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Abstract

Uterine cancer is the fourth most common cancer among women, projected to affect 66,000 US women in 2021. Uterine cancer often arises
in the inner lining of the uterus, known as the endometrium, but can present as several different types of cancer, including endometrioid
cancer, serous adenocarcinoma, and uterine carcinosarcoma. Previous studies have analyzed the genetic changes between normal and
cancerous uterine tissue to identify specific genes of interest, including TP53 and PTEN. Here we used Gaussian Mixture Models to build
condition-specific gene coexpression networks for endometrial cancer, uterine carcinosarcoma, and normal uterine tissue. We then incor-
porated uterine regulatory edges and investigated potential coregulation relationships. These networks were further validated using differ-
ential expression analysis, functional enrichment, and a statistical analysis comparing the expression of transcription factors and their target
genes across cancerous and normal uterine samples. These networks allow for a more comprehensive look into the biological networks
and pathways affected in uterine cancer compared with previous singular gene analyses. We hope this study can be incorporated into
existing knowledge surrounding the genetics of uterine cancer and soon become clinical biomarkers as a tool for better prognosis and
treatment.
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Introduction
Uterine cancer is the most common gynecological cancer and the
fourth most common cancer overall among women (Henley et al.
2018; Ward et al. 2019). The incidence of uterine cancer is increas-
ing each year with an estimated 66,000 new cases projected for

2021 in the United States (Henley et al. 2018; Siegel et al. 2021).
The 5-year survival rate for all uterine cancers is roughly 81%,
but differs significantly based on cancer subtype and stage
(Cantrell et al. 2015; Siegel et al. 2021).

Uterine cancer can arise in the endometrium, the lining of the

uterus, or in the myometrium, the middle uterine layer com-
posed of muscle. Endometrial cancer is more common than uter-
ine sarcoma (cancer of the myometrium), making up roughly
85% of all uterine cancer cases (Bokhman 1983). Endometrial can-

cer is an overarching category of cancers, here known as UCEC.
Specific subtypes include, but are not limited to, endometrioid
cancer, serous adenocarcinoma, clear cell carcinoma, and uter-
ine carcinosarcoma (UCS). Endometrioid cancer is the most com-

mon of the endometrial cancers, making up about 68% of all
uterine cancer cases (Henley 2018). However, endometrioid can-
cer also has the best prognosis as a type 1 estrogen-dependent
uterine cancer (Setiawan et al. 2013). In those cases the unop-

posed estrogen could stem from estrogen-only forms of birth con-
trol, the breast cancer drug tamoxifen, or obesity, among other

causes (Sakamoto et al. 2002; Setiawan et al. 2013; Lortet-Tieulent
et al. 2018). Serous adenocarcinoma, clear cell carcinoma, and
UCS are rarer, each accounting for 3–10% of endometrial cancer
cases (Cantrell et al. 2015; Henley et al. 2018). Serous adenocarci-
noma and clear cell carcinoma usually arise from atrophied
endometrium (Geels et al. 2015). These are considered estrogen-
independent (type 2) and are more aggressive than type 1 uterine
cancer (Setiawan et al. 2013). They are usually diagnosed after the
cancer has spread beyond the uterus, therefore leading to a
poorer prognosis (Geels et al. 2015). UCS is a more distinct subtype
as it seems to be a cancer of both the endometrium and the myo-
metrium (Cantrell et al. 2015). Based on recent research of the
cellular morphology, it is more likely that the initial mutation
begins in the endometrium and spreads to the myometrium
(Levine 2013; Cantrell et al. 2015). Because of this, UCS is consid-
ered a subtype of endometrial cancer. Similar to serous adeno-
carcinoma and clear cell carcinoma, UCS has a poor prognosis
(�35% survival rate after 5 years) and accounts for 15% of deaths
associated with uterine cancer (Vaidya et al. 2006; Cantrell et al.
2015).

To better diagnose, prognose, and treat uterine cancer, bio-
markers can be used. A biomarker is a characteristic that indi-
cates a normal or pathogenic process (FDA-NIH Biomarker
Working Group 2016). Biomarkers can come in many forms, such
as oxidative damage in an individual’s plasma to measure the
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progression of Parkinson’s disease, inflammation markers in
blood to predict someone’s risk for cardiovascular disease, and
characteristics of EEGs to diagnose major depressive disorder
(Pearson et al. 2003; Bogdanov et al. 2008; Pillai et al. 2011). Many
cancer-specific genetic biomarkers have also been identified.
Some examples include mutations in EGFR and BRAF for nonsmall
cell lung cancer, DNA methylation patterns to determine stomach
cancer metastasis, and RNA expression of SChLAP1 to predict me-
tastasis of prostate cancer (Prensner et al. 2014; Wu et al. 2017;
Pennell et al. 2019). For endometrial cancer, these mutations tend
to arise in genes PTEN, TP53, and CTNNB1 (Okuda et al. 2010). Many
other genetic mutations have been identified as biomarkers of
uterine cancer, some of which we rediscover here through, further
ensuring the robustness of method.

The Cancer Genome Atlas (TCGA) among other projects have
investigated both UCS and UCEC cancers. They have identified
many singular genes that tend to be mutated across both cancer
types, such as TP53, PTEN, PIK3CA, and PPP2R1A (Okuda et al.
2010; Levine 2013; Cherniack et al. 2017). While some are specific
to solely UCEC (FGFR2, CTNNB1, and POLE), others have only been
associated with UCS (RB1, ZBTB7B, and U2AF1) (Levine 2013;
Cherniack et al. 2017). There have also been associations with
more general characteristics. Translocations have been found
with genes involved in the WNT and PI(3)K pathways, among
others. Microsatellite instability is more common in endome-
trioid cancer compared with serous adenocarcinoma and UCS
(Levine 2013). UCS and type 2 UCEC cases tend to have more CNV
events compared with UCEC type I cases (Levine 2013; Zhao et al.
2013). Endometrial cancer can also appear in conjunction with
Lynch syndrome, which is usually due to mutations in genes in-
volved with DNA mismatch repair (Gayther and Pharoah 2010).
These genes include MLH1, MSH2, MSH6, and PMS2, with muta-
tions in MSH6 carrying the most risk for developing endometrial
cancer (Baglietto et al. 2010; Gayther and Pharoah 2010).

In this study, we assembled groups of related biomarkers,
known as a biomarker system or biosignature, that are specific to
normal uterine tissue and cancerous uterine tissue. We were inter-
ested in two types of biomarker systems: gene coexpression net-
works (GCNs) and gene regulatory networks (GRNs). Coexpressed
genes were discovered by analyzing gene expression data and find-
ing gene pairs that have correlated expression patterns. These
coexpressed gene pairs were then assembled to form a GCN. A
GCN–GRN was constructed by merging the GCN with directed
tissue-specific regulatory edges [transcription factor (TF) to target
gene (TR)]. These networks have been used to identify biomarkers
for many complex diseases including Alzheimer’s disease, hepato-
cellular carcinoma, breast cancer, and kidney cancer (Chekouo
et al. 2015; Hsu et al. 2019; Li et al. 2019; Soleimani Zakeri et al.
2020). Networks like these, or even subnetworks, are reproducibly
better at classifying disease compared with singular genes
(Chuang et al. 2007; Jin et al. 2008). Especially in complex disease,
such as cancer, there are multigene pathways responsible for the
diagnosis, rather than a small group of genes of interest (Zeng et al.
2013; Liu et al. 2014). The associations of those molecular interac-
tions within each condition-specific network allows for a more
comprehensive view of the cellular environment compared with
singular gene associations.

Several other studies have built GCNs specific to endometrial
cancer to find genes of interest. One identified several hub genes
related to stage, grade, and type of endometrial cancer (Chou
et al. 2014). Another study was interested specifically in the coex-
pression patterns of gene AKT. They were able to identify six
coexpressed genes (PBK, BIRC5, AURKA, GTSE1, KNSTRN, and

PSMB10), some of which were also able to predict prognosis (Huo
et al. 2019). Other studies have discovered additional hub genes
with prognostic power, TICRR, PPIF, and ANO1 (Wang et al. 2019;
Yang et al. 2021). These previous endometrial cancer studies have
all used weighted GCN analysis (WGCNA) to build the GCNs,
while we have taken a different approach using Gaussian
Mixture Models (GMMs) prior to pairwise gene correlation tests.
Our approach allows for analysis of genes that are involved in
more than one biological process, and therefore have multiple ex-
pression patterns (Ficklin et al. 2017). In this analysis, the GMMs
can differentiate between the two expression levels and test each
for coexpression edges, whereas WGCNA cannot.

Uterine cancer is one of the most common cancers among
women, and the incidence is increasing each year. In this study,
we aimed to explore the genetic differences between normal and
cancerous uterine tissue. By building uterine condition-specific
biomarker systems through the use of GMMs, we can contribute
to the growing literature of biological associations and changes in
genetic relationships to better understand, and potentially better
diagnose and treat, uterine cancer.

Materials and methods
To construct the GEM the FPKM files for all uterine samples
(TCGA-Normal, TCGA-UCEC, TCGA-UCS, and GTEx-Normal) and
their corresponding sample annotation matrices were downloaded
and processed (https://doi.org/10.6084/m9.figshare.5330593, last
accessed November 16, 2021) (Wang et al. 2018). The final GEM
includes gene expression information across 19,304 genes in 82
GTEx Normal samples, 23 TCGA Normal samples, 141 TCGA UCEC
samples, and 47 TCGA UCS samples (Figure 1). Condition-specific
GCNs were then constructed using GMMs via Knowledge
Independent Network Construction (KINC) software (https://
github.com/SystemsGenetics/KINC, last accessed November 16,
2021). We restricted network edges to those with a P-value of
<0.001 and consequently created condition-specific subnetworks.
Differential gene expression analysis was performed between
GEMs of the normal uterine tissue of GTEx (v.6) and TCGA-UCEC,
as well as GTEx-Normal and TCGA-UCS. It was completed by
DESeq2_1.30.1 in R 4.0 (https://bioconductor.org/packages/release/
bioc/html/DESeq2.html, last accessed November 16, 2021). The
RSEM counts for the analysis were obtained from https://www.na
ture.com/articles/sdata201861: https://doi.org/10.6084/m9.fig
share.5330539, last accessed November 16, 2021. All GCN nodes,
edges and their corresponding DEG status can be found in
Supplementary Table S1. The results for the UCEC and UCS DESeq
analyses can be found in Supplementary Tables S2 and S3, respec-
tively. The condition-specific GCNs were then overlapped with the
results from the differential expression analysis. The global attrib-
utes of each GCN network can be found in Table 1. Cytoscape was
used to visualize the UCEC, UCS, and GTEx GCN networks, which
can be found in Figures 2 and 3, and Supplementary Figure S1, re-
spectively.

The Glass Lab at Harvard University published tissue-
associated regulatory relationships for normal tissues based on
data from the GTEx project (https://sites.google.com/a/channing.
harvard.edu/kimberlyglass/tools/gtex-networks, last accessed
November 16, 2021) (Sonawane et al. 2017). From this list of regu-
latory edges, those enriched in uterus were extracted (N¼ 60,915).
The published uterine regulatory edges were merged with each
csGCN to create respective csGRNs, containing both gene coexpres-
sion edges and regulatory edges. GRN edges for the cancer networks
can be found in Supplementary Table S4 and those for the GTEx

2 | G3, 2022, Vol. 12, No. 1

https://doi.org/10.6084/m9.figshare.5330593
https://doi.org/10.6084/m9.figshare.5330593
https://github.com/SystemsGenetics/KINC
https://github.com/SystemsGenetics/KINC
https://github.com/SystemsGenetics/KINC
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://www.nature.com/articles/sdata201861
https://www.nature.com/articles/sdata201861
https://doi.org/10.6084/m9.figshare.5330539
https://doi.org/10.6084/m9.figshare.5330539
https://sites.google.com/a/channing.harvard.edu/kimberlyglass/tools/gtex-networks
https://sites.google.com/a/channing.harvard.edu/kimberlyglass/tools/gtex-networks
https://sites.google.com/a/channing.harvard.edu/kimberlyglass/tools/gtex-networks


GRN can be found in Supplementary Table S5. A summary of which
can be found in Table 2. We were also interested in investigating
possible coregulation. To do this, “triangle” relationships were

extracted from the UCEC GRN. We define a triangle relationship as
one in which one TF regulates two genes connected by an edge. To
further investigate the regulatory edges and their differences

Figure 1 t-SNE plot of uterus GEM. A t-SNE plot of all samples included in the uterus GEM. The color of each dot represents the group that sample
belongs to. The boxed outlier UCEC sample was moved closer to the other samples to avoid whitespace.

Table 1 Uterus condition-specific gene coexpression network global attributes

Sample condition Samples Genes Edges K DEG genes DEG edges DEG k

GTEx_Normal 82 4372 14044 6.42 3758 12083 6.43
TCGA_UCEC 141 1496 2861 3.82 1333 2638 3.96
TCGA_UCS 47 39 24 1.23 35 19 1.09

Figure 2 Cytoscape visualization of UCEC gene regulatory network. UCEC-specific gene regulatory network containing coexpression and regulatory
edges. An interactive network is available in the Supplementary Data Cytoscape file.
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between cancer and normal tissue, we performed a t-test on the
FPKM ratio for the regulatory edges. For each regulatory edge the
FPKM values for the TF and TR were collected for the corresponding
cancer samples and GTEx-Normal samples and underwent a t-test
as ratios (TF/TR) to see if they were significantly different (P-value <
1E�5) between the cancerous and normal tissues. Like the GCN

analysis, the nodes of each regulatory edge were subject to a differ-
ential expression analysis, performed like above. Functional enrich-
ment was performed on the DEGs for each csGCN (UCEC, UCS,
UCEC triangle, and GTEx) using ToppFun (https://toppgene.cchmc.
org/, last accessed November 16, 2021) (Supplementary Table S6).
Further details on these methods can be found at http://dx.doi.org/
10.17504/protocols.io.by85pzy6 (last accessed November 16, 2021).

Results
Segregation of cancer and control individuals
based on gene expression profiles
A uterine gene expression matrix (GEM) was constructed from
normalized and batch-effect-corrected FPKM files for TCGA and
GTEx uterine samples, published by Wang et al. (2018) (https://

doi.org/10.6084/m9.figshare.5330593, last accessed November 16,
2021). The GEM includes gene expression information for 19,304
genes across 82 GTEx Normal samples, 23 TCGA Normal sam-
ples, 141 TCGA-UCEC samples, and 47 TCGA-UCS samples. To vi-
sualize the GEM, we used t-distributed stochastic neighbor
embedding (t-SNE), a technique used to visualize high-dimen-
sional data in a 2D scatterplot (Van der Maaten and Hinton 2008).
The t-SNE visualization of the GEM can be found in Figure 1,

which shows the spatial representation of the 293 samples, based
on their gene expression profiles. The cancer samples, TCGA-
UCEC and TCGA-UCS (represented by green and pink dots, re-
spectively), can be seen segregating separate from the normal
samples, GTEx-Normal and TCGA-Normal (red and blue, respec-
tively). One TCGA-UCEC outlier was boxed and brought in closer
to allow for better visibility of the two main clusters.

Constructing condition-specific GCNs
To construct condition-specific GCNs (csGCNs) from the uterine
GEM, we first used Knowledge Independent Network
Construction (KINC) (https://github.com/SystemsGenetics/KINC,
last accessed November 16, 2021). KINC identifies gene coexpres-
sion edges that are condition-specific. The conditions of interest
for this study are normal uterine tissue (GTEx-Normal), and two
types of cancer (TCGA-UCEC and TCGA-UCS). KINC uses GMMs
to cluster samples, then performs a pairwise gene correlation
analysis on each cluster. Only clusters with greater than 25 sam-
ples were considered, so the TCGA-Normal samples were not
used for any further analyses. Condition-specific gene pairs with
a Spearman correlation <�0.5 or >0.5 were considered for fur-
ther testing. Low-powered edges within each cluster were re-
moved, and a hypergeometric test was used to assign P-values to
those remaining. Condition-specific networks were created and
edges within each network with a P-value >0.001 were removed.
Biased edges were also removed, and remaining edges were
ranked based on their P-values and similarity scores. Through
this process, KINC built three csGCNs: GTEx-Normal (14,044
edges and 4,372 genes), TCGA-UCEC (2,861 edges and 1,496

Figure 3 Cytoscape visualization of UCS network. UCS-specific network containing coexpression and regulatory edges. An interactive network is
available in the Supplementary Data Cytoscape file.

Table 2 Uterus condition-specific gene coexpression network-gene regulatory network global attributes

Sample condition Samples Edges Genes TFs TF/Gene k Significant Edges DE Genes DE TFs DE TFs/Genes DEG k

GTEx_Normal 82 17,547 4,281 459 91 7.26 11,193 3,475 334 83 5.75
TCGA_UCEC 141 3,976 1,462 361 34 4.28 2,994 1,302 277 31 3.72
TCGA_UCS 47 41 39 15 0 1.52 22 35 11 0 0.96
TCGA_UCEC_Triangle 141 22 7 4 0 4.00 20 7 4 0 3.64
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genes), and TCGA-UCS (24 edges and 39 genes) (Table 1). To get a
better idea of network connectivity, we multiplied the number of
edges by two and divided that number by the number of nodes to
find k. The GTEx-Normal had the highest average connectivity
(k¼ 6.42), followed by UCEC (k¼ 3.82), and finally UCS (k¼ 1.23)
(Table 1). Further details on GCN construction are provided at
http://dx.doi.org/10.17504/protocols.io.by85pzy6 (last accessed
November 16, 2021).

Before further investigating these csGCNs, we wanted to ana-
lyze the gene expression patterns of the genes within the net-
works. More specifically, we were interested in determining if the
genes within the csGCNs were differentially expressed between
each respective cancer condition and GTEx-Normal. A total of
20,242 genes were analyzed for both UCEC and UCS. The differen-
tial gene expression analysis was performed using DESeq2_1.30.1
in R 4.0 (https://bioconductor.org/packages/release/bioc/html/
DESeq2.html, last updated November 16, 2021). Genes had to
have expression values for at least 50 samples for each analysis.
In total, 14,551 and 13,898 genes were found to be significantly
differentially expressed in the comparison of GTEx-Normal with
UCEC and UCS, respectively (adjusted P-value <0.001).

The genes within each GCN were merged with the differential
expression analysis to denote the differential expression status of
each csGCN gene. Of the 1,496 genes in the UCEC-specific net-
work, 1,333 were differentially expressed, accounting for roughly
89% of the genes. In the UCS-specific network 35 of the 39 genes
were differentially expressed, accounting for 90% of the genes.
For the UCEC csGCNs, when observing only the DEGs and DEG
edges (edges in which both nodes are DEGs), there is a slight in-
crease in k, of which can also be observed in GTEx-Normal. When
similarly assessing UCS, k slightly decreases. The csGCNs are rep-
resented in Figure 2 (UCEC), Figure 3 (UCS), and Supplementary
Figure S1 (GTEx-Normal). In the network visualizations, the genes
are represented as blue nodes, and coexpression edges are
depicted as gray lines. Furthermore, the text color of each node
denotes if the gene is upregulated in cancer (green), downregu-
lated in cancer (red), or was not significantly different between
cancer and GTEx-Normal (black). The attributes of each GCN net-
work can be found in Table 1. The complete list of condition-
specific edges and each node’s DEG status can be found in
Supplementary Table S1.

Directed regulatory edges derived from the GTEx database and
published by the Glass Lab at Harvard were downloaded (https://
sites.google.com/a/channing.harvard.edu/kimberlyglass/tools/gtex-
networks, last updated November 16, 2021). We extracted the
uterine regulatory edges and merged them with the coexpression
edges in our csGCNs to create condition-specific GRNs (csGRNs).
Similar to the GCN construction, the TFs were also subject to the
differential expression analysis. Figures 2 and 3 both contain
these regulatory edges (denoted as arrowed edges) for UCEC and
UCS, respectively. Their regulation pattern in cancer is denoted
like that of the genes described above (red: significantly downre-
gulated in cancer; green: significantly upregulated in cancer;
black: no significant difference in expression). A summary of the
GCN–GRNs can be found in Table 2.

Integration of regulatory edges to construct
condition-specific GRNs
Another step we included in GRN assembly was a ratio analysis
comparing the expression ratio of the TF to the TR. For each regu-
latory edge, the TF/TR ratio was compared between GTEx-
Normal samples and the respective cancer samples using a

Student’s t-test. In Figures 2 and 3, the regulatory edges with sig-
nificantly different ratios (P-value <1E�5) are shown as orange
arrowed edges, and those without a significantly different ratio
between normal and cancer conditions are shown as black
arrowed edges. More detailed descriptions of these analyses can
be found at http://dx.doi.org/10.17504/protocols.io.by85pzy6 (last
updated November 16, 2021).

Of the 1,101 regulatory edges investigated for the UCEC GRN,
356 had a significantly different TF/TR ratio between GTEx-
Normal and UCEC samples and consisted of a TF and TR that
were both differentially expressed. Because those edges meet
three separate requirements (differentially expressed TF, differ-
entially expressed TR, and significant TF/TR ratio), they will be
referred to as “significant” regulatory edges. A summary of the
distribution of edges across the four possible expression patterns
(TF and TR up, TF and TR down, TF up and TR down, TF down
and TR up) can be found in Figure 4. Of the 356 significant edges,
163 had a lower TF expression and higher TR expression in UCEC.
The least common TF and TR expression patterns found in the
UCEC network was one in which both the TF and TR were both
upregulated. In the UCS-specific GRN there were only three regu-
latory edges that met the significance criteria, none of which had
the same TF and TR expression pattern (one TF down and TR up
edge, one TF up and TR down edge, one TF and TR down edge). A
heatmap visualization with DEG status of TFs and TRs, TF and
TR expression pattern in cancer, and designation of significant
TF/TR ratios can be seen in Supplementary Figure S2.

Within these csGRNs, we were particularly interested in po-
tential co-regulation relationships, so we selected “triangle” sub-
networks for further study. Here, we define a triangle
relationship as one in which a TF regulates two TRs that are con-
nected by an csGCN edge. These triangle relationships were
extracted from the UCEC GRN to create what we have deemed
the “UCEC triangle GRN.” As seen in Figure 5, the UCEC triangle
GRN is made up of four TFs and seven genes, almost all of which
have a significantly lower expression in UCEC compared with
normal, as noted by the red gene names. In this triangle network
there is one highly connected core group including genes TSHZ3,
GPR124, LDB2, and PDGFRB, and TF NRF1. All the gene pairs within
that core group are co-expressed, and NRF1 has a significant TF/
TR ratio with each gene. Likely because of its smaller size, no tri-
angle relationships were present in the UCS GRN, so therefore no
corresponding triangle GRN was assembled. The attributes of the
UCEC triangle GRN can be found in Table 2 and the DNA muta-
tion rates for these genes in UCEC can be found in
Supplementary Table S7.

Functional enrichment of differentially expressed
genes within condition-specific GCNs
Functional enrichment was performed for the genes within the
UCEC GCN, the UCS GCN, and the UCEC triangle GRN using
ToppFun (https://toppgene.cchmc.org/enrichment.jsp). ToppFun
uses a set of genes as input to identify associations of those genes
with published annotations, such as microRNAs, phenotypes,
and cell types. The DEG list for each csGCN was used as the in-
put, and the default full gene set as the background. The UCEC
DEG list (n¼ 1,333 genes) had 16,305 significant associations (q-
val FDR B&H< 1E�5). Several associations of interest included
ovarian cancer (q-val FDR B&H¼ 8.51E�73), endometrial cancer
(q-val FDR B&H¼ 2.39E�54), cervical cancer (q-val FDR
B&H¼ 3.03E�45), and normal endometrial tissue (q-val FDR
B&H¼ 6.56E�43). Functional enrichment of the UCS DEG list
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(n¼ 35) yielded four significant associations (q-val FDR
B&H< 1E�5), of which included basal lung cells (q-val FDR
B&H¼ 3.46E�6), immune cells (q-val FDR B&H¼ 3.46E�6), and
“genes upregulated in uterus upon knockout of BMP2” (q-val FDR
B&H¼ 6.62E�6). Functional enrichment of the genes within the
UCEC triangle GRN was also performed, which yielded 110 signifi-
cant associations (q-val FDR B&H< 1E�5). These associations in-
cluded many TCGA cancers, like that of the bladder, stomach,
lung, and ovary, as well as mesenchymal cells. The functional
enrichment associations for the DEGs within the UCEC, UCS,
UCEC triangle, and GTEx networks can be found in
Supplementary Table S6.

Discussion
In this study, we constructed uterine condition-specific gene rela-
tionship networks where genes are defined by coexpression and
regulatory edges. Our csGCN search space was a unified uterine
GEM containing cancerous (TCGA-UCEC and TCGA-UCS) and
normal (TCGA-Normal and GTEx-Normal) tissue samples. The
directed GRN graph was derived from annotated uterine gene
regulatory relationships using GTEx-Normal tissue samples.
Thus, our final gene relationship graph for uterine derived nor-
mal and tumor samples is built from the appropriate tissue.

As shown in Figure 1, the global RNA expression profiles for
normal and diseased uterine samples segregated due to the

overall gene expression patterns, with the exception of one
TCGA-UCEC outlier that can be seen in the top left corner of the
t-SNE visualization. To identify genetic expression subsystems
that discriminate between conditions (i.e., biomarker systems),
we assembled csGCNs for two uterine cancers (UCEC and UCS)
and normal uterine tissue (GTEx-Normal). The coexpression
edges were discovered using KINC, a program that finds gene
pairs based on correlations in their expression patterns within
each respective condition. TCGA-Normal samples could not be
processed through KINC due to the limited number of samples,
so therefore, they were excluded from the remaining analyses.
To further validate these csGCNs, a differential expression analy-
sis (DESeq2) was used to find coexpression edges that have a sig-
nificantly different expression pattern between cancer and
normal samples. The DESeq2 results can be found in
Supplementary Tables S2 and S3, a summary of which can be
found in Table 1.

We then incorporated directed regulatory edges (TF to TR) into
each respective GCN to build csGRNs. This was done by adding
the regulatory edges into each GCN if the TR was present in the
network. In the UCEC GRN, there were several instances where
one TF was associated with both nodes of a coexpression edge, a
relationship we dubbed a “triangle.” These potential coregulation
triangle relationships were extracted, which constitutes another
GRN, the UCEC triangle GRN. Finally, we wanted to further inves-
tigate these regulatory edges by comparing the TF/TR FPKM ratio

Comparing Regulatory Edges between UCEC and Normal Tissues Comparing Regulatory Edges between UCS and Normal Tissues

Edges Tested
Edges: TF and TR both differen�ally expressed
Edges: Significantly Different TF/TR Ra�os
Sig Edges: DE TFs and TRs and have Sig Diff TF/TR Ra�os

Sig Edges: TF down, TR up
Sig Edges: TF up, TR down
Sig Edges: TF & TR down
Sig Edges: TF & TR up

Figure 4 Expression patterns of transcription factors and target genes in cancer-specific regulatory edges. Distribution of expression patterns and ratio
analyses results for regulatory edges in UCEC and UCS networks compared with GTEx.

Figure 5 Cytoscape visualization of UCEC triangle network. A UCEC-specific triangle network in which transcription factors are associated with both
nodes of a coexpression edge.
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for the cancer and normal samples, then use a t-test to determine
if the ratios between the two groups were significantly different.
This was completed for the regulatory edges in the UCEC, UCS,
GTEx, and UCEC triangle GRNs. For the GTEx GRN, the genes and
TFs had to be differentially expressed in both UCS and UCEC, and
regulatory edges had to have a significantly different TF/TR ratio
compared with UCEC and UCS. The regulatory edges with signifi-
cantly different TF/TR ratios can be seen as orange arrowed edges
in Figure 2 (UCEC GRN), Figure 3 (UCS GRN), Figure 5 (UCEC tri-
angle GRN), Supplementary Figure S1 (GTEx GRN) and are docu-
mented in Supplementary Table S4 (Cancer GRN edges) and
Supplementary Table S5 (GTEx GRN edges).

UCEC biomarker systems
The UCEC triangle GRN was constructed due to our interest in
possible coregulation of csGCN edges. This triangle subnetwork
drastically reduced the size of the overall UCEC GRN, allowing us
to further investigate these genes of interest. All the genes and
TFs in the UCEC triangle GRN are differentially expressed, and
all, except ETV3, had a significantly lower expression in UCEC.
Five of the seven genes in the UCEC Triangle GRN are not in-
cluded in the GTEx-Normal GCN, indicating their expression pat-
terns change in UCEC. TMEM119 and CDH11 are the exceptions,
each with two coexpression edges in the normal uterine network.
Meanwhile all seven genes are highly connected in the UCEC-
specific GCN, associated with a total of 106 other genes (mean-
¼ 28 edges/gene, median ¼ 20 edges/gene). GPR124 and CDH11
have the highest and lowest connectivity with 66 and 6 coexpres-
sion edges, respectively. In the UCEC triangle GRN there are also
four TFs, each with varying connectivity across the UCEC and
GTEx networks. ETV3 and NRF1 have the highest connectivity,
each regulating 13 genes with significant TF/TR ratios. The gene
with the lowest number of significant regulatory associations in
UCEC was GABPA with seven edges. In the GTEx GRN NRF1 has
the most significant associations at 13 genes, while ELK4 has the
fewest with four significant associations. It is possible that these
changes in coexpression patterns between the UCEC and GTEx-
Normal GCNs are due to mutations in the cis or trans DNA sites.

In the UCEC triangle GRN there is a highly connected core
group composed of TF NRF1 and genes GPR124, LDB2, TSHZ3, and
PDGFRB. NRF1 works in cell homeostasis through transcriptional
control mechanisms and has previously been implicated in mul-
tiple types of cancer (Bhawe and Roy 2018; Yuan et al. 2018).
GPR124, a G-protein coupled receptor, is involved in the WNT
pathway (Zhou and Nathans 2014). Mutations of other genes in
this pathway have been associated with endometrial cancer
(Levine 2013). TSHZ3 has been shown to be downregulated in
breast, prostate, and colorectal cancers, similar to our results
(Yamamoto et al. 2011; Zhou et al. 2021). LDB2 also works in tran-
scriptional regulation and has been found to have a lower expres-
sion in liver cancer as well (Yu et al. 2017). PDGRFB was recently
associated with TMEM119, another member of the UCEC triangle
GRN, and AKT, a previously identified endometrial cancer hub
gene, in ovarian cancer (Huo et al. 2019; Sun et al. 2021).

KINC, DESeq2, and the TF/TR ratio analysis have all been com-
pleted based on RNA expression values found in the uterine GEM.
The Genomic Data Commons Data Portal (GDC) contains infor-
mation on DNA mutation rate and CNV occurrence rate for the
UCEC samples from our analysis, as well as 389 additional sam-
ples that have been added since the uterine GEM was created by
the Wang Lab. This platform allows for comparison of mutation
rates for our genes of interest with other cancer projects, includ-
ing other TCGA projects. The number of projects that

investigated these genes ranges from 21 to 35. Of the 11 nodes (7
genes, 4 TFs) in the UCEC Triangle GRN, nine had the highest mu-
tation rates in TCGA-UCEC. For LDB2 and TMEM119 the highest
mutation rate was in TCGA-SKCM, a melanoma study and was
followed immediately by TCGA-UCEC. Both genes have been im-
plicated in other cancers, and therefore are not solely specific to
endometrial cancer (Yu et al. 2017; Zheng et al. 2018). A summary
of the DNA mutations rates of these genes can be found in
Supplementary Table S7.

When investigating the CNV occurrence rate for the UCEC
Triangle GRN genes and TFs, UCEC consistently had a lower rate
of CNV events at those genes compared with UCS. For example,
when investigating TSHZ3 TCGA-UCEC ranked seventh highest in
CNV occurrence rate with 60 events out of 510 cases (11.76%),
while TCGA-UCS ranked no. 1 with 21 events out of 56 cases
(37.5%). While initially we expected UCEC CNV events to be more
common, given they are specific to a UCEC network, this seems
to reflect the results in TCGA’s comprehensive UCEC study where
UCS samples were significantly more likely to be characterized
by CNV events compared with endometrioid samples (Levine
2013). These CNV rates can also be found in Supplementary
Table S7.

There are several previously reported genes with DNA muta-
tions specific to UCEC including FGFR2, CTNNB1, and POLE (Levine
2013). FGFR2 and CTNNB1 were not included in the final DEG
results and had no condition-specific edges. POLE was not consid-
ered a DEG in the UCEC vs GTEx-Normal analysis (P-adj ¼ 0.033),
but did have coexpression edges with PHF1, ABRACL, SPAG5,
STC2, and CMYA5 in the GTEx-Normal GCN. POLE was not pre-
sent in the UCEC-specific GCN.

UCS biomarker systems
The TCGA landmark paper also identified several genes specific
to UCS with common mutations (Cherniack et al. 2017). These in-
clude RB1, ZBTB7B, and U2AF1, each of which was found to be
mutated in 4�11% of samples. In our analysis RB1 was found to
be differentially expressed in UCS samples (P-adj ¼ 4.32E�5) but
did not have any UCS-specific edges. Meanwhile, U2AF1 was not
found to be differentially expressed in UCS (P-adj ¼ 6.36E�3). Like
the other genes listed above, it is possible that the DNA muta-
tions described in previous literature did not result in a signifi-
cant difference in the mRNA expression. ZBTB7B was not
included in the final differential expression results, due to pre- or
postanalysis filtering.

Combined UCEC and UCS biomarker systems
Previous studies have found several commonly mutated genes
for both UCEC and UCS tumors: TP53, PTEN, PIK3CA, PPP2R1A,
FBXW7, and KRAS (Cherniack et al. 2017). Of these six genes, five
of them (TP53, PTEN, PPP2R1A, FBXW7, and KRAS) were all found
to be differentially expressed in our study. PIK3CA was not in-
cluded in the final differential expression results. However, when
looking between condition-specific networks we only observe a
change in gene coexpression patterns for the KRAS gene when
comparing UCEC and GTEx samples. In UCEC samples KRAS is
co-expressed with CDON and FZD4, while it is co-expressed with
TSPAN2 in the GTEx-Normal samples. One possible mechanism
that could be attributed to this change is through the association
of TFs. However, there were no known TFs that regulate KRAS in
the uterus. Instead, the change in the co-expression relationships
could be due to the mutation rate, as KRAS is mutated in roughly
25% of UCEC cases (Grossman et al. 2016). Other possibilities in-
clude epigenetic modifications, associated microRNAs, or other
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cellular interactions, which could be investigated in a future
study. Regarding the remaining genes listed above, there were no
condition-specific edges. While they were differentially expressed
between UCS and GTEx-Normal, KINC did not find any changes
in gene co-expression relationships between UCS and normal
uterine tissue. It is possible that although those genes are rela-
tively more frequently mutated in uterine cancer, there are no
changes in the gene expression patterns.

Other genes have also been previously identified that had
mutations in both UCEC and UCS (Cherniack et al. 2017). These
include CDH4, ARID1A, ARHGAP35, SPOP, and PIK3R1. CDH4 was
not found to be differentially expressed in UCEC or UCS samples.
ARHGAP35 was not found to be differentially expressed in UCS
samples and was dropped in pre- or postprocessing for the UCEC
differential expression analysis. ARID1A was also absent from
the differential analysis results for both UCEC and UCS analyses.
SPOP was found to be differentially expressed in both UCS and
UCEC samples and had several condition-specific relationships.
In UCEC SPOP is coexpressed with TOM1L1 and C2ORF15, and
coexpressed with many genes in GTEx-Normal (PPP1R12B,
H2AFY, BZW2, TPM3, LRRC59, COPG1, HLF, and EIF4G1). SPOP has
no associations of annotated TFs in the uterus, so it is possible
that the changes in coexpression edges could be due to the muta-
tions. PIK3R1 has been shown to have mutations in both UCEC
and UCS, but more commonly in UCEC (Cherniack et al. 2017). In
our study, PIK3R1 was differentially expressed in both UCEC (P-
adj ¼ 2.41E�4) and UCS (P-adj ¼ 3.08E�12) but did not have any
condition-specific coexpression edges.

Uterine cancer is one of the leading cancers among women in
the United States. Because of this, we were interested in using
bioinformatic tools to investigate the genes and their relation-
ships that differentiate endometrial cancer and UCS from normal
uterine tissue. We accomplished this by constructing and investi-
gating GCNs and GRNs for normal and cancerous conditions in
the uterus, and validating them using differential expression,
functional enrichment, and a ratio analysis of expression data for
regulatory relationships. These networks add to the growing
knowledge of uterine cancer biomarker systems and help eluci-
date the altered biological pathways that occur. In addition, we
aim to better characterize uterine cancer by pursuing further
investigations into the two distinct types of endometrial cancer,
specifically endometrioid carcinoma and serous adenocarci-
noma. In total we hope this knowledge can be used to better
prognose and develop treatments for individuals impacted by
these uterine cancers in the future.

Data availability
The Supplementary tables containing full networks are available
via figshare: https://doi.org/10.25387/g3.16869645.
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