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Epilepsy is associated with numerous neurodevelopmental disorders. Transcranial
magnetic stimulation (TMS) of the motor cortex coupled with electromyography (EMG)
enables biomarkers that provide measures of cortical excitation and inhibition that are
particularly relevant to epilepsy and related disorders. The motor threshold (MT), cortical
silent period (CSP), short interval intracortical inhibition (SICI), intracortical facilitation
(ICF), and long interval intracortical inhibition (LICI) are among TMS-derived metrics that
are modulated by antiepileptic drugs. TMS may have a practical role in optimization of
antiepileptic medication regimens, as studies demonstrate dose-dependent relationships
between TMS metrics and acute medication administration. A close association between
seizure freedom and normalization of cortical excitability with long-term antiepileptic
drug use highlights a plausible utility of TMS in measures of anti-epileptic drug efficacy.
Finally, TMS-derived biomarkers distinguish patients with various epilepsies from healthy
controls and thus may enable development of disorder-specific biomarkers and therapies
both within and outside of the epilepsy realm.

Keywords: biomarker (development), transcranial magnetic stimulation (TMS), epilepsy—abnormalities,
classification, drug therapy, drug development and application, neuromodulation, motor cortex excitability

Abbreviations: TMS, transcranial magnetic stimulation; V/m, volts per meter; A/m2, ampere per meter2; T, tesla; spTMS,
single-pulse TMS; ppTMS, paired-pulse TMS; rTMS, repetitive TMS; EMG, electromyography; rMT, resting motor
threshold; E:I, excitation to inhibition ratio; APB, abductor pollicis brevis; ISI, inter-stimulus-interval; LTP, long-term
potentiation; LTD, long-term depression; TBS, theta burst stimulation; cTBS, continuous theta burst stimulation; iTBS,
intermittent theta burst stimulation; MEP, motor evoked potential; CS, corticospinal; AEDs, antiepileptic drugs; MT,
motor threshold; % MO, percent machine output; aMT, active motor threshold; CSP, cortical silent period; LICI,
long-interval intracortical inhibition; SICI, short-interval intracortical inhibition; CBZ, carbamazepine; LCM, lacosamide;
LTG, lamotrigine; PHT, phenytoin; LEV, levetiracetam; VPA, valproate; IGE, idiopathic generalized epilepsy; TPM,
topiramate; AMPA, alpha-amino-3-hydroxy-5-methy; -4-isoxazole propionic acid; KD, ketogenic diet; VNS, vagus nerve
stimulator; HupA, Huperzine A; NMDAR, N-methyl-D-aspartate receptor; PTZ, pentylenetetrazole; RTG, Retigabine;
PME, progressive myoclonic epilepsies; ULD, including Unverricht-Lundborg disease; LBD, Lafora body disease; MERRF,
myoclonic epilepsy with ragged red fibers; PVINs, parvalbumin-positive inhibitory interneurons; DS, Dravet syndrome;
(SSADH) deficiency, succinic semialdehyde dehydrogenase.
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TMS BASICS AND MEASURES IN
EPILEPSY
Epilepsy is among the most common neurologic disorders
in childhood, and accompanies numerous neurodevelopmental
disorders, particularly the autism spectrum disorders (ASDs;
Levisohn, 2007; Tuchman and Rapin, 2002; Danielsson et al.,
2005). For patient populations with epilepsy, biomarkers that
reflect magnitudes of cortical excitation and inhibition are highly
desirable as metrics of disease severity and target engagement
by therapeutics. Transcranial magnetic stimulation (TMS) is a
30-year-old protocol for focal, noninvasive, electrical cortical
stimulation that enables such measures across ages (Barker et al.,
1985). In TMS, powerful fluctuating extracranial magnetic fields
induce intracranial electrical current. When placed at the scalp,
TMS induces electric current in the nearby cerebral cortex and
allows for the operator to either measure or modulate focal
cortical excitability.

The TMS ‘‘dose’’ per experiment is defined by hardware
factors that affect the electromagnetic field. These include coil
shape, size, electrical properties, and its placement relative
to cortical structures. The stimulation parameter space also
includes individual stimulus components such as pulse shape
(rectangular, sinusoidal, exponential) and amplitude. The
physiologic response to TMS is further determined by stimulus
train parameters such as frequency, duration, inter-train interval,
and the number of trains per unit time. The electric field
generated by TMS is not measured in vivo but can be effectively
modeled and represented in volts per meter (V/m). Alternatively,
TMS-induced current density can be approximated in ampere
per meter2 (A/m2; Peterchev et al., 2012).

Stimulation focality in TMS is in part governed by coil
geometry. With a common type of TMS coil termed figure-of-
eight, the volume of depolarized cortex with a single stimulus can
be as small as 1 cm3. When positioned over the motor cortex,
TMS by a figure-of-eight coil enables selective activation of
intrinsic hand muscles in the limb contralateral to the stimulated
hemisphere, without co-activation of more proximal muscle
groups. Such motor cortex activation can be quantified with skin
surface electromyography (EMG) that records a per-stimulus
motor evoked potential (MEP) which predictably reflects the
magnitude of stimulation and is the main outcome measure
in TMS studies of the cortical excitation:inhibition (E:I) ratio
(Figure 1; reviewed in Kobayashi and Pascual-Leone, 2003; Frye
et al., 2008).

TMS is unique among brain stimulation protocols in that
it has both diagnostic and therapeutic potential. Three TMS
protocols, all combined with surface EMG to measure MEP
amplitude, are commonly employed to measure the cortical E:I
ratio in epilepsy: (1) single-pulse TMS (spTMS); (2) paired-pulse
TMS (ppTMS); and (3) repetitive TMS (rTMS). While there is
appreciable device-to-device output variability of focality and
magnitude of stimulation via TMS, the overall pulse width, and
pulse shape (monophasic and biphasic) are relatively consistent
across devices. Experimental devices with variable pulse width
and shape are emerging, but thus to date are not widely
implemented (Peterchev et al., 2011). In the most common

FIGURE 1 | Representative transcranial magnetic stimulation (TMS) motor
cortex activation. (A) An approximation of stimulating electric field (e-field)
induced by a single TMS pulse is displayed on a 3D reconstruction of an
individual’s anatomic magnetic resonance imaging (MRI), where field center is
indicated by the junction between the red and blue arrows, indicating the
direction of induced current, with corresponding e-field strength at the
stimulation site (V/m) shown in red in the bottom left. The composite map of
left hemispheric stimulation sites evoking motor evoked potentials (MEPs) of
the right abductor pollicis brevis (APB) muscle, where intensity of response is
color coded (heat map) from lowest (gray) to highest (white), are displayed on
the cortical surface rendering. (B) Representative right APB MEP sample
(green deflection) showing right APB resultant from left hemisphere
stimulation, where the vertical line (white) corresponds to stimulus time. MEP
amplitude and latency are indicated on the right.

embodiment of spTMS, the motor cortex is stimulated while
muscle activation in a contralateral limb is monitored by surface
EMG. spTMS, when used to determine the resting motor
threshold (rMT), guides stimulation intensity in therapeutic
rTMS (Figure 2A; Theodore, 2003; Ziemann, 2004).

spTMS coupled with surface EMG is also emerging as an
important tool for functional topographic corticospinal tract
mapping for purposes of presurgical planning (Lefaucheur and
Picht, 2016; Hameed et al., 2017; Hannula and Ilmoniemi, 2017;
Kaye et al., 2017b). ppTMS is an experimental technique, also
delivered over the motor cortex, used to measure the cortical E:I
ratio. In most common ppTMS protocols, two consecutive pulses
are delivered to the hand motor region at a fixed inter-stimulus-
interval (ISI) such that the MEP resultant from the second (test)
stimulus is modulated by an antecedent (conditioning) stimulus.
Depending on stimulus intensity and the ISI, ppTMS can reveal
the magnitude of regional inhibitory or excitatory signaling
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FIGURE 2 | TMS-derived metrics of motor cortex excitation and inhibition. (A) Resting motor threshold (rMT) for the APB muscle is calculated by identifying the
minimum stimulus strength, measured in percent machine output (% MO), that evokes an MEP of a fixed amplitude (typically ≥50 µV) in the APB at rest in a majority
of trials. Stimulus strength is indicated in the left panel, with resulting MEPs shown in the right panel, where red arrows indicate the time of stimulation and percent
stimulator output is proportionate to the arrow length. (B) ppTMS paradigms where a subthreshold conditioning stimulus (short red vertical line) followed by a
supra-threshold test stimulus (longer red vertical line). At short inter-stimulus-intervals (ISIs) (1–5 ms) short interval intracortical inhibition (SICI) is seen with inhibition of
the test MEP by the antecedent conditioning stimulus. At longer ISIs (10–20 ms), test MEP amplitude is enhanced relative to the control MEP, such that ICF is seen.
(C) Still longer ISIs (50–300 ms) are applied with two suprathreshold stimuli in LICI protocols where the MEP resultant from the test stimulus is predictably lower in
amplitude than the preceding MEP resulting from the conditioning stimulus. In (D) the cortical silent period (CSP), interruption of ongoing electromyography (EMG)
activity for a voluntarily contracting target muscle, occurs following single-pulse TMS (spTMS).

strength (Figures 2B–D; Ziemann, 2003; Dhamne et al., 2015;
Hsieh et al., 2017; Damar et al., 2018).

rTMS, delivered in trains lasting minutes, is most commonly
used to modulate regional cortical excitability to suppress
neuropsychiatric symptoms. In the motor cortex, rTMS is
commonly administered in high-frequency (>10 Hz) or
low-frequency (<1 Hz) protocols aimed to enhance or suppress,
respectively the MEP amplitude to provide a metric of cortical
plasticity. Notably, such suppression and facilitation varies
among individuals (Maeda et al., 2002). The physiologic
mechanisms by which rTMSmodifies cortical excitability are not
completely understood but resemble well-described phenomena
of use dependent long-term potentiation (LTP) and long-term

depression (LTD) of excitatory synaptic strength modulated
by glutamatergic and gamma-aminobutyric acid (GABA)-ergic
mediators (Fitzgerald et al., 2006; Pascual-Leone et al., 2011;
Pilato et al., 2012; Muller et al., 2014; Yang et al., 2014).

Patterned rTMS protocols, such as theta burst stimulation
(TBS) of the motor cortex, are also used to measure cortical
plasticity, where the two principal patterns of TBS are continuous
theta burst stimulation (cTBS) and intermittent theta burst
stimulation (iTBS). Both consist of delivery of 50 Hz pulses in
bursts of three with an inter-burst interval of 200 ms, which
mimic endogenous theta rhythms. As with other TMS protocols
intended to produce biomarkers, TBS relies on changes in
MEP amplitude as the main outcome measure. cTBS paradigms
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involve continuous train of TBS over a given duration, which, in
typically developing individuals, result in net MEP suppression
or depression of corticospinal excitability in most instances. In
iTBS, a 2-s train of TBS is repeatedly delivered every 10 s,
—in healthy adults, this often (though not always) leads to
MEP facilitation or corticospinal excitation (Jannati et al., 2017).
Mechanistically, as with conventional rTMS, TBS protocols
likely engage mechanisms of glutamatergic and GABA-ergic
synaptic plasticity (Huang et al., 2005; Stagg et al., 2009;
Oberman et al., 2011; Mix et al., 2015; Blumberger et al.,
2018).

MOTOR CORTEX TMS SAFETY IN
EPILEPSY

spTMS and ppTMS are well-tolerated by subjects at the extremes
of age, with only rare and mild adverse events reported among
infant, child and elderly populations (Liepert et al., 2001;
Eyre, 2003; Hameed et al., 2017; Kaye et al., 2017a). Several
TMS devices are now FDA-cleared for use in children and
adults. TMS safety and tolerability in patients with epilepsy is
underscored by the growing use of neuronavigated TMS (TMS
is coupled with frameless stereotaxy; Figure 1) as a presurgical
functional mapping tool in children with developmental delay
and/or epilepsy who candidates for respective epilepsy surgery
(Narayana et al., 2015; Kaye et al., 2017a,b).

Specifically among children, the subjective perception of TMS
seems favorable. Children who undergo TMS generally rate the
experience as positive with little adverse events occurring during
the sessions. Some children have even reported TMS to be more
enjoyable than watching TV or going to the dentist (Garvey
et al., 2001). Notably, in patients with epilepsy, per-subject risk
for seizure with rTMS, spTMS or ppTMS is higher, yet is less
than 3% crude per-subject risk (Schrader et al., 2004; Bae et al.,
2007; Rossi et al., 2009; Pereira et al., 2016). The favorable safety
profile of TMS has allowed for its use for studying cortical
excitability in elderly patients with neurodegenerative disorders
(Liepert et al., 2001).

TMS protocols are also available in rats, which underscores
the versatility of motor cortex TMS as a protocol that is available
in both clinical and preclinical arenas (Rotenberg et al., 2008;
Hsieh et al., 2011; Gersner et al., 2015; Tang et al., 2016; Damar
et al., 2018; Hameed et al., 2018).

TMS-DERIVED MEASURES OF CORTICAL
EXCITABILITY, AND THEIR MODULATION
BY ANTIEPILEPTIC DRUGS

A range of cortical excitability measures that are affected by
both epilepsy and antiepileptic drugs (AEDs) can be obtained
by TMS coupled with surface EMG. Motor threshold (MT)
is often defined as the minimum percentage of stimulator
output (% MO) that evokes an MEP of a fixed amplitude
(typically >50 µV) in a target muscle either at rest (rMT)
or during voluntary contraction (active motor threshold, aMT)
in a majority of trials (Theodore, 2003; Ziemann et al., 2015;

Figure 2A). The cortical silent period (CSP) is a TMS-induced
interruption of activity in the EMG of the voluntarily contracting
target muscle. The early segment of the CSP is related to
spinal inhibition while the later segment is hypothesized
to be of motor cortical origin. Short-interval intracortical
inhibition (SICI) results from inhibition of the test MEP by
a conditioning stimulus. This ppTMS protocol involves the
application of a subthreshold conditioning stimulus and supra-
threshold test stimulus at short ISIs (1–5 ms). Stimulation using
a similar protocol but with longer ISIs of 10–20 ms results
in intracortical facilitation (ICF; Kobayashi and Pascual-Leone,
2003; Ziemann, 2004). Long-interval intracortical inhibition
(LICI) is measured using ppTMS with two supra-threshold
stimuli applied at long ISIs of 50–300 ms in which the
conditioning stimulus inhibits the test MEP. Such TMS-EMG
parameters are summarized in Table 1 (Rotenberg, 2018) and
illustrated in Figures 2B–D.

rMT reflects the degree of cortical excitability which
is affected by voltage-gated sodium channel blockers.
Carbamazepine (CBZ), lacosamide (LCM), lamotrigine (LTG),
and phenytoin (PHT), increase rMT compared to the rMT
in drug-naïve patients with epilepsy and in patients without
epilepsy; these changes are reversible with withdrawal of the
given medication (Chen et al., 1997; Manganotti et al., 1999;
Kimiskidis et al., 2005; Lee et al., 2005; Li et al., 2009; Lang et al.,
2013; Ziemann et al., 2015). The effect of levetiracetam (LEV) on
rMT remains uncertain, as Sohn et al. (2001) show no change in
rMT with LEV administration, while Reis et al. (2004) report a
significant increase in rMT in patients taking LEV (Sohn et al.,
2001; Reis et al., 2004).

Notably, there is a dose-dependent relationship between
rMT and certain AEDs. Lee et al. (2005) measured serial rMT
and serum drug levels in healthy volunteers taking gradually
increasing dosages of CBZ over 5 weeks followed by an abrupt
cessation of the drug. rMT increased with increasing serum drug
levels of total and free CBZ (Lee et al., 2005). In 7 of 10 patients,
upon abrupt CBZ cessation, rMT remained elevated initially and
then gradually returned to the baseline over several days despite
the abrupt drop in serum CBZ levels. The sustained increase
in rMT despite absent serum CBZ level indicates that the rMT
(and perhaps other TMS-derived E:I metrics) may distinguish
between drug pharmacodynamics and pharmacokinetics (Lee
et al., 2005). As with CBZ, Lang et al. (2013) show a trend towards
a dose-responsive effect on rMT with LCM dosages of 200 mg
and 400 mg (Lang et al., 2013).

The effect a drug has on rMT can also provide information
regarding its antiepileptic mechanism of action. For example,
valproate (VPA) has no significant effect on rMT in healthy
volunteers. VPA does increase rMT in focal epilepsies while its
effect on rMT in patients with idiopathic generalized epilepsy
(IGE) remains unclear as there are contradictory findings
among studies (Reutens et al., 1993; Kazis et al., 2006; Li
et al., 2009; Zunhammer et al., 2011; Badawy et al., 2014).
Topiramate (TPM), like VPA has several mechanisms of action,
including voltage gated sodium channel antagonism, but does
not affect rMT while reducing ICF as its anti-epileptic properties
stem primarily from inhibition of ligand-gated AMPA subtype
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TABLE 1 | Transcranial magnetic stimulation-electromyography (TMS-EMG) metrics.

TMS-EMG parameter Protocol* Likely mechanism Examples of change with
medication

Resting motor threshold
(rMT)

Single-pulse TMS: measure of stimulus
strength necessary for a motor
response (recorded either by visual
inspection or EMG)

Cortical motor neuron voltage-gated
sodium channel-mediated membrane
excitability

Increased by voltage-gated sodium
channel blockers (e.g., phenytoin,
lacosamide) and voltage-gated
potassium channel openers
(e.g., retigabine)

Cortical silent period (CSP) Single-pulse TMS: measure of pause in
voluntary EMG activity after TMS

GABAB-mediated and
GABAA-mediated motor cortex
inhibition

Increased by GABAB agonists
(e.g., baclofen); increased by GABAA

positive allosteric modulators (e.g.,
lorazepam)

Short-interval intracortical
inhibition (SICI)

Paired-pulse TMS: subthreshold
conditioning stimulus precedes test
stimulus by 1–5 ms

GABAA-mediated regional cortical
inhibition

Increased by GABAA positive allosteric
modulators (e.g., lorazepam)

Intracortical facilitation (ICF) Paired-pulse TMS: subthreshold
conditioning stimulus precedes test
stimulus by 10–20 ms

Glutamate (NMDA and AMAPA receptor
types)- mediated excitation

Decreased by NMDA-type and
AMPA-type glutamate receptor
antagonists (e.g., memantine)

Long-interval intracortical
inhibition (LICI)

Paired-pulse TMS: suprathreshold
conditioning stimulus precedes test
stimulus by 50–300 ms

GABAB-mediated inhibition and (likely)
GABAA-mediated network inhibition

Increased by GABAB agonists
(e.g., baclofen); increased by GABAA

positive allosteric modulator (e.g.,
pentobarbital)

*Protocols vary slightly among laboratories; nearly always obtained from intrinsic hand muscles.

glutamate receptors and agonist effects on some subtypes of the
GABAA receptor (Angehagen et al., 2005). If VPA and TPM do
not modulate the rMT, then while in vitro they may indeed have
sodium channel blocking properties, these are not prominent
in vivo, or in humans—thus the antiepileptic efficacy of these
AEDs is less likely due to the sodium channel properties.

Antiepileptic medications also affect CSP duration, SICI, and
LICI—all measures of components of GABA-ergic inhibition.
CSP duration and SICI reflect motor cortical postsynaptic
inhibition. ICF reflects glutamate receptor-mediated excitability
that counters the inhibitory circuits reflected in SICI. GABAA
receptor positive allosteric modulators such as benzodiazepines
prolong short CSPs when low-intensity stimulation is used and
shorten long CSPs when high-intensity stimulation is used. SICI
is thought to represent fast inhibitory postsynaptic potentials
(IPSPs) in corticospinal neurons mediated by α2- or α3-GABAA
receptors. SICI is predictably enhanced by benzodiazepines and
barbiturates. LICI reflects slow IPSPsmediated in part by GABAB
receptors. LICI, where the long interval between pulses enables
signals to propagate across multiple local and distal networks
also likely reflects an aggregate inhibitory tone that is mediated
by the GABAA receptor system (Hsieh et al., 2011). As expected,
vigabatrin increases LICI, while there are conflicting reports on
lorazepam’s effect on LICI (Ziemann et al., 1996; Teo et al., 2009).
In animal models, LICI is also enhanced by pentobarbital and
suppressed by the GABAA receptor blocker pentylenetetrazole
(PTZ; Hsieh et al., 2011).

Notably, however, tiagabine has a more complex interaction
between the GABAA and GABAB receptor subtypes.
Increased extracellular GABA availability in this instance
results in predictable CSP prolongation and increased LICI.
However, tiagabine decreases SICI which is controlled by
presynaptic GABAB receptor-mediated autoinhibition of
inhibitory interneurons. This contributes to the net increase in

excitatory response as illustrated by the increase in ICF with
tiagabine administration.

N-methyl-D-aspartate (NMDA)-receptor antagonists
such as dextrorphan, the active metabolite of the prodrug
dextromethorphan, and memantine, and benzodiazepines such
as diazepam decrease ICF while enhancing SICI (Schwenkreis
et al., 1999). Table 2 summarizes the effects of various classes of
drugs on these variables.

TMS-EMG MEASURES IN EPILEPSY
PHARMACOTHERAPY

While changes in TMS parameters following acute drug
administration aid in the identification of mechanisms of
action of various drugs (or identify the mechanism of
TMS-derived phenomena) at the receptor level, the effect
of long-term administration of antiepileptic medications on
these parameters may serve as a proxy for prognosticating
efficacy of antiepileptic medications. A longitudinal study
with 1-year follow-up illustrated a reduction in cortical
excitability in patients with IGE or focal epilepsy who
became seizure-free with anti-seizure medications (Badawy
et al., 2010). In fact, while the rMTs were overall higher in
these patients than in the control subjects without epilepsy,
only the subset of patients with epilepsy who became
seizure-free demonstrated an increase in rMT. These findings
were independent of seizure type, seizure frequency, patient
current age or age at seizure onset, and serum levels of
the medication.

A subsequent study with a 3-year follow-up period compared
measures of cortical inhibition and facilitation in patients with
IGE or focal epilepsy, between those who remained refractory
to antiepileptic drugs and those who achieved seizure freedom
(Badawy et al., 2013). The mean rMT was higher in the
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TABLE 2 | Antiepileptic drug effect on TMS parameters.

Class/Drug MT CSP SICI ICF LICI Dose-responsive? Comments

Sodium channel
Carbamazepine ↑ - - - Yes
Lacosamide ↑ - - - Yes
Lamotrigine ↑ - - - Yes
Oxcarbazepine ↑ - - -
Phenytoin ↑ - - -
Potassium channel
Retigabine ↑ - - -
XEN1101 ↑ Yes
GABAA receptor
Diazepam - ↓

§
↑ ↓ -

Lorazepam - ↑
§

↑ ↓,- ↓ Conflicting reports on
effects on ICF in healthy
controls and a subject with
spinal cord stimulator

Tiagabine - ↑ ↓ ↑ ↑

Vigabatrin - ↑ - ↓ ↑

Calcium channel
Gabapentin† - ↑ ↑ ↓ No
Pregabalin† - ↑ ↓ - ↑ No
NMDA glutamate receptor
Dextromethorphan - - ↑ ↓

Memantine - - ↑ ↓

AMPA glutamate receptor
Perampanel ↑

Topiramate† - - ↑ ↓/-∗∗ Yes Dose-responsive
relationship with SICI

Other
Levetiracetam ↑, - - - - Conflicting reports on

effects on MT in healthy
controls

Valproic acid†
↑,- - - - Increased MT in IGE, no

change in healthy controls

MT, motor threshold; CSP, cortical silent period; SICI, short-interval intracortical inhibition; ICF, intracortical facilitation; LICI, long-interval intracortical facilitation; IGEm, idiopathic
generalized epilepsy; §stimulation intensity-dependent; ∗∗trending towards decrease but not statistically significant; †multiple mechanisms of action; ↑ increase; ↓ decrease; - no
change; blank cells, not tested; , conflicting results.

affected hemisphere in patients with focal epilepsy compared
to the unaffected hemisphere prior to initiation of anti-seizure
medications. There was no difference in pre-drug treatment
rMT between control patients without epilepsy and patients with
IGE. Patients whose focal seizures remained refractory following
initiation of one AED had an increase in rMT in the contralateral
(unaffected) hemisphere such that there was no difference
between the rMT in the two hemispheres. In patients who
achieved seizure freedom on monotherapy, mean rMTs were
higher in bilateral hemispheres in patients with IGE and patients
with focal epilepsy compared to those patients who remained
refractory. This pattern was maintained by the 30–36 months
follow-up time-frame. Patients with refractory focal epilepsy
developed a hyperexcitable contralateral hemisphere (at ISIs of
2 and 5 ms) at 30–36 months. A similar hyperexcitable response
was also seen during a time of continued seizures in patients
who would become seizure-free after the second medication.
When those patients became seizure-free, however, there was
subsequent normalization of all ISIs by the 30–36 months time
frame. For the seizure-free patients in this cohort, rMT was
higher than that measured in non-epilepsy controls, and SICI
and LICI gradually increased to normal or near normal-values
at most ISIs (Badawy et al., 2013).

These results suggest a close association between seizure
freedom and normalization of TMS-derived cortical excitability
metrics with prolonged AED use in patients with both focal and
generalized epilepsy.Whether this effect is due to a change within
the brain’s predisposition to generate seizures or attributable to
the cessation of continued seizure activity is unknown. However,
regardless of the drug(s) used, a common effect of successful
AED treatment is the restoration of normal responses to TMS.

TMS-EMG MEASURES IN
NONPHARMACOLOGIC TREATMENT OF
EPILEPSY

As SICI reflects the activity of intracortical inhibitory circuits,
particularly that of GABAA receptor-mediated activity
(Ziemann, 2004), serial SICI measurements over a given
time course provide an index for GABA-mediated motor cortex
inhibition (Maeda et al., 2002). Cantello et al. (2007) tested a
range of TMS-derived metrics in healthy volunteers placed on
the ketogenic diet (KD), to find that short-term KD (14-days)
was followed by significant SICI enhancement. Notably, rMTwas
unchanged after KD initiation suggesting a prominent GABAA
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receptor contribution to the KD antiepileptic mechanism of
action (Cantello et al., 2007).

Di Lazzaro et al. (2004) compared baseline TMS measures
(rMT, SICI) for five patients with medically-refractory epilepsy
who underwent vagus nerve stimulator (VNS) implantation.
TMS measures were obtained in the stimulator-off and
stimulator-on conditions. Patient rMT was higher than healthy
age-matched controls but did not change with the VNS on. In
contrast, SICI significantly increased when the VNS was on.
As with KD, these results indicate a TMS-derived marker of
target engagement, and a capacity for TMS-EMG to identify
a GABAergic contributor to an antiepileptic intervention’s
mechanism (Di Lazzaro et al., 2004).

TMS IN THE ANTI-EPILEPTIC DRUG
DEVELOPMENT PIPELINE

Changes in cortical excitability detected by ppTMS can be
used in both preclinical and clinical studies to develop and
assess the efficacy of novel AEDs. Huperzine A (HupA),
a traditional Chinese medicine administered for treatment
of epilepsy, is a naturally occurring esquiterpene alkaloid
compound found in the firmoss Huperzia serrata that is
both an acetylcholinesterase inhibitor and N-methyl-D-aspartate
receptor (NMDAR) antagonist. Preclinical trials show that HupA
suppresses seizures in a range of rodent epilepsy models. By
ppTMS and differential pharmacology, Gersner et al. (2015)
identified a potent GABAergic effect of HupA that was reflected
in preserved paired-pulse inhibition of the MEP when rats were
co-administered HupA and PTZ (a convulsant and GABA-A
receptor blocker), and augmented LICI when HupA was
administered in isolation (Gersner et al., 2015). The group
concluded that at least in part the anti-seizure HupA effects
may result from the enhancement of cortical GABAergic tone.
These initial preclinical results justify continued preclinical and
clinical investigations of HupA as a potential new anti-seizure
drug compound.

Retigabine (RTG) is a newer generation drug that acts as a
positive allosteric opener of KCNQ2–5 potassium channels to
increase potassium efflux resulting in neuronal hyperpolarization
and a decrease in neuronal excitability. In a cross-over, double-
blind, placebo-controlled, randomized control trial, Ossemann
et al. (2016) used single-pulse TMS with a figure-of-eight coil to

measure rMT and aMT, and intensity to obtain a 1 mV peak-to-
peak amplitude potential (SI1mV), and ppTMS to measure SICI,
LICI, and ICF (Ossemann et al., 2016). Baseline measurements
and measurements 2 h following administration of an oral dose
of 400 mg RTG or placebo were obtained. RTG increased rMT,
aMT, and S1mV compared to placebo, suggesting that RTG
decreases neuronal excitability by increasing the resting potential
as hypothesized from in vitro studies. However, SICI/ICF, and
LICI were not significantly different between the RTG and
placebo groups, suggesting that RTG does not affect intracortical
inhibition (Ossemann et al., 2016).

XEN1101 is a voltage-gated potassium channel opener in
the early stages of development that has shown promising
preliminary data as a new antiseizure drug through the
use of TMS. In a Phase 1 open-label study, spTMS was
used to measure rMT in healthy control subjects taking
10 mg, 15 mg, or 20 mg of XEN1101. Premoli et al. (2019)
found that 20 mg of XEN1101 decreased cortical excitability
compared to the lower dosages (Premoli et al., 2019). In
a subsequent double-blind, randomized, two-period crossover
study, XEN1101 elevated rMT in a plasma concentration-
dependent fashion. These encouraging findings support that
XEN1101 reduces corticospinal and cortical excitability in a
plasma concentration-dependent manner and have prompted
plans for Phase 2 clinical trials.

TMS-DERIVED METRICS IN RARE
EPILEPSIES

As expected, alterations in cortical inhibitory networks are also
seen in various genetic and metabolic epilepsies (Table 3). SICI
is decreased in patients with progressive myoclonic epilepsies
(PME), including Unverricht-Lundborg disease (ULD), Lafora
body disease (LBD), progressive myoclonic ataxia, sialidosis,
and myoclonic epilepsy with ragged red fibers (MERRF). In
patients with noncortical myoclonus, such as those with DYT-1
myoclonus-dystonia syndrome, SICI can be normal or mildly
impaired. These findings help elucidate the pathophysiology of
these diseases. For example, mutations in laforin or malin lead to
formation and accumulation of neuronatin aggregates, typically
found in parvalbumin-positive inhibitory interneurons (PVINs),
resulting in significant reduction in and degeneration of PVINs
on brain biopsy of patients with LBD. This reduction in cortical

TABLE 3 | TMS-EMG metrics in rare epilepsies.

Subjects Findings (relative to control); Comments

MT SICI ICF LICI CSP

PME -/↑ (rMT unchanged or increased;
aMT increased in ULD and LBD)

↓ ↓ (LBD only) ↓ (- in ULD) -

DS - ↓ - -
SSADHD ↑/- (unchanged after taurine

treatment)
-/↑ (increased after taurine
treatment)

↓/-(unchanged after taurine treatment) ↑/- ↓

LGS ↑ ↑ ↑ ↑

MT, motor threshold; SICI, short-interval intracortical inhibition; ICF, intracortical facilitation; LICI, long-interval intracortical facilitation; CSP, cortical silent period; PME, primary myoclonus
epilepsies; LBD, Lafora body disease; ULD, Unverricht-Lundborg disease; DS, Dravet syndrome; SSADHD, succinic semialdehyde dehydrogenase deficiency; LGS, Lennox–Gastaut
Syndrome; ↑, increase; ↓, decrease; -: no change; blank cells, not tested; results for cohort 1, results for cohort 2; /: conflicting results.
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inhibition is reflected by the decreased SICI, and simultaneously
illustrates the role of cortical PVINs on SICI (Rotenberg, 2018).

SICI is also reduced in SCN1A-related epilepsies such as
Dravet syndrome (DS), which again reflects abnormal cortical
inhibition networks, while the other TMS-derived markers of
cortical excitability remain normal (Stern et al., 2017). These
findings are consistent with preclinical data showing PVIN
and somatostain-positive inhibitory interneuron dysfunction in
murine DS models (Tai et al., 2014).

LICI abnormalities can also indicate cortical inhibitory
network dysfunction, but, unlike SICI, reflect GABAB receptor
activity. In patients with succinic semialdehyde dehydrogenase
(SSADH) deficiency, LICI is reduced and CSP is shortened while
SICI is preserved. These findings are supported by preclinical
data showing GABAB receptor loss and/or dysfunction in a
murine SSADH deficiency model (Rotenberg, 2018).

Additionally, rMT is increased in young patients with SSADH
deficiency compared to their parents who are heterozygous for
the causal pathogenic variant. However, this may be related to
the age-dependent changes in rMT seen in healthy children
and in patients with epilepsy (Hameed et al., 2017; Säisänen
et al., 2018). Increase in rMT can also be found in several
forms of cortical myoclonus, such as PME. In contrast to
patients with chronic refractory IGE or those with chronic
refractory FE, interictal cortical excitability is decreased in
Lennox–Gastaut syndrome (LGS), where cortical excitability
was lower in LGS patients. Cortical excitability was also
lower in LGS when compared with healthy controls. This low
cortical excitability across TMS measures thus distinguishes
LGS from other medically refractory epilepsy syndromes
(often showing measures of increased cortical excitability;
Badawy et al., 2012).

CONCLUSION

Noninvasive stimulation of the motor cortex with TMS has
practical and easily attainable implications for identification
of biomarkers in epilepsy. TMS-derived metrics of E:I
properties resultant from motor cortex stimulation paradigms
elucidate mechanisms of action, pharmacodynamics, and
pharmacokinetics of AEDs, and speak to the underlying
pathophysiology of a range of epilepsy disorders. A range of
established protocols and metrics are available in numerous
laboratories, and can not only be deployed to measure disease
severity, predict and measure response to existing treatments in
epilepsy, but also aid in the identification and development of
novel areas for target engagement in the treatment of an array
of disorders.
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