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Abstract: In this study, one of the commonly used MXene (Ti3C2Tx) and β nucleated isotactic
polypropylene (β-iPP)/MXene composites of different compositions were fabricated. The effects of
MXene on non-isothermal crystallization and polymorphic behavior of β-iPP/MXene composites
were comparatively studied. The non-isothermal crystallization kinetics indicates that for all samples,
the lower cooling rates promote composites to crystallize at higher temperatures. When MXene and
β-Nucleating agent (β-NA) are added separately, the crystallization temperature of composites shifts
towards higher temperatures at all cooling rates. When MXene and β-NA are added simultaneously,
the composite shows different cooling rate dependence, and the effects of improving crystalliza-
tion temperatures is more obvious under rapid cooling. The activation energy of four samples iPP,
iPP/MXene, iPP/β-NA, and iPP/MXene/β-NA were −167.5, −185.5, −233.8, and −218.1 kJ/mol
respectively, which agree with the variation tendency of crystallization temperatures. The polymor-
phic behavior analysis obtained from Differential Scanning calorimetry (DSC) is affected by two
factors: the ability to form β-crystals and the thermal stability of β-crystals. Because β-crystals tend to
recrystallize to α-crystals below a critical temperature, to eliminate the effect of β-α recrystallization,
the melting curves at end temperatures Tend = 50 ◦C and Tend = 100 ◦C are comparatively studied.
The results show that more thermally unstable β-crystals would participate in β-α recrystallization
with higher cooling rates. Moreover, thermal stability of β-crystals is improved by adding MXene.
To further verify these findings, samples of three different thermal conditions were synthesized and
analyzed by DSC, X-Ray Diffraction (XRD), and Polarized Light Optical Microscopy (PLOM), and the
results were consistent with the above findings. New understandings of synthesizing β-iPP/MXene
composites with adjustable morphologies and polymorphic behavior were proposed.

Keywords: istotactic polypropylene; MXene; nonisothermal crystallization behavior

1. Introduction

Isotactic polypropylene (iPP), firstly synthesized by Natta et al. in the laboratory
and industrialized in 1957 [1], has become one of the most widely applied thermoplastic
polymers benefiting from its balance between excellent mechanical properties, versatile
processability, and low manufacturing cost [2,3]. iPP is a semicrystalline polymer and
shows interesting polymorphic behaviors [4] including monoclinic α-crystal, trigonal β-
crystal, triclinic γ-crystal, and smectic forms exhibiting different properties [3,5]. α-crystal
is the most stable and is commonly found in iPP, it can be obtained by practical processing
conditions [6]. β-crystal is thermodynamically metastable and can only be formed under
particular conditions such as crystallization in temperature gradient field [7,8], melt shear
field [9], or in the presence of β-nucleating agent (β-NA) [2,10]. Adding β-NA is the
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most effective way to form high content of β-crystals, which can improve toughness
but decreases the stiffness at the same time. On the contrary, adding α-NA promotes
the formation of high content α-crystals, which strengthens the material but decreases
toughness [11]. As β-crystals have better toughness and α-crystals have better stiffness,
the balance between toughness and stiffness can be achieved by efficient control of the
polymorphic behavior of iPP broadening its potential applications. Wang et al. [12] worked
to compound calcium pimelate as β-NA and multi-wall carbon nanotubes (MWCNTs) as
α-NA with iPP to fabricate toughened composites without significant loss in strength and
stiffness. In the previous works of our team, it was found that by adjusting the ratio of
β-NA and graphene oxide (GO), the ordered structure was favorable for the formation
of β-crystals [13]. Moreover, the morphology and crystallization behavior can even be
controlled by tuning the fusion temperature and melting time [14].

In the past decade, two-dimensional (2D) materials such as graphene and black phos-
phorus have drawn significant attention because of their unique structure. They possess
superior properties showing potential application in fields such as energy storage, su-
percapacitor, composites, etc. Recently, Ahmadivand et al. [15] have reported tuning of
toroidal resonances and active modulation by gating the graphene monolayer. This finding
proved the viability of potential application of graphene in photonics [16]. In 2011, Gogotsi
et al. [17] discovered a new type of 2D material, MXenes, which are single layer 2D transi-
tional metal carbides/nitrides. The general formula of MXenes is Mn+1XnTx, where M is
an early transitional metal element, X is carbon (C) or nitrogen (N) element, Tx represents
the various surface terminations such as fluorine, hydroxyl, and/or oxygen atoms [18].
MXenes are commonly obtained by etching from their precursors, MAX phases, which
are layered ternary carbides and/or nitrides with a general formula Mn+1AXn where n
generally varies between 1 and 3, and A is an A-group element (mostly groups 13 and
14) such as Al, Si, P, S, Ga, etc. [19–21]. MAX phases have layered hexagonal structures,
where the A-layers atoms are relatively weakly bonded and can act as potential active
sites to remove. The name “MXene” was given due to its similar structure to graphene.
In addition, the chemical versatility of MAX phases leads to the chemical diversity of the
MXenes family. Currently, about 30 different types of MXenes have been successfully syn-
thesized [18,22]. Among them, Ti3C2Tx is one of the most promising materials and has been
widely studied and researched [17,23]. Like other 2D materials, MXenes possess unique
properties such as layered structure [24], high electronic conductivity [25,26], large specific
area [27], hydrophilicity [28], excellent mechanical properties [29], and have great potential
in applications including energy storage, electromagnetic interference (EMI) shielding,
water purification, and structural composites. Mathis et al. [26] recently discovered that by
adding excessive aluminum during the synthesis of Ti3AlC2 can lead to superior behavior
in electronic conductivity up to 20,000 S/cm, expanding the applications of MXene. Sev-
eral studies have shown that Ti3C2Tx acts as a potential candidate for fillers in polymer
composites. Ling et al. firstly synthesized polyvinyl alcohol (PVA)/ Ti3C2Tx compos-
ites with high electrical conductivities and achieved a 300% increase in tensile strength
compared with pure PVA films when introducing 40 wt% Ti3C2Tx. Yi et al. [30] produced
poly(lactic acid) (PLA)/Ti3C2Tx composites and investigated the mechanical properties
and crystallization behavior. With the addition of 0.5 wt% Ti3C2Tx, the elongation at break
was improved 5.9-fold (up to 131.6%), and the crystallinity was also improved due to the
heterogeneous nucleation effect. Zhang et al. [31] fabricated ultrahigh molecular weight
polyethylene (UHMWPE)/ Ti3C2Tx composite and achieved maximum tensile strength
at 0.75 wt% concentration of Ti3C2Tx. Wan et al. [32] prepared Ti3C2Tx composite film
with balanced shielding performance and mechanical property by introducing poly(3,4-
ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) treated in sulfuric acid.
The synthesized Ti3C2Tx composite film exhibited EMI SE around 40.5 dB and tensile
strength around 38.5 MPa with thickness of 6.6 µm.

While these works focus on improving the physical properties of polymer/MXene
composites, the crystallization behavior of composites is still less reported. Huang et al.
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investigated the crystallization behavior of Poly(ethylene oxide) (PEO)/Ti3C2Tx compos-
ites at different concentrations. They found that the crystallization process is promoted
below 0.5 wt% Ti3C2Tx due to the heterogeneous nucleation effect, but slows down with
further increasing Ti3C2Tx content because of the rigid confinement network [33]. Similar
results were also found in our previous work in studying the non-isothermal crystalliza-
tion behavior of iPP/Ti3C2Tx composites. When 0.5 wt% Ti3C2Tx was added, the peak
crystallization temperature and crystallization rate both increased. Once the concentration
of Ti3C2Tx reached 1 wt%, the crystallization process was retarded, which might be caused
by the confined network [34].

It is well-known that crystallization behaviors can affect the physical and mechanical
properties of composites. Moreover, the practical manufacturing process is usually pro-
ceeded under non-isothermal crystallization conditions, understanding the non-isothermal
crystallization is of great importance. To our best knowledge, the roles of MXene in the
polymorphic behavior, crystalline morphologies of β-iPP at varied cooling conditions had
not been investigated yet. Thereby, this work chooses the common MXene Ti3C2Tx and fab-
ricates β-iPP/MXene composites to investigate the non-isothermal crystallization kinetics
and polymorphic behavior of composites by differential scanning calorimetry (DSC), X-Ray
Diffraction (XRD), and polarized light optical microscopy (PLOM). New understandings
in preparing the β-iPP/MXene composites with tunable morphologies and polymorphic
behavior were also proposed.

2. Experimental Section
2.1. Materials

The precursor MAX phase Ti3AlC2 (400 mesh, 99% purity) was purchased from 11
Technology Co. Ltd. (Beijing, China). Lithium fluoride powders (LiF, 99% purity) were
purchased from Aladdin Bio-Chem Technology Co. Ltd. (Shanghai, China). Concentrated
hydrochloric acid (HCl) with 37 wt% concentration was obtained from Chengdu Kelong
Chemical Reagent Factory (Chengdu, China).

The isotactic polypropylene resin (tradename T38F) was obtained from Lanzhou
PetroChemical Corp. (Lanzhou, China). The molecular weight was 347,000 gmol−1 and
the average isotacticity was around 97.6%. The β-nucleating agent (β-NA) used in the
work was WBG-II, which is a commercial nucleating gent. The general formula of WBG-II
is CaxLa1−x(LIG1)m(LIG2)n, where LIG1 and LIG2 are dicarboxylic acid and amide-type
ligands [35,36].

2.2. Sample Preparation
2.2.1. Etching of MXene

To selectively etch the precursor Ti3AlC2, HCl and LiF were used to in situ form HF.
The schematic diagram of etching Ti3AlC2 into Ti3C2Tx is indicated in Figure 1. In the
first step, 34 mL HCl was slowly added to 33 mL distilled water. A total of 2 g LiF powder
was dissolved in the diluted HCl under magnetic stirring for 10 min. Then, 3 g Ti3AlC2
was immersed slowly into the solution and kept under magnetic stirring for 24 h at a
temperature of 40 ◦C to allow full reaction. When the etching process was completed, the
mixed solution was washed with distilled water and centrifuged at 8000 rpm for 10 min to
separate the supernatant from the Ti3C2Tx sediment. This washing–centrifugation cycle
was repeated until the pH value of the supernatant reached around 6. The sediment was
immersed in distilled water for ultrasonication in the ice bath water for 2 h. The mixture
was then centrifuged again to collect the final supernatant and dried under vacuum.
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Figure 1. Schematic diagram of etching MXene and synthesis of β-iPP/MXene composites.

2.2.2. Synthesis of β-iPP/MXene Composites

The composites were prepared by melt blending via a Mini-Lab Extruder (HAAKE
MiniLab II, Thermo Fisher Scientific Corp., Waltham, MA, USA). The Ti3C2Tx and β-NA
WBG-II were firstly mixed with iPP resin by the Mini-Lab extruder at a temperature of
200 ◦C and screw speed of 80 rpm to prepare two masterbatches with 2.5 wt% concentration.
In the second step, the masterbatches were mixed again with iPP resin to prepare four
different samples. The prepared samples were then pressed by a pressure molding machine
under 190 ◦C and 8 MPa for further characterization. To benefit the following discussion,
the prepared samples were named as neat iPP, iPP/MXene, iPP/β-NA, and iPP/MXene/β-
NA. The concentrations of Ti3C2Tx and WBG-II were fixed at 0.5 wt% and 0.1 wt%, which
were chosen based on some previous studies [2,34,37,38]. The schematic diagram of
synthesizing the β-iPP/MXene composites is shown in Figure 1.

2.3. Characterization
2.3.1. X-ray Diffraction (XRD)

XRD measurements were performed using a diffractor (Ultima IV, Rigaku, Japan) with
a Cu Kα radiation (λ = 0.154 nm) with a voltage of 40 kV and filament current of 40 mA.
To measure the spectra of Ti3AlC2 and Ti3C2Tx powders, the scanning range was set to
2θ = 2 − 80◦ and the scanning rate was 10◦/min. Before measuring iPP composites, the
samples were firstly hot molded into sheets with 1 mm thickness, and the scanning range
was 2θ = 5 − 40◦ at a scanning rate of 2◦/min. The relative content of the β phase (kβ)
could be calculated from the XRD spectra via the following equation [12,39]:

kβ =
Hβ(300)

Hβ(300) + Hα(110) + Hα(040) + Hα(130)
(1)

where Hβ(300) denotes the intensity of (300) reflection of β phase. Hα(110), Hα(040), and
Hα(130) denote intensities of the three strongest reflections of α phase.
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2.3.2. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS)

The morphology of Ti3AlC2 and Ti3C2Tx powders were observed by SEM (Apreo
S HiVoc, Thermo Fisher Scientific Corp., Waltham, MA, USA) equipped with EDS. The
voltage was 5 kV and working distance was 4.9 mm.

2.3.3. Transmission Electron Microscope (TEM)

TEM characterization was conducted on a Tecnai G2 F20 S-TWIN (FEI Corp., Hillsboro,
OR, USA) with an accelerating voltage of 200 kV. To observe the structure and dispersion
of Ti3C2Tx, the sample was dispersed in distilled water under ultrasonication for 10 min.
Then, the solution was dropped on a copper grid for observation.

2.3.4. Differential Scanning Calorimetry (DSC)

A Mettler Toledo DSC3 (Mettler Tolado Corp., Zurich, Switzerland) differential scan-
ning calorimetry was used to perform the nonisothermal crystallization experiments under
a continuous nitrogen flow of 50 mL min−1. For each experiment, the standard procedure
was applied as follows: 3–5 mg sample was weighted and heated to 200 ◦C to erase the
previous thermal history. Then, the sample was cooled to end temperature 50 ◦C at a cool-
ing rate of 5, 10, 20, 30, and 40 ◦C/min, respectively, and reheated to 200 ◦C at 10 ◦C/min
to analyze its crystallization and following melting behavior. To ensure the accuracy of the
data, the sample was repeatedly tested five to eight times to obtain the average value.

The relative degree of crystallinity (Xt) as a function of temperature (T) can be calcu-
lated by the following equation [40,41]:

Xt =

T∫
T0

(dH/dT)dT /
T∞∫

T0

(dH/dT)/dT (2)

where T0 and T∞ are the onset and end crystallization temperature, and dH/dT is the heat
flow rate. In nonisothermal crystallization, the time scale t can be transformed from the
temperature T by the equation:

t = (T0 − T)/∅ (3)

where ∅ is the cooling rate. Therefore, the graph of the relative degree of crystallinity Xt
versus time t can be plotted.

Avrami equation is generally applied to analyze the isothermal crystallization kinetics
by the equation:

X(t) = 1 − exp(−ktn) (4)

where Xt is the relative degree of crystallinity, t is crystallization time, n is the Avrami
exponent, and k is a crystallization rate constant. n usually varies between 1 and 4 and can
be influenced by the combined effect of nucleation and growth [42]. The double logarithmic
form of this equation is:

ln[−ln(1 − Xt)] = nlnt + lnk (5)

By plotting the graph of ln[−ln(1 − Xt)] vs. lnt, the values of n and lnk can be
calculated by fitting the experimental data. Since the Avrami equation describes the
isothermal crystallization process, Jeziorny suggested a method to modify the parameter k
by introducing the cooling rate ∅ to describe the nonisothermal crystallization:

ln kc = (ln k)/∅ (6)

The relative percentage crystallinity of β phase (βc) was calculated by the following equation:

βc =
(1 − λ)β

(1 − λ)α + (1 − λ)β

(7)
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where (1 − λ) is the crystallinity of each phase and is calculated by ∆H/∆Hu. ∆H and ∆Hu
are the apparent and complete crystalline heats of fusion respectively. The value of ∆Hu
for 100% crystalline iPP is 209 J/g [43–45].

2.3.5. Polarized Light Optical Microscopy (PLOM)

The crystalline morphologies of samples were investigated by PLOM (Eclipse LV100
POL, Nikon, Tokyo, Japan) coupled with a hot-stage (Linkam Scientific Instruments Ltd.,
Tad-worth, UK). A small piece of the sample was cut and placed between glass covers,
melted at 200 ◦C [46] for 5 min, and cooled slowly to allow full crystallization. Then, the
film samples were observed by PLOM.

3. Results and Discussions
3.1. Morphology and Structure of MXene

As shown in Figure 2a, the MXene particles dispersed in distilled water contain flakes
with lateral sizes around a few hundred nanometers. In addition, the X-ray spectra in
Figure 2b indicates that a sharp (002) diffraction peak has shifted from 2θ ≈ 9.6◦ to 6.4◦ after
etching, suggesting an expanded interlayer distance. The disappearance of the most intense
(104) diffraction peak at 2θ ≈ 39◦, which is representative of Ti3AlC2, further confirms the
complete etching.
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SEM was conducted to observe the morphologies of bulk Ti3AlC2 and Ti3C2Tx.
As shown in Figure 3a, the bulk MAX phase Ti3AlC2 exhibits a compact layered structure
in which the flakes were closely stacked, and this particular structure can often be observed
in ternary carbides [47]. After the selective etching process was completed, the flakes are
weakly stacked and the interlayer distance increases. This morphology is also named
accordion-like morphology. The expanded layered structure agrees well with the results of
XRD and is possibly caused by escaped gas such as H2 during the etching process due to
the exothermic reaction between HF and Al [48,49].
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3.2. Nonisothermal Crystallization Behavior of β-iPP/MXene Composites

The cooling curves of the four samples are plotted in Figure 4, and crystallization
parameters including peak crystallization temperature (Tc), onset and end crystallization
temperatures (Tconset, Tcend), and crystallization peak width (Tconset—Tcend) are plotted
in Figure 5. The larger the Tconset—Tcend, the greater the crystallization temperature
range [43,50].
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Firstly, it is found that for all samples, the lower the cooling rate is, the larger the value of
Tc, Tconset, and Tcend. In other words, a lower cooling rate enables the sample to crystallize at
a higher temperature. Moreover, the crystallization peak width Tconset—Tcend decreases with
a lower cooling rate, which indicates that the polymer chains get sufficient time to rearrange
into crystalline phase. The variation trend for the four samples is slightly different. From
Figure 5, it can be observed that the crystallization parameters Tc, Tconset, and Tcend for neat iPP
are the lowest, while the crystallization peak width is the largest. Neat iPP has the weakest
crystallization ability among all samples, so it crystallizes at lower temperatures. When adding
MXene, Tc, Tconset, and Tcend increase, but the crystallization peak width Tconset—Tcend remains
nearly unchanged, suggesting that the crystallization ability is improved at all cooling rates by
adding MXene. The improved crystallization ability of iPP/MXene might be attributed to the
heterogeneous nucleation effect of MXene [34]. When β-NA is added, Tc, Tconset, and Tcend of
iPP/β-NA are the highest while Tconset—Tcend is the smallest, indicating that the addition of
β-NA can greatly improve the crystallization ability of iPP, and the effect is more significant
than the addition of MXene. This finding is consistent with the previous research results [51].

Interestingly, when MXene and β-NA are added simultaneously, the crystallization
parameters of iPP/MXene/β-NA exhibit a different cooling rate dependence from other
samples. At a lower cooling rate (≤10 ◦C/min), Tc and Tconset—Tcend are both similar
to iPP/MXene, indicating that under the combined effect of MXene and β-NA, the crys-
tallization ability is not further improved. However, when the cooling rate increases
(>10 ◦C/min), Tc and Tcend are higher than iPP/MXene but lower than iPP/β-NA, and the
crystallization peak width is lower than iPP/MXene. This finding suggests that adding MX-
ene and β-NA improve the crystallization temperature while narrowing the crystallization
peak, and this effect is found more obvious under rapid cooling.
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The cumulative relative degree of crystallinity (Xt) as a function of time curves at
different cooling rates were plotted in Figure 6 from which the half crystallization time t1/2
is calculated when Xt is 50%. The value of t1/2 can be used as a measure of crystallization
rate and ability. In general, the larger the value of t1/2 is, the longer the time needed for the
crystallization process. The plotted curves in Figures 6 and 7 show that t1/2 of neat iPP is
higher than the other three composites at all cooling rates, suggesting its crystallization
rate is the lowest. t1/2 of iPP/MXene/β-NA at lower cooling rates is almost the same as
that of iPP/β-NA, while increases significantly at higher cooling rates, proving that the
crystallization ability of iPP/MXene/β-NA is not as good as iPP/β-NA. This result agrees
with findings from DSC cooling curves.
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The results from the Avrami method are reported in Table 1, where the value of n
strongly depends on the mechanism of the crystal growth and k can be used as a measure
of crystallization rate. n for samples at all cooling rates varies between 2.5 and 3.2. The
values can be attributed to heterogeneous nucleation and three-dimensional growth in
crystallites [52,53], suggesting that the addition of the above fillers does not alter the
crystallization mechanism of iPP. In addition, it can be seen that the value of lnk increases
after the addition of MXene and β-NA, indicating that the crystallization rate is improved.
For iPP/MXene/β-NA, the value of lnk is higher than iPP/MXene, but lower than iPP/β-
NA, and this variation trend is the same as t1/2.

The nonisothermal crystallization activation energy Ec represents the energy barrier
of crystallization. In general, the larger the Ec is, the more difficult for the occurrence of the
crystallization process [54,55]. The Kissinger plot of studied samples is shown in Figure 8,
the slope can be used to calculate the activation energy of the sample. Table 1 revealed that
after the addition of MXene and β-NA, the crystallization energy barrier is lowered and the
crystallization becomes easier. However, when MXene and β-NA are added simultaneously,
the energy barrier increases again suggesting that the crystallization process becomes more
difficult. Combining the other crystallization parameters and previous study [51], the
results suggest that there exists a competitive relationship between MXene and β-NA
as fillers.
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Table 1. Crystallization kinetics parameters of four samples at different cooling rates. Ec represents
the crystallization activation energy calculated by Kissinger plot. t1/2 represents the half crystallization
time calculated from the relative degree of crystallinity vs. time graph. n and lnk represent the Avrami
exponent and crystallization rate constant calculated from Avrami and Jeziorny method.

Sample Ec
(kJ/mol)

Cooling Rate
(◦/min)

t1/2
(s) N lnk

iPP −167.5

5 56.4 2.6 −0.09
10 41.1 2.8 0.72
20 32.2 3.2 1.45
30 26.1 3.2 2.14
40 20.7 3.1 2.66

iPP/MXene −185.5

5 56.2 2.5 −0.08
10 39.2 2.6 0.84
20 30.3 3.0 1.59
30 24.9 3.0 2.13
40 19.7 2.7 2.57

iPP/β-NA −233.8

5 49.1 2.6 0.27
10 36.7 2.9 1.07
20 25.9 3.1 2.12
30 19.1 3.1 2.86
40 17.8 3.3 3.25

iPP/MXene/β-NA −218.1

5 49.4 2.6 0.24
10 36.8 2.6 1.00
20 26.0 3.0 1.95
30 21.2 3.1 2.48
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3.3. Melting and Polymorphic Behavior of β-iPP/MXene Composites

The subsequent melting curves at a rate of 10 ◦C/min of four samples are shown
in Figure 9. It can be observed that both iPP and iPP/MXene show only one melting
peak between 160–170 ◦C, therefore the addition of MXene promotes the crystallization
of α-crystals. At the same time, when β-NA is added, iPP/β-NA and iPP/MXene/β-NA
show β-crystals melting peaks between 140–155 ◦C. The melting behaviors of iPP/β-NA
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and iPP/MXene/β-NA show different dependence on cooling rates. For iPP/β-NA, as the
cooling rate increases, the β peak gradually splits into two independent peaks, proving
the formation of β-crystals with different crystalline perfections. On the contrary, this
phenomenon is found weaker in iPP/MXene/β-NA, suggesting that the melting behavior
of iPP/MXene/β-NA might be less dependent on the cooling rates.
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Figure 9. DSC melting curves of (a) neat iPP, (b) iPP/MXene, (c) iPP/β-NA, and (d) iPP/MXene/β-NA at cooling rates 5,
10, 20, 30, and 40 ◦C/min.

The relative percentage crystallinity ofβ-phase (βc) is calculated by Equation (7) and shown
in Figure 11. Figure 11a shows that at Tend = 50 ◦C, βc gradually decreases with increasing
cooling rate, which seems that a lower cooling rate is more beneficial for the formation of high
content β-crystals. However, the βc calculated from DSC is affected by two factors. One is the
ability to form β-crystals, i.e., the amount of β-crystals. The second factor is the thermal stability
of β-crystals. According to the study of Varga et al. [56–58], during the partial melting of β-
crystals, β-iPP cooled below a critical temperature (Tend = 100–105 ◦C) would recrystallize into
α-iPP in the subsequent melting behavior. The exothermic recrystallization peak of β-crystals
coincides with the endothermic melting peak, which would interfere with the accuracy of βc
on DSC curves. To comparatively study the polymorphic behavior at different cooling rates,
we compared the melting curves at two end crystallization temperatures Tend = 50 ◦C and
Tend = 100 ◦C, the melting curves and calculated βc are plotted in Figures 10 and 11.
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Figure 11. Plots of relative percentage crystallinity of β phase at (a) Tend = 50 ◦C, (b) Tend = 100 ◦C, and (c) their differences
βc (Tend = 100 ◦C—Tend = 50 ◦C) at 5, 10, 20, 30, and 40 ◦C/min.

At Tend = 50 ◦C, it is found in Figure 11a that when the cooling rate decreases, the
β-crystals content would increase. To eliminate the effects of thermal stability of β-crystals,
Tend is set to 100 ◦C so that no β-α recrystallization would occur. At Tend = 100 ◦C, the
β-crystals melting peaks in Figure 10 are wider and larger, suggesting that the β-crystal
content is also higher. The possible reason behind is at Tend = 100 ◦C the interference of re-
crystallization is eliminated, so the β-crystals content is much higher. Secondly, Figure 11b
indicates that βc increases with higher cooling rates. After β-α recrystallization interference
is removed, rapid cooling favors the formation of more β-crystals. When MXene is added,
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β crystallization is inhibited due to the competitive effect between MXene and β-NA, while
the cooling rate dependence remains unchanged. Figure 11c shows the βc difference at
Tend = 100 ◦C and Tend = 50 ◦C, when cooling rate increases, the difference between βc
is higher. The possible explanation is proposed as the following, when the cooling rate
increases more thermally unstable β-crystals tend to participate in β-α recrystallization.
Moreover, when MXene is added, βc decreases indicating that the addition of MXene can
decrease the content of β-crystals with low thermal stability. From melting curves, it can be
summarized that the crystallization behavior and polymorphic behavior of MXene/β-iPP
composites can be influenced by cooling rates and thermal conditions.

3.4. Effects of Thermal Conditions

In order to comprehensively understand the influences of thermal conditions on
crystallization and polymorphic behavior of the composites, three groups of samples with
different thermal histories were molded and named Fast Cooling Rate, Medium Cooling
Rate, and Slow Cooling Rate.

3.4.1. PLOM Observation

The crystallization morphology of the samples was observed by PLOM and the
photos are shown in Figure 12. It is found that iPP and iPP/MXene exhibit spherulites
morphology that corresponds to the α-crystals. When the cooling rate increases, crystal
nucleation is more favorable while crystal growth is confined. As a result, it is observed
that the spherulite size decreases gradually with increasing cooling rates.

Figure 12c,d indicate that after addition of β-NA, a large number of β-crystals appear.
In iPP/β-NA, the β-crystals dominate, and crystal size decreases gradually with increasing
cooling rates. At slow cooling rate, iPP/MXene/β-NA exhibits obvious and well-grown
α-crystals, which decrease in size as the cooling rate increases. The PLOM results agree
well with the previous findings.
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Figure 12. PLOM images of (a) iPP, (b) iPP/MXene, (c) iPP/β-NA, and (d) iPP/MXene/β-NA with different thermal
histories. iPP/β-NA and iPP/MXene/β-NA were remelted to 165 ◦C to observe the residual morphologies. The scale bar
represents 100 µm.
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3.4.2. DSC Analysis

To analyze the polymorphic behavior, the melting curves of iPP/β-NA and iPP/
MXene/β-NA at a cooling rate of 10 ◦C/min are shown in Figure 13 and the βc calculated
from the curves as a function of cooling rate is plotted in Figure 14. It is found that as the
cooling rate increases, the β-crystals peak becomes weaker and βc decreases accordingly.
Furthermore, the β-crystal content in iPP/β-NA is higher than iPP/MXene/β-NA at all
cooling rates. This variation trend in βc as a function of cooling rate is consistent with the
results from nonisothermal crystallization analysis in the previous part.
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3.4.3. X-ray Diffraction (XRD)

The XRD results of iPP/β-NA and iPP/MXene/β-NA were further compared in
Figure 15. From the XRD patterns, four main peaks can be found at 2θ ≈ 14.1◦, 16.1◦, 16.9◦,
and 18.6◦ that correspond to α (110), β (300), α (040), and α (130) diffractions [45,59,60].
Since XRD is performed at room temperature, during which the effects of β-α recrystal-
lization can be excluded. Therefore, the kβ value calculated from XRD patterns at all
cooling rates is higher than βc value calculated from DSC melting curves. Apart from that,
when the cooling rate increases, the kβ decreases from 91.3 to 82.8% in iPP/β-NA and
from 90.0 to 79.1 % in iPP/MXene/β-NA. This trend also agrees with findings from DSC
melting curves.
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4. Conclusions

The effects of MXene on nonisothermal crystallization behavior β-iPP/MXene com-
posites were investigated. The DSC analysis shows that the crystallization ability of the
samples follows the order iPP/β-NA, iPP/MXene/β-NA, iPP/MXene, iPP. When MXene
and β-NA are added separately, the crystallization temperature of composites increases
with lower cooling rates. However, when MXene and β-NA are added simultaneously,
they tend to compete with each other. Due to the low thermal stability of β-crystals, the
melting behaviors at two end temperatures Tend = 50 ◦C and Tend = 100 ◦C show different
variation tendency. When the crystallization end temperature Tend = 50 ◦C, a lower cooling
rate leads to more formation β-crystals. But this trend is reversed at Tend = 100 ◦C because
more unstable β-crystals would participate in β-α recrystallization with higher cooling
rates. Moreover, the experimental phenomenon that kβ calculated from XRD is higher than
βc calculated from DSC at all cooling rates further proves the β-α recrystallization. The
study paves a method to prepare β-iPP/MXene composites with adjustable crystallization
and polymorphic behavior, which can provide new insight to develop high performance
iPP/MXene composites with excellent mechanical properties in future work.
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