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Plasmodium vivax apical membrane antigen-1 (PvAMA-1) is an important vaccine
candidate for vivax malaria. However, antigenic variation within PvAMA-1 is a major
obstacle to the design of a global protective malaria vaccine. In this study, we analyzed the
genetic polymorphism and selection of the PvAMA-1 gene from 152 P. vivax isolates from
imported cases to China, collected in the China–Myanmar border (CMB) area in Yunnan
Province (YP) during 2009–2011 (n = 71) and 2014–2016 (n = 81), in comparison with
PvAMA-1 gene information from Myanmar (n = 73), collected from public data. The overall
nucleotide diversity of the PvAMA-1 gene from the 152 YP isolates was 0.007 with 76
haplotypes identified (Hd = 0.958). Results from the population structure suggested three
groups among the YP and Myanmar isolates with optimized clusters value of K = 7. In
addition, YP (2014–2016) isolates generally lacked some K components that were
commonly found in YP (2009–2011) and Myanmar. Meanwhile, PvAMA-1 domain I is
found to be the dominant target of positive diversifying selection and most mutation loci
were found in this domain. The mutation frequencies of D107N/A, R112K/T, K120R,
E145A, E277K, and R438H in PvAMA-1 were more than 70% in the YP isolates. In
conclusion, high genetic diversity and positive selection were found in the PvAMA-1 gene
from YP isolates, which are significant findings for the design and development of PvAMA-
1-based malaria vaccine.

Keywords: Plasmodium vivax, apical membrane antigen-1, genetic diversity, positive selection, vaccine, China–
Myanmar border area
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INTRODUCTION

Malaria is still a serious infectious disease that threatens human
health and affects social and economic development in the world.
According to the World Health Organization (WHO), by 2019,
there were 229 million malaria cases, an increase of one million
over 2018 and 409,000 malaria deaths worldwide (WHO, 2020).
Plasmodium vivax is one of the five species of Plasmodium that
regularly infect humans and cause malaria, and is the most
widely distributed human malaria species outside the African
continent with an estimated 2.5 billion people at risk of infection
(Vogel, 2013; Howes et al., 2016). Plasmodium vivax is widely
prevalent in parts of Asia (Flannery et al., 2019), especially, in
some countries bordering China, such as Myanmar, Laos, and
Vietnam (von Seidlein et al., 2019; Brashear et al., 2020).

Plasmodium vivax was once a serious epidemic in China
(Feng et al., 2015). Although there were no local cases of P. vivax
in China since 2017 (Lai et al., 2019), there is still a huge risk of
re-emerging cases due to the existence of Anopheles vectors
(Zhang et al., 2018). In the China–Myanmar border (CMB)
area, with the development of the Belt and Road Initiative, the
risk of imported malaria cases to China is increasing (Lai et al.,
2019). Therefore, studies to dissect the genetic backgrounds of P.
vivax in the CMB area are of great significance to provide
information for the control and elimination of vivax malaria in
Myanmar and other related countries.

In recent years, drug resistance to P. vivax was frequently
reported (Imwong et al., 2007; Lu et al., 2010; Dayananda et al.,
2018). Meanwhile, there are many other factors which contribute
to the difficulties of P. vivax control, such as hypnozoites (White
and Imwong, 2012), early gametocytogenesis, frequent low
parasitemias, high infectivity to mosquitoes, and shorter
development cycle in the vector host compared with other
species of Plasmodium (Mueller et al., 2009; Mueller and
Adams, 2017). Thus, the development of a stable and effective
vaccine has been proposed as a possible aid to drugs for effective
control and elimination of vivax malaria. Plasmodium vivax
apical membrane antigen-1 (PvAMA-1) is an important
candidate for malaria vaccine (Mueller et al., 2015; Beeson
et al., 2019). Apical membrane antigen-1 (AMA-1) is expressed
in the microneme of apicomplexan parasites and is present in all
Plasmodium species (Bittencourt et al., 2020). It is a type I
transmembrane protein binding with rhoptry neck proteins
(Srinivasan et al., 2011). AMA-1 is involved in merozoite
reorientation and tight junction formation during the invasion
process (Gaur et al., 2004; Richard et al., 2010; Lamarque et al.,
2011) and is essential for parasite survival (Triglia et al., 2000). It
has been reported that antibodies against the ectodomain of
Plasmodium falciparum AMA-1 (PfAMA-1) can inhibit
erythrocyte invasion, and its immunization protects against
malaria infection (Remarque et al., 2008; Kusi et al., 2009). The
extracellular domain of AMA-1 is divided into three subdomains
referred to as domain I, domain II, and domain III based on the
conserved cysteine residues (Pizarro et al., 2005). Domain I and
domain II cover the polymorphic regions and have been shown
to be the major targets that elicit inhibitory responses (Remarque
et al., 2008). In general, the formation of moving junction
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between merozoite and erythrocyte is the key procedure for
the successful invasion of host cells by the parasite, and the
mechanism includes the interaction between the conserved
hydrophobic groove in domain II loop of AMA-1 and the
conserved rhoptry neck protein 2 (RON2) loop (Bargieri et al.,
2013). PvAMA-1, therefore, becomes an important immune
target (Múfalo et al., 2008). Meanwhile, due to the highly
polymorphic feature of the PvAMA-1 gene, it has been used as
molecular marker for population genetic studies (Joshi, 2003).
However, antigenic variation is a major challenge in the design of
protective malaria vaccine (Esmaeili Rastaghi et al., 2014).
Recently, a report on genetic diversity of Pvama-1 in India also
showed this trend (Kale et al., 2021).

In the present study, the genetic diversity and selection of
PvAMA-1 gene in the CMB area were investigated in P. vivax
isolates collected from Yunnan Province (YP) in China during
2009–2011 and 2014–2016 and compared with the public
PvAMA-1 gene information from Myanmar, to advance our
knowledge of the rational design of vivax malaria vaccine.
MATERIALS AND METHODS

Ethics Statement
This study was conducted according to the principles expressed
in the Declaration of Helsinki. Before blood collection, the study
protocol, potential risks, and benefits were explained to the
participants, and written informed consent was obtained from
all adult participants and from the parents or legal guardians of
children. Blood was collected following institutional ethical
guidelines reviewed and approved by the Ethics Committee at
the National Institute of Parasitic Diseases, Chinese Center for
Disease Control and Prevention (no. 20120826).

Sample Collection and DNA Extraction
A total of 180 blood samples of malaria patients infected with P.
vivax were collected from the CMB area in YP (China) during
2009–2011 (n = 77) and 2014–2016 (n = 103) (Figure 1). All
samples were stained by Giemsa and verified by microscopic
examination then confirmed for single infection with P. vivax by
nested PCR (Zhou et al., 2014). Genomic DNA was extracted
from whole blood using the DNeasy Blood & Tissue Kit (Qiagen,
Germany) as previously reported (Chen et al., 2017; Kassegne
et al., 2020).

PCR Amplification and Sequencing
To identify Plasmodium species, nested PCR was performed
as previously described (Zhou et al., 2014). In the first PCR, the
DNA fragment was amplified by 2×Taq PCR MasterMix
(Tiangen Biotech, Beijing, China) using the primers rPLU1
5′-TCAAAGATTAAGCCATGCAAGTGA-3′ and rPLU5
5′-CCTGTTGTTGCCTTAAACTTC-3′. One microliter of
template DNA was added to a 20-ml PCR mixture consisting of
0.4 mM of each primer, 10 ml 2×Taq PCR MasterMix (Tiangen
Biotech, Beijing, China) containing 0.1 U Taq polymerase/ml, 500
mM deoxynucleotide triphosphates (dNTP), 3 mMMgCl2, 100 mM
KCl, and 20 mM Tris–HCl, pH 8.3. The cycling parameters to
January 2022 | Volume 11 | Article 742189
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amplify the fragments were as follows: initial denaturation at 94°C
for 5 min; 30 cycles of 94°C for 30 s, 55°C for 30 s, and 72°C for 1
min; followed by a final extension at 72°C for 5 min. One microliter
of the first PCR product was used in the second amplification.
Conditions and concentrations used for the second amplification
were identical to those used for the first, except that rVIV1/rVIV2
(rVIV1 5′-CGCTTCTAGCTTAATCCACATAACTGATAC-3′, rV
IV2 5′-ACTTCCAAGCCGAAGCAAAGAAAGTCCTTA-3′) were
used as primers and amplification was performed over 35 cycles.
The size of the DNA target amplified by these outer primers is about
1,600–1,700 bp and that by the inner primers is 121 bp. PCR
products were qualitatively analyzed on 2% agarose gel and were
sent to Beijing Genomics Institution (BGI, Shenzhen, China)
for sequencing.

The PvAMA-1 fragment was amplified by PrimerSTAR Max
DNA Polymerase (Takara, Japan) using the primers SeqF1 5′-
CCCTACCAGCGGCTACTTC-3′ and SeqR1 5′-CGTTTGCTT
GGCCAACTC-3′. All PCR amplifications were performed in a
50-ml PCR reaction volume containing 0.4 mM of each primer pair,
1.5 mM MgCl2, 1× PCR buffer (50 mM KCl, 10 mM Tris–Cl, pH
8.3), 0.2 mM dNTPs, and 0.5 unit of DNA polymerase. The cycling
parameters to amplify the fragments were as follows: initial
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
denaturation at 98°C for 5 min, 35 cycles of denaturation at 98°C
for 10 s, annealing at 69°C for 15 s, extension at 68°C for 1 min 30 s,
and a final extension at 68°C for 5 min. The PCR fragments were
about 1,900 bp in size and contained all the gene fragments of
PvAMA-1 (1,689 bp). The PCR products were qualitatively
analyzed on 1% agarose gel and were sent to Beijing Genomics
Institution (BGI, Shenzhen, China) for sequencing. All unique
mutations were carefully checked, and ambiguous bases were
confirmed by resequencing. Meanwhile, a set of 73 sequences of
Pvama-1 (1,290 bp) isolates from Myanmar was downloaded from
NCBI (KX495505–KX495577) (Zhu et al., 2016).

Data Analysis
All sequences were assembled and aligned by DNAMAN. After
all the sequences were aligned, data were trimmed to 1,689 bp,
which contains the full coding sequence of PvAMA-1. We
performed a multiple sequence alignment of the PvAMA-1
gene sequences using MEGA6 (Tamura et al., 2013). PvAMA-1
gene sequence PVP01_0934200.1 (1,689 bp) obtained from
PlasmoDB (http://PlasmoDB.org) was used as reference.

After all the sequences were aligned, three domains of
PvAMA-1 were also divided. These included domain I (462 bp,
FIGURE 1 | Geographic map of Plasmodium vivax samples collection. The area where samples were collected (Tengchong County, Yunnan Province, China) for this
study is indicated in a red pentagram (China map version GS(2019)1652 downloaded from URL: http://bzdt.ch.mnr.gov.cn/).
January 2022 | Volume 11 | Article 742189
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nucleotides 280–741), domain II (297 bp, nucleotides 793–
1,089), and domain III (192 bp, nucleotides 1,162–1,353). To
investigate the genetic polymorphism and selection of PvAMA-1
in different time periods in the CMB area, we used DnaSP
(Librado and Rozas, 2009) to calculate the number of
haplotypes (H), the mean value of nucleotide differences (k),
nucleotide diversity (p), and haplotype diversity (Hd) as
previously described (Murhandarwati et al., 2020), with a
sliding window of 100 bp and step size of 25 bp for nucleotide
diversity (p). KaKs_Calculator 2.0 software (Wang et al., 2010)
was used to calculate the non-synonymous (Ka) and
synonymous (Ks) substitution rates. The Ka and Ks values and
Ka/Ks ratios were calculated based on a model-averaged method
(Wang et al., 2010). Ka/Ks calculation was used to estimate the
selection pressure of PvAMA-1 gene pairs. The algorithm was
NG (Nei and Gojobori, 1986) and YN, which is an alternative
model for NG (Yang and Nielsen, 2000). Additionally, Tajima’s
D test was performed in DnaSP to evaluate the neutrality theory
of evolution (with Fu and Li’s test as a double check). The
probability of recombination between adjacent nucleotides per
generation was calculated using DnaSP. The linkage
disequilibrium (LD) between different polymorphic sites was
computed based on the D and R2 indices. The calculations
performed through DnaSP were based on the default parameters.

The recombination region was calculated by Recombination
Detection Program v.4.101 (Martin et al., 2015) with the MaxChi
method (Maynard Smith, 1992). After removing the
recombination block, a haplotype network based on the
Pvama-1 sequence was constructed using the NETWORK
software Version 10200 with the median-joining method
(Bandelt et al., 1999). To assess allele ancestry, STRUCTURE
software was used to assess clustering of isolates under the
ancestry model “Use Population Information to test for
migrants” (Evanno et al., 2005). Six iterations for the numbers
of clusters (K) from three to eight were run, each with a burning
period of 5,000 steps and 10,000 Markov chain Monte Carlo
iterations. The best K was selected as previously described
(Evanno et al., 2005). The sequences of nine additional Pvama-
1 populations (Myanmar, KX495505–KX495577; Thailand,
FJ784891–FJ785121; Korea, KM230319–KM230384; Sri Lanka,
EF218679–EF218701; Iran, JX624732–JX624760; Papua New
Guinea (PNG), KC702402–KC702503; India, MH657021–
MH657120; Venezuela, EU346015–EU346087; and Brazil,
MH049550–MH049589) were analyzed together (Gunasekera
et al., 2007; Ord et al., 2008; Putaporntip et al., 2009; Arnott
et al., 2013; Zakeri et al., 2013; Kang et al., 2015; Zhu et al., 2016;
Bittencourt et al., 2020; Kale et al., 2021). Here, the India
population (Kale et al., 2021) should be considered as a long-
distance geography distribution outgroup since Kale et al. had
exhibited the genetic difference between Myanmar and South
Asia. Before the Network and Structure analyses, all the
sequences of PvAMA-1 were analyzed and cut to 1,290 bp
according to the fragment of PvAMA-1 isolates from
Myanmar (Zhu et al., 2016) through MEGA6 and using
Arlequin3.5 to analyze the molecular variance (AMOVA) to
evaluate fixation (FST) (Excoffier and Lischer, 2010). Meanwhile,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
the migration rate between YP and Myanmar populations was
estimated by Migrate-n version 4.4.3 (Beerli, 2006).
RESULTS

Among the 180 blood samples infected with P. vivax from the
CMB area during 2009–2011 (n = 77) and 2014–2016 (n = 103),
152 (71 and 81, respectively) samples were successfully
sequenced for the PvAMA-1. The 152 patients, composed of
109 males and 43 females, whose blood samples successfully
amplified the Pvama-1, aged from 6 to 66 years.

Genetic Diversity of Pvama-1 in
Plasmodium vivax Isolates From
the CMB Area
Of the 152 Pvama-1 sequences from the CMB area, there were 76
haplotypes, giving an overall haplotype diversity (Hd) of 0.958
(Table 1). The average number of pairwise nucleotide differences
(k) for the entire 1,689 bp in different time periods including the
full sampling period (referred to as Total), 2009–2011, and 2014–
2016 were 12.191, 12.933, and 10.814, respectively (Table 1). The
number of haplotypes was 76, 54, and 23 for Total, 2009–2011,
and 2014–2016, respectively (Table 1). A total of 61 single
nucleotide polymorphisms (SNPs) were detected, including 54
SNPs in 2009–2011 and 47 SNPs in 2014–2016 (Table 1).
Nucleotide diversity (p) of the YP samples from 2009 to 2011
and from 2014 to 2016 was 0.00766 and 0.00640, respectively,
and that of the total samples was 0.00722 (Table 1). Nucleotide
diversity (p) of the YP samples in three domains was 0.01701,
0.00482, and 0.00355, respectively, in which the Pvama-1
domain I showed the highest genetic variation. Recently, Kale
et al. (2021) reported the genetic diversity of PvAMA-1 in India
and confirmed that the high genetic variation was observed in
Pvama-1 domain I. p values for 2009–2011 and 2014–2016 were
ranging from 0.000 to 0.03771 (350–380 bp) and from 0.000 to
0.02533 (350–380 bp), respectively (Figure 2A).

In order to assess the neutral evolving of PvAMA-1 and its
three domains, Tajima’s D test was performed. Tajima’s D value
of the full PvAMA-1 fragment was 0.205 for Total, 0.321 for
2009–2011, and 0.311 for 2014–2016 (P > 0.1; Table 1).
However, the Tajima’s D values obtained for the three domains
were obviously different (Table 1). The Tajima’s D value of
domain I was 0.979 for Total, 0.991 for 2009–2011, and 0.877 for
2014–2016. The Tajima’sD value of domain II was −0.257, 0.448,
and −0.457 for Total, 2009–2011, and 2014–2016, respectively.
The Tajima’s D value of domain III was 0.456 for Total, −0.463
for 2009–2011, and 0.618 for 2014–2016 (P > 0.1; Table 1). These
indicate that Tajima’sD test showed opposite selection directions
for different domains of PvAMA-1 across different times
(Figure 2B). Domain II (from nucleotide positions 795 to
1,089) showed positive Tajima’s D value for 2009–2011 and
negative value for 2014–2016, which are consistent with the
results in Fu and Li’s tests (Table 1 and Figures 2C, D). For the
domain III fragment, Tajima’s D value was negative for 2009–
2011 and positive for 2014–2016, which were in partial deviation
January 2022 | Volume 11 | Article 742189
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TABLE 1 | Nucleotide diversity and summary statistics of PvAMA-1 in 152 Plasmodium vivax isolates from the China–Myanmar border area between different time periods.

Samples n k H Hd ± SD S Sv Sp h p Ka Ks Ka/Ks Da D*b F*c

Total 152 12.191 76 0.958 ± 0.009 61 9 52 64 0.00722 0.00959 0.005056 1.89662* 0.205 0.522 0.461
Domain I 7.861 53 0.948 ± 0.010 32 4 28 33 0.01701 0.019427 0.019638 0.98924 0.979 0.666 0.955
Domain II 1.432 17 0.789 ± 0.027 9 3 6 9 0.00482 0.005814 0.005051 1.15114 −0.257 −1.102 −0.957
Domain III 0.682 4 0.531 ± 0.038 3 0 3 3 0.00355 0.005539 0 NA 0.456 0.793 0.807
2009–2011 71 12.933 54 0.990 ± 0.004 54 7 47 57 0.00766 8.04741 2.02589 3.97228* 0.321 0.880 0.794
Domain I 8.943 42 0.982 ± 0.005 32 5 27 33 0.01936 7.07866 1.51383 4.67598* 0.991 0.537 0.846
Domain II 1.475 13 0.836 ± 0.026 6 1 5 6 0.00497 6.77261 2.5713 2.63392* 0.448 0.236 0.359
Domain III 0.471 3 0.299 ± 0.067 3 0 3 3 0.00245 6.40604 0.741938 8.63419* -0.463 0.857 0.525
2014–2016 81 10.814 23 0.859 ± 0.026 47 6 41 49 0.00640 8.07485 2.07535 3.89083* 0.311 0.421 0.452
Domain I 6.478 19 0.845 ± 0.027 24 2 22 25 0.01402 7.17737 1.5293 4.69323* 0.877 0.754 0.956
Domain II 1.317 11 0.710 ± 0.047 8 2 6 8 0.00444 6.7826 1.41508 4.79308* −0.457 −0.288 −0.408
Domain III 0.804 4 0.639 ± 0.030 3 0 3 3 0.00419 6.50997 0.777672 8.3711* 0.618 0.845 0.906
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The total sequenced region includes codons 1 to 479: domain I codons 94 to 247 (nt 280–741), domain II codons 265 to 363 (nt 793–1,089), and domain III codons 388 to 451 (nt 1,162–
1,353).
n, number of samples; k, the average number of nucleotide differences; H, number of haplotypes; Hd, haplotype diversity; SD, standard deviation; S, number of polymorphic (segregating)
sites; Sv, the number of singleton sites; Sp, the number of informative-parsimonious sites; h, the total number of mutations; p, nucleotide diversity; Ka, the rates of non-synonymous
substitutions; Ks, the rates of synonymous substitutions; Ka/Ks, the ratio of non-synonymous to synonymous mutations; D, Tajima’s D test; D*, Fu and Li’s D* value; F*, Fu and Li’s F*
value; NA, cannot be calculated.
*P < 0.05. a,b,cP > 0.10.
A C

B

D

FIGURE 2 | Nucleotide diversity for Plasmodium vivax apical membrane antigen-1 (PvAMA-1) in isolates from Yunnan Province (YP). (A) Position of PvAMA-1
nucleotide diversities. (B) Tajima’s D value for PvAMA-1. (C) D* value of Fu and Li’s tests for PvAMA-1. (D) F* value of Fu and Li’s tests for PvAMA-1. Blue, orange,
and gray lines represent the different time periods, namely, Total, 2009–2011, and 2014–2016, of YP isolates, respectively. A scheme of the domains of PvAMA-1 is
also shown (in yellow color) with amino acid positions indicated.
742189
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from the analysis results of Fu and Li’s tests with values all
positive (Table 1 and Figures 2C, D). Meanwhile, a sliding
window plot depicted significant positive values (nt 401–500,
Tajima’s D: 2.233, P < 0.05) in domain I of YP samples,
suggesting positive diversifying selection in this region.

The Ka/Ks in PvAMA-1 for the Total was 1.89662 (YN, P <
0.05). The Ka/Ks values were 3.97228 for 2009–2011 and 3.89083
for 2014–2016 (YN, P < 0.05), suggesting a significant positive
selection for PvAMA-1 of P. vivax populations in the CMB area
during these times (Table 1). The LD index (R2) also declined with
distance, suggesting that intragenic recombination may also
contribute to the PvAMA-1 diversity (Figure 3). Furthermore, we
performed the LD test on different time periods and found the
2009–2011 subpopulation under similar pattern for LD SNP pairs
with the whole population (Figure 3). In contrast, the 2014–2016
subpopulation showed more LD SNP pairs than the 2009–2011
subpopulation did, which may suggest less recombination ratio
from the founder effect (Figure 3). Meanwhile, we analyzed the
change in the frequency of haplotypes over time, and the result
showed that the frequency of haplotypes decreased significantly in
2015 and 2016 samples (Figure 4A).

Mutations of PvAMA-1 in Isolates From
the CMB
A total of 40 amino acid mutation sites were found in YP
samples. Among them, 37 and 29 amino acid mutation sites
were found in 2009–2011 and 2014–2016 samples, respectively.
In the Total samples, the mutation frequencies of 19 mutation
sites were less than 10%; for 11 mutation sites, 15%–45%; and for
10 mutation sites, more than 50% (Table 2). More importantly,
the mutation frequencies of D107N/A, R112K/T, K120R, E145A,
E277K, and R438H were more than 70% (Table 2). Some
mutation sites with low frequency in the 2009–2011 samples
disappeared in the 2014–2016 samples (Table 2, Table S1).
There were also three new mutation sites in the 2014–2016
samples, in which the mutation frequencies of N316T, M319I,
and K336R were 0.66%, 7.24%, and 0.66%, respectively (Table 2).
Furthermore, there were 19 mutation sites in domain I of
PvAMA-1, in which the most mutated amino acid sites were
distributed. The number of amino acid mutation sites in
domains II and III were seven and three, respectively.

Here, we also analyzed the distribution of these mutation sites
of YP samples in other groups (Table S1). In the 37 mutation
sites of YP samples, the lowest coincidence rate was found in the
Korean samples and the highest coincidence rate in the Iran and
India samples (Table S1). At the same time, we also calculated
the mutation ratio of these mutation sites of YP samples in the
Indian population (Figure 4B). It showed that the relatively
preserved amino acid changes found in the YP PvAMA-1 were
well-conserved in India (Figure 4B).

Genetic Differentiation, Haplotype
Network, and Structure Analyses of
PvAMA-1
A total of 889 Pvama-1 sequences, containing YP, Myanmar,
Thailand, South Korea, Papua New Guinea, Sri Lanka, Iran,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
India, Venezuela, and Brazil populations, were analyzed and cut
to 1,290 bp through MEGA6. The level of genetic differentiation of
Pvama-1 was estimated by FST values. In general, the FST values of
<0.05, 0.05–0.15, 0.15–0.25, and >0.25 indicate little, moderate,
great, and very great genetic differentiation, respectively (Balloux
and Lugon-Moulin, 2002). The YP, Sri Lanka, and Brazil isolates
A

B

C

FIGURE 3 | Linkage disequilibrium (LD) of PvAMA-1 in isolates from YP. LD
across the PvAMA-1 gene in the isolates was calculated using R2. (A) R2 for
PvAMA-1 gene of Total isolates. (B) R2 for PvAMA-1 gene of 2009–2011
isolates. (C) R2 for PvAMA-1 gene of 2014–2016 isolates. Significant LD
values among samples are shown as calculated by Fisher’s exact test. Trace
line represents the regression line. Orange and blue dots represent significant
and non-significant R2 values, respectively.
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showed great differentiation with FST values of 0.15269 and 0.24836,
respectively. The very great differentiation was found between YP
isolates and Korea isolates (the value of FST is 0.3761) (Table 3). The
differentiation between YP isolates and other isolates was
moderate (Table 3).

One recombination event of YP samples was detected by
Recombination Detection Program v.4.101, containing a 602-bp
fragment, located in 493–1,094 bp of Pvama-1. After removing the
recombination block, a total of 889 sequences from the global
populations, length 688 bp, were analyzed by the NETWORK
software. Network analysis results for PvAMA-1 populations
showed that there was an obvious cluster of populations of
global samples, except those from Korea and PNG which were
partially separated (Figure 5A). Among them, the haplotype
sharing ratio of YP samples was the highest. The YP population
has shared haplotypes with all other populations except Brazil.
Twenty-seven of the 51 YP haplotypes (52.9%) were shared with
other populations, of which 59.3% (16/27), 44.4% (12/27), and
44.4% (12/27) were identical to some of the Pvama-1 haplotypes
observed in Thailand, Myanmar, and India populations,
respectively. Haplotype 286 is the predominant haplotype in the
YP population, with a frequency of 17.1%. Haplotype 17 is shared
by most populations, consisting of YP, Myanmar, Thailand, Sri
Lanka, Iran, and India populations. The haplotype network, drawn
by excluding the 102 singletons from the analysis, showed that
clusters from the Asian populations, Oceania, and South
American overlapped (Figure 5A).
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In addition, 77 unique haplotypes of CMB isolates were
identified in 225 sequences (688 bp) from the 2009–2011,
2014–2016, and Myanmar populations. The PvAMA-1 gene
information that was used for comparison in this study was
from P. vivax isolates, which had been collected along the CMB
area in Laiza, northeast Kachin State, Myanmar, in 2011–2012
(Li et al., 2013). Network analysis results of PvAMA-1 showed an
obvious cluster for the three populations (Figure S1A). A total of
26.2% 2009–2011 haplotypes (11/42) were shared with the
Myanmar (37) population, compared with 38.9% 2014–2016
haplotypes (7/18). Among them, the 2014–2016 population had
the least haplotypes, which indicates less recombination in the
CMB area.

Through the analysis by MEGA6, a total of 165 SNPs from the
10 populations (YP, Myanmar, Thailand, South Korea, Papua
New Guinea, Sri Lanka, Iran, India, Venezuela, and Brazil) were
detected. The results of principal component analysis (PCA)
showed similar results with the network analysis, where only the
Korea and PNG populations were partially separated from the
global samples (Figures 5B, C).

Furthermore, the structure analysis results of global populations
suggested 10 groups with optimized clusters value of K = 7
(Figure 5D). The results of structure analysis show that the YP
and Thailand samples have the most K components (n = 7),
followed by Myanmar and India (n = 6), Sri Lanka and Iran (n =
5), and PNG (n = 4) and the least K components (n = 3) in samples
from Korea, Venezuela, and Brazil (Figure 5D). The distribution of
A

B

FIGURE 4 | Variation of haplotype frequency of YP isolates and distribution of amino acid mutation sites of YP samples in the Indian population. (A) The change in
the frequency of haplotypes over time in YP isolates. n, number of samples; H, number of haplotypes; Frequency (%), frequency of haplotypes. (B) The distribution of
amino acid mutation sites (R66–N445) of YP samples in the Indian population.
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TABLE 2 | Amino acid variations of PvAMA-1 in the CMB area.

Codons ns Frequency (%) Position
YP (n = 152)

A12G 1 0.66
Q25H/K 2/11 8.55
G42V 2 1.32
R66K 2 1.32
V102D 1 0.66 Domain I
D107N/A 5/116 79.61 Domain I
R112K/T 92/56 97.37 Domain I
G117R 2 1.32 Domain I
K120R 141 92.76 Domain I
N130K 1 0.66 Domain I
N132D 79 51.97 Domain I
L140I 77 50.66 Domain I
A141E 32 21.05 Domain I
E145A 108 71.05 Domain I
K188E 1 0.66 Domain I
E189K/N 56/10 43.42 Domain I
K190E 35 23.03 Domain I
T191K 3 1.97 Domain I
H193Y 5 3.29 Domain I
P210S 91 59.87 Domain I
V218L 2 1.32 Domain I
E227K/V 6/40 30.26 Domain I
S228N/D 2/39 26.97 Domain I
G253E 30 19.74
K256Q 3 1.97
E277K 138 90.79 Domain II
G288E 47 30.92 Domain II
P295S 1 0.66 Domain II
N316T 1 0.66 Domain II
M319I 11 7.24 Domain II
K336R 1 0.66 Domain II
K352N/E 24/10 22.37 Domain II
K368I 10 6.58
Q380K/R 7/19 17.11
V382E 5 3.29
L384P/R 41/60 66.45
E385D/Q/K 13/10/2 16.45
K400R 33 21.71 Domain III
R438H 131 86.18 Domain III
N445D 8 5.26 Domain III
Frontiers in Cellular and Infection Microbiology | ww
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ns, number of mutant isolates; n, number of isolates.
TABLE 3 | Estimation of genetic differentiation (FST) of the Pvama-1 among geographical populations.

Population YP Sri Lanka Venezuela Thailand Iran PNG Korea Myanmar Brazil India

YP (n = 152) 0.00000
Sri Lanka (n = 23) 0.15269 0.00000
Venezuela (n = 73) 0.12335 0.2536 0.00000
Thailand (n = 231) 0.06022 0.1947 0.15645 0.00000
Iran (n = 29) 0.05518 0.09445 0.09774 0.12106 0.00000
PNG (n = 102) 0.07025 0.21904 0.23074 0.16569 0.10904 0.00000
Korea (n = 66) 0.3761 0.5603 0.47258 0.43773 0.39093 0.40805 0.00000
Myanmar (n = 73) 0.06658 0.23478 0.12237 0.03273 0.1143 0.18777 0.46368 0.00000
Brazil (n = 40) 0.24836 0.41572 0.25526 0.2833 0.16918 0.2868 0.4053 0.2788 0.00000
India (n = 100) 0.06658 0.05684 0.1311 0.13641 −0.00506 0.10625 0.38537 0.13389 0.23274 0.00000
le
n, number of samples.
P < 0.05.
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K components in YP and Myanmar samples was significantly
different (c² = 70.207, P < 0.0001), although they all belong to the
CMB area. Only the proportions of K2 component in YP and
Myanmar samples are similar (21.71% and 19.17%, respectively)
(c² = 0.191, P = 0.66209). The K components of Myanmar samples
were less than those in YP samples (Figure 5D), indicating that the
YP population was more abundant than the Myanmar population.
In addition, the migration rate between YP and Myanmar
populations was estimated by Migrate-n version 4.4.3 (Beerli,
2006). The mean Q values for YP and Myanmar populations
were 0.06478 and 0.03100, respectively. The result showed
asymmetric gene flow between YP and Myanmar populations,
with the number of migrant individuals per generation (Nm)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
from Myanmar to YP (15.090) being higher than that from YP to
Myanmar (11.189).

Meanwhile, the 2009–2011, 2014–2016, and Myanmar
samples were analyzed by STRUCTURE software using no
admixture model. A total of 62 SNPs from the three
populations were detected by MEGA6. The structure results
suggested three groups among the CMB samples with
optimized clusters value of K = 7 (Figure S1B). The results of
the structure analysis for the three populations show that the
2014–2016 samples generally lacked some K components that
were commonly found in other samples. The distribution of K5
was particularly prominent as shown in Figure S1B. The
distribution of K5 in 2009–2011 and 2014–2016 was
A

B

D

C

FIGURE 5 | Network, principal component, and structure analyses of PvAMA-1 in global isolates. (A) The proportion of Pvama-1 haplotype variations observed in
different populations. Samples are colored according to different populations. (B) Principal component analysis with F1 and F2. (C) Principal component analysis with F2
and F3. (D) Structure analysis of the full set of variation loci from all isolates. Cluster for each isolate was assessed according to an optimized cluster value of K = 7.
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significantly different (c² = 15.439, P < 0.0001). Meanwhile,
Myanmar samples also have fewer K components than those
found in the 2009–2011 samples.
DISCUSSION

According to the statistical report of the WHO (2020), the
malaria elimination target may not be achieved as expected by
2020. With the bottleneck of drug resistance to P. vivax (Imwong
et al., 2007; Lu et al., 2010; Dayananda et al., 2018), new
intervention tools and strategies are urgently needed to
efficiently control and eliminate vivax malaria. For example,
comprehensive research is needed to develop vaccine strategy.
Though antigenic variation is one of the major challenges that
affects the development of malaria vaccine (Esmaeili Rastaghi
et al., 2014), advanced knowledge of parasite antigenic variants is
a prerequisite for the rational design of a vaccine that might be
efficient in various endemic areas.

In this study, we analyzed the genetic diversity of the PvAMA-1
gene from the border area of China and Myanmar and assessed its
genetic variation across different time periods. Through the analysis
of the full-length PvAMA-1 gene sequence, the results of Tajima’sD
test and Fu and Li’s tests showed that there was no significant
balancing selection in the 2009–2011 and 2014–2016 samples,
which suggests that the PvAMA-1 gene was not under selection.
However, the Ka/Ks values of PvAMA-1 were positive and
statistically significant in all cases of the YP samples, which
indicated that the PvAMA-1 of P. vivax populations in the CMB
area was under significant positive selection during these times.
Meanwhile, the linkage disequilibrium (R2) results showed that
there was more long-distance linkage in 2014–2016 than it was in
2009–2011.This indicates that thenumberof genetic recombinations
in 2014–2016 was lower and more ancestor SNPs were retained,
which isnot consistentwith the timeperiods.The2014–2016samples
showedmore long-distance linkage (Figure 3), which aligns with the
growing scarcity of Chinese strains to participate in regional
recombination. At the same time, the network analysis showed that
the frequency of sharing haplotypes between 2014–2016 and
Myanmar samples was higher than that in the 2009–2011 and
Myanmar samples. This may indicate that the PvAMA-1 samples
from the Chinese side of the China–Myanmar border were closer to
the samples from the Myanmar side over time. Furthermore, the
structure analysis showed that the 2014–2016 samples lacked someK
components that were commonly found in other samples such as in
the 2009–2011 samples (Figure S1B). This may indicate that the
control of malaria transmission in China reduced the number and
class of P. vivax spread in the CMB region, while the transmission
fromMyanmar continued. In addition, the movement of sections of
the population that includes tourism, traveling and holidays, and
border trade business, particularly in those free ports on the border,
may also affect the population structure and genetic characteristics of
malaria in this region (Cui et al., 2012). The structure analysis of
PvAMA-1 in isolates fromYP,Myanmar, Thailand, Korea, PNG, Sri
Lanka, Iran, India,Venezuela, andBrazil revealed that thepopulation
structure in the CMB and Thailand is the most complex and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
abundant (Figure 5D). The study by Arnott et al. (2013) reported
that diversity was the highest in PNG and Thailand, while it was the
lowest in Venezuela. This suggests that there is greater genetic
diversity of the PvAMA-1 gene in Southeast Asia, also including
the CMB region. Although highly diverse, it was observed that the
majority of the YP Pvama-1 haplotypes (49%) are shared with
Thailand, Myanmar, and India populations, with moderate FST
values observed between YP, Myanmar, Thailand, and India
isolates. This indicate that a YP-PvAMA-1-based multicomponent
malariavaccinemaybeeffective in this entire region.Therefore, it is of
great significance to explore the genetic diversity of PvAMA-1 in the
CMB to provide instructive insights for the development of effective
diagnostics and vaccines for P. vivax.

In a previous study, PvAMA-1 domains I and II covering the
polymorphic regions have been shown to be major targets that elicit
inhibitory responses (Remarque et al., 2008). In this study, Tajima’s
D test showed that part of domain I (nt 401–500, Tajima’s D: 2.233,
P < 0.05) of PvAMA-1 was under positive balancing selection in the
YP population. Similar findings have been reported from other
studies where highly significant positive values have been
consistently observed within domain I of the Myanmar, PNG,
Iran, India, and Venezuela populations (Ord et al., 2008; Arnott
et al., 2013; Zakeri et al., 2013; Zhu et al., 2016; Kale et al., 2021).
Such informative findings suggest this domain a dominant target of
host immune responses. Domains II and III showed direction
selection in YP samples through some time periods different from
those of Myanmar samples, in which all PvAMA-1 domains were
balancing selected (Zhu et al., 2016). The domain II of Pvama-1 has
been reported as highly immunogenic (Pizarro et al., 2005; Múfalo
et al., 2008; Remarque et al., 2008; Gentil et al., 2010). In addition,
positive selection within domain II of Pvama-1 populations from Sri
Lanka has been observed (Gunasekera et al., 2007). However, in this
study, no evidence was found for diversifying selection on domains
II and III of Pvama-1 from the CMB area as confirmed by neutrality
tests, which is in agreement with previous reports (Ord et al., 2008;
Arnott et al., 2013).

Sequences of Pvama-1 from the YP population were
compared to the reference sequence (PVX_092275), and 61
SNPs resulting in 40 amino acid substitutions were identified
in the YP Pvama-1. Most mutation loci were found in domain I
of PvAMA-1 from YP samples, which aligns with the findings in
other populations as previously reported (Gunasekera et al.,
2007; Ord et al., 2008; Putaporntip et al., 2009; Arnott et al.,
2013; Zakeri et al., 2013; Kang et al., 2015; Zhu et al., 2016;
Bittencourt et al., 2020; Kale et al., 2021). Meanwhile, the AMA-1
ligand-binding site and a major target of protective immunity
have been proven to be a hydrophobic trough composed of
domains I and II (Coley et al., 2007). The polymorphic residues
197, 200, 201, 204, and 225 have been proven to be important for
PvAMA-1 binding (Coley et al., 2007). However, no mutations
were found in these important amino acid loci in the YP samples
used in this study.

In this study, the mutation frequencies of 10 mutation sites were
more than 50% (Table 2). Most importantly, the six tightly
preserved amino acid changes (D107, R112, K120, E145, E277,
and R438), which are the most outstanding characteristics found in
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the YP PvAMA-1 analyzed in this study, were well-preserved in all
the populations except that from Korea, which revealed some
inconsistent amino acid sites (Kang et al., 2015; Bittencourt et al.,
2020). Meanwhile, when compared with other populations,
PvAMA-1 of YP had more high-frequency mutation sites. These
results also suggest that PvAMA-1 from the CMB area showed
different patterns of polymorphic nature compared with those from
other geographical areas, and more abundant genetic diversity was
observed among isolates globally (Arnott et al., 2013; Kang et al.,
2015; Zhu et al., 2016).

Some of the SNPs identified in P. vivax isolates globally,
including E145K, P210S, R249H, G253E, K352E, R438H, and
N445D, overlap with the B-cell epitope regions. These amino
acid changes may affect the protein structure by causing changes
in charge and polarity of the protein and might help parasites to
escape from host immunity (Anders et al., 1998). In this study,
except the R249H, other mutations were all observed (Table 2) in
PvAMA-1 which contained more immune escape-related
mutations than those of PvAMA-1 from other reported
populations (Kang et al., 2015). This indicates that P. vivax in
the CMB area is under strong immune pressure.

Collectively, we found a high diversity and a complex population
structure of PvAMA-1 in the CMB region of Yunnan Province,
China, in comparison with the PvAMA-1 from other populations.
The study revealed the unique genetic diversity of Pvama-1 in the
CMB area, which is an instructive finding for the development of
extensive and effective malaria vaccines.
CONCLUSION

This study provides the first in-depth understanding of the
genetic diversity of PvAMA-1 from different time periods in
the CMB. PvAMA-1 domain I is the dominant target of positive
diversifying selection. Meanwhile, the majority of the YP Pvama-
1 haplotypes, shared with Thailand, Myanmar, and India
populations, indicate the possibility of a YP-PvAMA-1-based
multicomponent malaria vaccine with an effect on this entire
region. These results suggest PvAMA-1 a dominant target of
host immune selection and a potential vaccine target.
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