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Predicting 2-Day Mortality of Thrombocytopenic Patients
Based on Clinical Laboratory Data Using Machine Learning
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Background: Clinical laboratories have traditionally used a single
critical value for thrombocytopenic events. This system, however,
could lead to inaccuracies and inefficiencies, causing alarm fatigue
and compromised patient safety.

Objectives: This study shows how machine learning (ML) models
can provide auxiliary information for more accurate identification of
critical thrombocytopenic patients when compared with the tradi-
tional notification system.

Research Design: A total of 50,505 patients’ platelet count and other
26 additional laboratory datasets of each thrombocytopenic event were
used to build prediction models. Conventional logistic regression and
ML methods, including random forest (RF), artificial neural network,
stochastic gradient descent (SGD), naive Bayes, support vector ma-
chine, and decision tree, were applied to build different models and
evaluated.

Results: Models using logistic regression [area under the curve
(AUC)=0.842], RF (AUC=0.859), artificial neural network
(AUC=0.867), or SGD (AUC=0.826) achieved the desired average
AUC > 0.80. The highest positive predictive value was obtained by
the SGD model in the testing data (72.2%), whereas overall, the RF
model showed higher sensitivity and total positive predictions in
both the training and testing data and outperformed other models.
The positive 2-day mortality predictive rate of RF methods is as high
as 46.1%—significantly higher than using the traditional notification
system at only 14.8% [X(21)=81.66, P <0.001].
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Conclusions: This study demonstrates a data-driven ML approach
showing a significantly more accurate 2-day mortality prediction
after a critical thrombocytopenic event, which can reinforce the ac-
curacy of the traditional notification system.

Key Words: clinical laboratory data, machine learning, mortality
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As a rule, laboratories are required to issue urgent notifi-
cations to physicians to initiate prompt response man-
agement. This requirement gave rise to the term “critical
value,” which was initially used by Lundberg!? in 1972 to
describe the imminent danger faced by patients needing ap-
propriate therapy. In the following years, the Joint Commis-
sion on Accreditation of Healthcare Organizations and the
College of American Pathologists required clinical labo-
ratories to issue notifications based on critical values as part
of their accreditation criteria.>* Since then, a single critical
value notification system based on individual clinical tests>-
has been prevalent; however, critical laboratory tests and their
values are mostly defined without consensus and evidence.’

Because of this lack of consensus, the majority of
laboratories established the critical value of platelet count for
thrombocytopenic events between 5000 and 50,000/mL.”-3
However, this wide range remains questionable because re-
cent literature has also pointed out that platelet quality is more
critical than platelet quantity in determining bleeding
severity.9 Moreover, because clinical laboratories serve a
wide array of patient populations with different underlying
diseases, a universal value for all patients can be deemed
insufficient.” To accurately identify high-risk patients and
reduce alarm fatigue, a combination of the use of additional
patient laboratory data and advanced modern information
technology may increase positive predictive value (PPV) and
reduce false notifications.!%!!

Numerous studies use multiple data—not exclusively
from laboratories—with logistic regression (LR) or other simple
calculation methods to improve prognostic performance or in-
crease the triage acuity level of patients.!>?? As machine
learning (ML) has been adopted in the fields of mortality or
disease prediction and demonstrated superior performance in
classification and prediction based on extensive data,21-26 the
implementation of ML in the field of critical notification is
highly likely to help solve current challenges in clinical
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laboratories.?1?2 However, there is a scarcity of related liter-
ature regarding the use of ML techniques to predict the short-
term mortality of thrombocytopenic patients based on their
clinical laboratory data, and this is a gap that needs to be ad-
dressed.

Thus, this paper aims to address the ongoing dilemma
related to critical value establishment and implement an ML
model based on evidence and real-world clinical laboratory
data used in predicting the 2-day mortality of critical
thrombocytopenic patients by answering the following re-
search questions (RQs).

RQ1: Which ML method is most capable of identifying
the 2-day mortality of thrombocytopenic patients based on
clinical laboratory data?

RQ2: Will the selected ML method give a significantly
more accurate 2-day mortality prediction (ie, higher PPV)
than the traditional notification system?

METHODS

Study Population

This study was conducted as a retrospective study for
which 266,110 consecutive platelet counts of adult patients (aged
20y old or above) were collected from January 1, 2016 to June
30, 2017, at the Linkou Chang Gung Memorial Hospital
(CGMH) in Taiwan, a 3400-bed tertiary medical center that cares
for patients with significantly high severity of comorbidities.”’

Of the obtained platelet counts, 71,759 thrombocytopenic
events had <150,000/mL of mean platelet counts of the day
(Fig. 1); 150,000 (not 50,000) was set as the criterion because
having counts in between might require a warrant of critical
status occasionally. Data from patients with thrombocytopenia
were used, wherein a total of 63,131 (88%) thrombocytopenic
events were included from 71,759 after excluding those without
complete blood count or differential count data, to build this
study’s ML models. Of those events, 80% (50,505) were used
as the training dataset, and the remaining 20% (12,626) were
retained as the testing dataset for studying the comparative
performance of ML methods, as indicated in RQ1.

266,110
Platelet count data

71,759
mean platelet count of day
< 150,000 per microliter

8,628 (12.0%) Excluded:
Missing complete blood
count or differential count

14,314
mean platelet count of day
< 50,000 per microliter

As stated earlier, by tradition, a majority of laboratories
have established the critical value of platelet count for
thrombocytopenic events as < 50,000/mL. This arbitrarily
selected value was used as a threshold to trigger critical no-
tifications by individual hospital. This study then performed a
descriptive analysis of cases with a platelet count of < 50,000/
mL (the upper range usually adopted by laboratories) and
identified 14,314 cases, which were broken down into 5
groups by an interval of 10,000/mL to allow individual
hospitals to compare and evaluate their data with those of this
study. The relevant patient characteristics and 2-day mortality
of these 5 groups are presented in Table 1. In CGMH, the
traditional universal value notification was based on the
results of clinical laboratory tests, which used the criterion of
a platelet count lower than 10,000/mL, white blood cell count
> 50,000 or <1000/mL, hemoglobin >19 or <6g/dL, or
blast cell existence. Thus, the comparative performance of the
ML method with the traditional notification system, as
indicated in RQ2, was evaluated based on the PPVs of the
2 approaches. In the traditional system, CGMH initiated a
total of 583 critical notifications to thrombocytopenic cases in
the testing dataset (n=12,626) and yielded 86 correct 2-day
mortality predictions in this study period. The Institutional
Review Board of CGMH (IRB No.: 201701296B0) approved
the study and waived informed consent because data were
entirely anonymized and delinked.

Machine Learning Methods and Clinical
Laboratory Data

The study obtained data from 27 laboratory tests (ie, mean
platelet count, basophil, eosinophil, monocyte, lymphocyte, seg-
mented neutrophil, abnormal monocyte, red cell distribution width,
mean corpuscular hemoglobin, mean corpuscular hemoglobin
concentration, mean corpuscular volume, red blood cell, white
blood cell, band, meta-myelocyte, myelocyte, atypical lymphocyte,
reticulocyte, promyelocyte, blast cell, promonocyte, mega-
karyocyte, abnormal lymphocyte, plasma cell, hematocrit, hemo-
globin, and nucleated red blood cell; see Supplementary Table 1,
Supplemental Digital Content 1, http:/links.lww.com/MLR/C114)

Machine Learning

63,131
Thrombocytopenic events
For development of machine
learning model

50,505 (80%)
As training data
For cross validation

12,626 (20%)
As testing data

Group A: Group B: Group C: Group D: Group E:
<10000 10001-20000 20001-30000 30001-40000 40001-50000
N=1,106 N=2.219 N = 2,894 N = 3,767 N=4,328

FIGURE 1. Study population and research framework.
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TABLE 1. Patient Characteristics and 2-Day Mortality of Thrombocytopenic Events With Platelet Value <50,000/mL

Group* A B C D E
No. laboratory tests’ 1106 2219 2894 3767 4328
No. patients 519 1008 1291 1708 2149
Age (meant SD) 58.4+15.7 58.0+14.4 58.6t14.2 59.3+£13.8 59.6+£14.0
Sex
Male 612 1293 1754 2305 2660
Female 494 926 1140 1462 1668
2-d mortality (%) 210 (18.99) 335 (15.10) 324 (11.20) 309 (8.20) 343 (7.93)

*The 5 groups by platelet count are: A= <10,000, B =10,001-20,000, C=20,001-30,000, D =30,001-40,000, and E=40,001-50,000/mL.

"A patient might take multiple tests.

on the same day of each thrombocytopenic event to further train,
validate, and test the ML models.” Because coding the data of
patients who had more than 2 tests on a specific day as multiple
separate records is improper given that the multiple sets of pre-
dictor variables corresponded to only 1 outcome variable (ie, 2-d
mortality), possibly resulting in unreasonable relative weights in
ML models compared with other patients, this study, instead, used
the average value of each test in those reports to represent the
general condition of the specific day. Multiple reports for a patient
on the same day accounted for only 0.67% of total data; therefore,
using the average value did not considerably twist the overall
model while still ensuring simplified data and results processing.

The additional laboratory data and the mean platelet
count were combined into a new vector of 27 elements,
generating an array containing 63,131 records of 27 ele-
ments, with each record representing a thrombocytopenic
event. All cases of patients who died within the next 2 days
after the thrombocytopenic event were labeled as positive
in the training of ML models. In addition, all datasets
used their continuous values and kept their time sequence
to ensure the developed model can more closely re-
present, and be used to make, predictions in real clinical
settings.

ML methods used in this study to build different
models were selected based on previous relevant literature
and are as follows: LR, random forest (RF), artificial neural
network (ANN), stochastic gradient descent (SGD), naive
Bayes (NB), support vector machine (SVM), and decision
tree (DT; see Supplementary Table 2, Supplemental Digital
Content 2, http://links.lww.com/MLR/C115).21-%

Performance Evaluation

In addressing RQ1 and comparing the methods’ relative
performance, the ML methods were evaluated with the fol-
lowing metrics: sensitivity, specificity, PPV, negative pre-
dictive value (NPV), total positive predictions, and area under
the curve (AUC). Five-fold cross-validation was performed to
guarantee the models’ robustness.”® The AUC of the receiver
operating characteristic curve was set to be >0.80, which
represents an excellent discrimination power,?® thus being
considered a satisfactory ML model in this study. Achieving
the least average PPV of 50% in cross-validation was set as
the minimum cutoff of prediction probability or decision
score to eliminate excessive false alarms. Performance met-
rics by 5-fold cross-validation were then calculated using the
training data. The ML model established from the last

Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc.

iteration when the 5-fold cross-validation met the cutoff cri-
teria was used for the preserved 20% test data.

To answer RQ2, based on data from patients in the same
test data group (ie, 12,626 cases, as shown in Fig. 1), the PPV
obtained from an ML method with the best performance based
on metrics in RQ1 was used for comparison with that of the
traditional notification system. The study then adopted a x*
independent test to evaluate the PPVs between the 2 approaches
to reveal their comparative accuracy in making the notification.

If a significant difference in the x> test had been ob-
served, it might suggest that the criteria that triggered the
notification in both approaches were different. Thus, the
feature (or variable) importance®® of the selected machine
model is measured to reveal the differences between the final
selected ML model and the traditional system.

All ML models and calculations, including the AUC and
other metrics, were performed using the “sklearn” package in
Python 3.4 (https://www.python.org/). Statistical analyses of the
analysis of variance, xz test, or Fisher exact test were executed
in SPSS (IBM SPSS Statistics 19, Chicago, IL).

RESULTS

Representing the common selected criteria used in dif-
ferent hospitals, the descriptive statistics of the 5 groups of
platelet counts, including distribution and 2-day mortality, are
shown in Table 1. The highest 2-day mortality rate in group A
(18.99%) and the lowest in group E (7.93%) were within the
study’s expectations. The overall mortality rate in these critical
groups was 10.63%.

In addressing RQI, the performance metrics of ML
models were used for performance comparison, and results are
as shown in Table 2. Performance metrics, including sensitivity,
specificity, PPV, NPV, the total number of positive predictions,
and AUC, were calculated for the 5-fold cross-validation and
the testing data. Models using LR, RF, ANN, SGD, and NB
achieved an average AUC > 0.80 in the 5-fold cross-validation,
whereas SVM and DT failed to reach 0.80 and were excluded
from further analysis. The cutoff value for each model was set
as the minimum value to reach the least PPV >50% in the
5-fold cross-validation, thus excluding the NB model with only
28.4% PPV.

As for the remaining 4 models (LR, RF, ANN, and
SGD), all were capable of obtaining a PPV >50% at a fair
number of total positive predictions. However, ANN and SGD
failed to perform consistently in the testing data, and they
presented a relatively low and unsatisfactory sensitivity of 3.6%
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TABLE 2. Performance Metrics of Machine Learning Models

Model Dataset Sensitivity (%) Specificity (%) PPV (%) NPV (%) TPP (n) AUC
LR Training* 7.2+0.7 99.6+0.1 50.2+7.4 95.4+0.2 73.6£16.5 0.842+0.011
Testing 9.7 99.6 53.3 95.7 107 0.836
RF Training 15.0+£0.8 99.2+0.1 50.3+2.6 95.7+£0.2 149.6£13.0 0.859£0.007
Testing 15.1 99.1 46.1 96.0 193 0.848
ANN Training 18.8+10.2 98.9+0.8 50.0+£7.3 95.9+0.6 202.8+121.6 0.867£0.005
Testing 3.6 99.9 53.8 95.5 39 0.845
SGD Training 42+£25 99.8+0.2 50.0+£7.2 95.2+0.4 43.0£26.3 0.826£0.010
Testing 2.2 100.0 72.2 95.4 18 0.819
NB Training 85+13 98.9+0.3 28.4+3.4 95.4+0.2 151.8£33.5 0.824£0.011
Testing 8.3 98.5 21.0 95.6 223 0.800
SVM Training 0.1+£0.1 100£0.0 16.7£21.1 95.1+£0.3 1.6+0.8 0.755£0.010
Testing 0.2 100 25 95.3 4 0.729
DT Training 242+1.5 95.0+£0.3 20.1£0.9 96.0+£0.3 600.4+37.0 0.596+0.008
Testing 24.9 94.6 18.5 96.3 793 0.598

Data are presented as mean+ SD unless indicated otherwise.
*Performance metrics are obtained from 5-fold cross-validation.

ANN indicates artificial neural network; AUC, area under the receiver operating characteristic curve; DT, decision tree; LR, logistic regression; NB, naive Bayes; NPV, negative
predictive value; PPV, positive predictive value; RF, random forest; SGD, stochastic gradient descent; SVM, support vector machine; TPP (n), total positive prediction number.

and 2.2%, respectively. The remaining LR and RF models
showed similar robustness and repeatability (higher validation).
Notably, this study’s goal is to notify the maximal critical
events with an acceptable PPV of at least 50%. In comparison
with the LR model, the RF model showed higher sensitivity
(15.0% and 15.1% for the training and testing data, re-
spectively) and more total positive predictions (149.6 and
193 for the training and testing data, respectively) than the
LF model for both the training and testing data. The RF model
also demonstrated better consistent results between the cross-
validation and training/testing datasets, which shows its superiority
over other ML methods in this study for identifying the 2-day
mortality of thrombocytopenic patients based on clinical laboratory
data.

In addressing RQ2, the present study compared the per-
formance of the traditional notification system with that of the RF
model, which was selected in RQ1 (Fig. 2). The traditional system
triggered 583 critical notifications, but its PPV of the 2-day
mortality was very low at 14.8% (n=86). In contrast, the RF
model displayed a much higher PPV (46.1%) of the 2-day
mortality (n=_89), while only triggering 193 notification events,
and showed a significantly higher PPV than when using the
traditional system (X(ZD=81.66, P <0.001). This result indicates

| - 46,1% of 193 notifications

Machine learning:

RF model 10

14.8% of 583 notifications

Traditional approach

l_@?.'_.m@!!@li?ﬁ?ﬁ&t@-.tﬁ@?.i‘{@(lI!?.'f_iﬁstlti_?l"_f.- from both approaches)

1] 100 200

that the ML method was more likely than the traditional system to
predict a 2-day mortality event correctly. Moreover, it is notable
that only a small fraction (31.4%, 27 of 86 positive predictive
patients) received notifications from both approaches. These
significantly lowered the PPV in the traditional system, and the
low prediction overlap further revealed the unsatisfactory condition
of the traditional notification and the potent supplementary
information that ML can offer.

The feature importance of the final RF model is plotted in
Figure 3. The white blood cell had the greatest feature
importance of 0.084, whereas the plasma cell had the lowest
score at 6.38E—-05 (average importance score is 0.037). A total
of 14 items ranking above average had relatively similar levels
of contribution, except the drastic large importance of the white
blood count. A gap of importance drops (about 0.02) between
the 14th (band) and the 15th (meta-myelocyte) features.

DISCUSSION
Previous studies have shown the insufficiency of evi-
dence and lack of consensus in establishing critical values,
especially for hematology tests, as well as in using universal
prophylactic transfusions.>®31-3% This study focuses on the

497

300 400 500 600

® Events of two-day mortality = Events of survival after two days

FIGURE 2. Performance of critical notification of machine learning methods (random forest model) and traditional notification

system.
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FIGURE 3. Feature importance of the final random forest
model. MCH indicates mean corpuscular hemoglobin; MCHC,
mean corpuscular hemoglobin concentration; MCV, mean
corpuscular volume; nRBC, nucleated red blood cell; RBC, red
blood cell; RDW, red cell distribution width; WBC, white
blood cell.

more accurate prediction of the 2-day mortality of thrombo-
cytopenic patients with the use of ML models based on
clinical laboratory data when compared with that of the tra-
ditional notification system.

In addressing RQ1, this study adopted ML techniques
to explore patients’ biomedical laboratory data, with which
a total of 7 ML methods were tested. With the evaluation
process, including desired criteria (ie, AUC>0.80 and
PPV > 50%), this study further examined performance
metrics of sensitivity, specificity, PPV, NPV, the total
number of positive predictions, and AUC. The RF model,
with its advantages of handling complex relationships
without the need to make assumptions and of having a low
risk of overfitting, demonstrated its superiority in this
prediction. Although a previous synthesis study reported
that some ML predictions (RF, ANN, NB, etc.) showed no
performance benefit over the LR model,?’ the results of the
present study were consistent with some of the findings of
previous research in that it described that nonparametric
classifiers (eg, RF) might gerform better than more tradi-
tional classifiers (eg, LR).2 36 However, it should be noted
that such results may depend on the variables, feature
scaling, and/or dataset size that a study uses.

In addressing RQ2, the RF model had a significantly
higher PPV compared with the traditional notification sys-
tem’s low PPV, as shown in Figure 2. The high rate of false
alarms caused by the low PPV in the traditional notification
system could result in alarm fatigue, which may then affect
how health care givers prioritize patients, compromising
patient safety.!! This study’s ML approach demonstrated an
accessible and implementable supplementary system that is
capable of significantly improving the PPV. The model
successfully reduced the number of false alarms while barely

Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc.

sacrificing the necessary critical notifications for patients who
most probably need intensive care. These findings are
consistent with those of previous studies in that it showed
how ML techniques tend to enhance the performance of
traditional predictions.?>?% Moreover, this present study adds
to the understanding of how and to what extent the ML
approach can improve the performance of predicting patients’
2-day mortality of thrombocytopenic patients.

Furthermore, the study notes that only 27 mortality
events received notifications from both approaches (Fig. 2).
The feature importance of the final RF model was taken into
consideration to elaborate on the results, as shown in Figure 3.
A total of 14 laboratory tests had an above-average feature
importance score (0.037), which also seems to have a relatively
even and higher contribution in importance than the remaining
13 tests. Traditional critical values only include white blood
count, platelet count, and hemoglobin individually. These 3
features merely ranked first, fourth, and seventh in the model,
respectively. By including additional features, such as mean
corpuscular hemoglobin concentration, nucleated red blood
cell, red cell distribution width, and mean corpuscular volume,
ranking second, third, fifth, and sixth, the traditional
notification system may take more information into account
and would likely achieve more accurate identification. Further
research to enhance the prediction performance with the
emphasis of more features, especially those with above-
average feature importance, may be useful.

With the low PPV of the traditional system and the
medium PPV of the RF model, results suggest that although
ML techniques might not be powerful enough to replace the
traditional routine, it may indeed provide a more accurate
prediction for decision-makers and practitioners in hospitals
through auxiliary highlighted notifications to patients who
need intensive care. With further practical application, hos-
pitals may consider relying more on ML prediction and less
on the use of traditional notification criteria to decrease false
alarms and optimize a more accurate notification routine
based on different institutional contexts.

Despite this study success in using the ML model to
predict the 2-day mortality for thrombocytopenic patients and
substantially improve notification accuracy, the work has several
limitations. First, its retrospective design presented the like-
lihood of deviating from prospective data. However, this limi-
tation was softened by organizing the data by date and splitting
the data into training and testing datasets to mimic actual cir-
cumstances. Second, the study used clinical laboratory data
based on a single date of a thrombocytopenic event. In the
future, including data on changes®’~*° or vital signs and other
comorbid conditions may further improve prediction accuracy.
Third, this study did not include the patients’ electronic medical
records and did not review the possibility of treatment after the
thrombocytopenic event. These 2 parameters should be con-
sidered in further prospective trials to provide more precise in-
structions for physicians. Fourth, this study was not able to
compare the performance of ML models with the traditional
model by group (eg, groups A-E). For this, a larger dataset may
be needed to reach more reliable results, which could be con-
sidered for further research. Fifth and last, the study was per-
formed in a tertiary medical center that may have specific patient
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characteristics. However, because this study’s approach is based
on an organization’s previous data, it implies that any health care
organization with sufficient medical data can train a model for
their patient population despite differing characteristics and re-
quirements.

In conclusion, this study demonstrated that the perfor-

mance of traditional instruction using low platelet quantity or
another traditional notification system approach alone is in-
sufficient to predict the critical status of thrombocytopenic
patients. Instead, a data-driven ML approach presents a sig-
nificantly more precise way to target 2-day mortality after a
critical thrombocytopenic event. Although this study’s ML
model cannot serve as a precise way to identify the cause of
mortality and replace the traditional notification system, its
application may provide significantly precise information that
will make the traditional notification system more accurate.

250 | www.lww-medicalcare.com
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