypertrophy and pathological remodeling,
and worsen the progression and condition of heart failure (104–
106), such as overexpression of autophagy promoting protein
Beclin-1 (106), the family of Toll like receptors 3 (TLR3) (94),
METTL3 (64, 74), to name a few. In addition, autophagy can
also occur in the process of heart failure caused by a variety of
cardiovascular diseases, such as ischemic heart disease, dilated
cardiomyopathy and heart valve disease (104, 105). AMPK
can promote autophagy by activating mammalian target of
rapamycin (mTOR) C1 and activate mTORC2 to avoid excessive
autophagy activity, which is contrary to each other to delay
the process of heart failure (99). During ischemia-reperfusion,
researchers observed increased autophagy formation, which may
be related to AMPK (107). Transcription factor EB (TFEB) is a
key regulator of autophagy (108). Disaccharide trehalose can up
regulate TFEB, promote autophagy and inhibit cardiomyocyte
apoptosis (109). At present, the contradiction of relevant research
is that m6A methylation may be affected by a variety of additional
microenvironment factors in different heart diseases, resulting
in changes in the behavior of methylated transcripts, such as
excessive pressure load, hypoxia and so on (110). M6A transcripts
in the heart of aortic coarctation (TAC) mice are reduced
compared with the sham operation group, which is related to
the reduced expression of methylase METTL3 (64). Therefore,
autophagy has been proved to be closely related to the occurrence
and development of heart failure, but a lot of in-depth research is
still needed to explore its mechanism.

M6A methylation can affect the expression of autophagy
related genes, regulate autophagy, and play an important role in
the occurrence and development of heart failure (97, 111, 112).
It is reported that m6A methylation can inhibit autophagy by
affecting the post transcriptional regulation of autophagy related
gene 1 (ATG1)/Unc-51-like kinase 1 (ULK1) (113). Similarly,
it can inhibit autophagy by affecting autophagosome formation
(114). M6A demethylase FTO can up regulate ULK1 protein and
promote autophagy related protein expression (113), indicating
that FTO actively regulates autophagy in an enzyme activity
dependent manner, thus playing a key role in cardiac remodeling
and rehabilitation (59).

In conclusion, m6A methylation may affect myocardial
hypertrophy, cardiac remodeling and promote the occurrence
and development of heart failure by regulating autophagy.

M6A Methylation and Ischemia and
Hypoxia
M6A methylation is involved in regulating mRNA stability,
protein expression and various physiological reactions of cells. It
is also a key molecule in the process of affecting the contractile
function of cardiomyocytes due to ischemia and hypoxia, which
can cause ischemic myocardial damage. This is the main cause of
cardiovascular diseases including myocardial infarction and heart
failure, so it also deserves attention.

LncRNA myocardial infarction associated transcript (MIAT)
is a known hypoxia response gene. The increase of MIAT
expression level was detected in the whole blood of patients
with non-ST segment elevation myocardial infarction (NSTEMI)
and ST segment elevation myocardial infarction (STEMI)
(115, 116). Similarly, in myocardial hypertrophy induced by
angiotensin II, MIAT increased significantly. By inhibiting
miR-150 and then affecting the expression of serum response
factor (SRF) (117), p30022 and c-Myb (118), MIAT promotes
cardiomyocyte hypertrophy and fibroblast activation, and
finally promotes the development of myocardial hypertrophy
(119). Oxidized low density lipoprotein (ox-LDL) induces
m6A demethylation in hypoxia inducible factor 1α (HIF1α)
binding region through ALKBH1, which can promote MIAT
transcriptional activation, become a key factor in myocardial
infarction and myocardial hypertrophy, and affect myocardial
contractility (120). WTAP has been proved to regulate the m6A
modification of activating transcription factor 4 (ATF4) mRNA,
promote ischemic myocardial injury by promoting neutrophil
infiltration, endoplasmic reticulum stress and cardiomyocyte
apoptosis, and finally lead to cardiac dysfunction and heart
failure (121, 122). M6A methylation mediated by METTL3
shows different effects. When the factors inducing myocardial
hypertrophy appeared, the expression of METTL3 mediated
m6A methylation increases significantly, which promotes the
occurrence of compensatory myocardial hypertrophy; when m6A
methylation expression mediated by METTL3 is reduced and
the observation time is long enough, it can lead to eccentric
cardiomyocyte remodeling and cardiac dysfunction (62). B cell
lymphoma-2 (BCL2) -associated X protein (Bax) and gene
of phosphate and tension homology deleted on chromosome
ten (PTEN) are target genes downstream of METTL3 under
hypoxia/reperfusion injury of cardiomyocytes in vitro, which can
cause myocardial damage (123).

Therefore, in the future, the research on FTO and
METTL3 related myocardial ischemia and hypoxia may
find a breakthrough for the therapeutic target of heart failure.

M6A Methylation and Oxidative Stress
Oxidative stress is a common reaction of cell aging and
affecting cell function. When the balance between oxidants
and antioxidants is broken, it will lead to oxidative stress.
Among them, a variety of oxides mainly play an essential role,
such as ROS, RON (a kind of tyrosine kinase receptor) and
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FIGURE 3 | The flow-chart of further research in the field of heart failure.

so forth. These substances will affect the normal replication,
transcription and translation of genetic substances, such as DNA,
and can affect the normal function of cardiomyocytes, resulting
in cardiomyocyte damage and promoting the occurrence and
development of heart failure.

METTL3/METTL4 may eventually improve the translation
level of p21 by promoting other forms of mRNA methylation (like
m5C), so as to affect its expression in the process of oxidative
stress and cell aging, promote the accumulation of oxides such
as ROS and start the oxidative stress response (124). Therefore, it
is difficult to make a great breakthrough in the research of m6A
methylation in oxidative stress of heart failure cardiomyocytes,
which may be due to the existence of various forms of cross-
linking in mRNA methylation itself.

PERSPECTIVES

The role of m6A methylation in the mechanism of heart failure
is still unknown: on the one hand, it is necessary to build
heart failure models with the help of more animals and cells to
explore the relationship between m6A methylation and known
mechanisms, pathways and molecules that may be involved.
Gradually expanding and exploring the regulatory process
of m6A methylation, such as the upstream and downstream
regulatory pathway of m6A methylation, count a lot. This
may improve the understanding of m6A methylation in the
pathogenesis of heart failure and bring new breakthroughs.
On the other hand, it is necessary to improve the detection
technology and functional verification method of m6A
methylation, and to increase bioinformatics analysis to find
new biomarkers of m6A methylation involved in the occurrence
and development of heart failure. In addition, the role of m6A
methylation in multiple systems and multiple organs is still
unclear in the clinical study of the prevention and treatment
of heart failure. With the deepening exploration of research, it
needs the efforts of several generations to explore whether we
can realize the targeted treatment scheme and drug research and

development like tumor targeted drugs in the future, simplify
the dosage of drugs, reduce the side effects of drugs, improve
the quality of life of patients, and reduce the mortality and
disability rate. We still have a long way to go in the treatment and
prevention of heart failure (Figure 3).

CONCLUSION

In conclusion, m6A methylation, as one of the most abundant
types of RNA modification, has been gradually studied in
cardiovascular diseases. This paper reviews the possible
mechanisms of m6A methylation in the occurrence and
development of heart failure, hoping to summarize the
possible role of m6A, so as to lay a foundation for the
accurate treatment of heart failure. The main effect of m6A
methylation on heart failure is to promote calcium homeostasis,
inflammatory response and autophagy, causing cardiomyocyte
hypertrophy, myocardial mitochondrial dysfunction, reducing
myocardial contractility and cardiac remodeling, resulting
in serious consequences. However, there is still a lack of
research on the related mechanisms of m6A methylation in the
neurohumoral and renin angiotensin aldosterone systems of
heart failure, which may provide new ideas for research and new
perspectives for treatment.
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