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ABSTRACT
Purpose: Recognizing the prognostic significance of lymph node (LN) involvement 

for cervical cancer, we aimed to identify genes that are differentially expressed in 
LN+ versus LN- cervical cancer and to potentially create a validated predictive gene 
signature for LN involvement.

Materials and Methods: Primary tumor biopsies were collected from 74 cervical 
cancer patients. RNA was extracted and RNA sequencing was performed. The samples 
were divided by institution into a training set (n = 57) and a testing set (n = 17). 
Differentially expressed genes were identified among the training cohort and used 
to train a Random Forest classifier.

Results: 22 genes showed > 1.5 fold difference in expression between the LN+ 
and LN- groups. Using forward selection 5 genes were identified and, based on the 
clinical knowledge of these genes and testing of the different combinations, a 2-gene 
Random Forest model of BIRC3 and CD300LG was developed. The classification 
accuracy of lymph node (LN) status on the test set was 88.2%, with an Area under 
the Receiver Operating Characteristic curve (ROC-AUC) of 98.6%.

Conclusions: We identified a 2 gene Random Forest model of BIRC3 and CD300LG 
that predicted lymph node involvement in a validation cohort. This validated model, 
following testing in additional cohorts, could be used to create a reverse transcription-
quantitative polymerase chain reaction (RT-qPCR) tool that would be useful for 
helping to identify patients with LN involvement in resource-limited settings.

INTRODUCTION

Cervical cancer is the 4th most common cause of 
cancer death in women worldwide [1]. Metastasis is a 
central cause of mortality in cervical cancer, and patients 
with lymph node involvement are more likely to progress 
to have distant metastases. Patients with lymph node 
involvement have significantly worse 5-year overall 
survival compared to those with localized disease only [2]. 
Currently lymph node involvement is usually determined 
by surgical pathology or imaging, such as FDG-PET/CT 

or MRI. To date there is no simple lab test that accurately 
predicts which patients will progress to have lymph node 
involvement. Unfortunately, the incidence of cervical 
cancer is increasing in developing countries with limited 
health care resources. A pathologic tool that could help 
stratify patients based on lymph node status could be 
particularly beneficial for determining the best utilization 
of treatment resources. Primary cervical tumor biopsy is 
relatively non-invasive, and nucleic acid isolates can be 
sequenced fairly quickly and inexpensively. An RNA-seq-
based signature, therefore, is a sensible candidate method 

           Research Paper



Oncotarget2303www.oncotarget.com

for development of a model that predicts lymph node 
involvement.

RESULTS

Patient and cervical cancer characteristics are 
included in Table 1 with 54% of patients with lymph node 
metastases. Based on primary tumor pathology, 86% of 
patients had squamous cell carcinoma, and the remainder 
had either adenocarcinoma or adenosquamous.

Using the training set of 57 samples, genes that 
were differentially expressed between LN+ patients and 
LN- were identified. 22 genes showed 1.5 or greater fold 
difference in expression between the groups with FDR ≤ 
0.01 (Table 2). A heatmap of the differentially expressed 
genes is shown in Figure 1.

Out of the 22 differentially expressed genes, 5 were 
identified as potential candidates for the predictive model 
using forward selection: BIRC2, BIRC3, CD300LG, 
FAM196A, and PHYHIPL. 2 of these genes, FAM196A 
and PHYHIPL, have very limited gene annotation or 
relevant clinical background and were therefore excluded 
from model development. The final three genes, BIRC2, 
BIRC3, and CD300LG, were included in the training 
set Random Forest model. The subset of BIRC3 and 
CD300LG showed the best test set accuracy, 88.2%, 
and was therefore selected as the final model. In the 
training set, BIRC3 (Baculoviral IAP Repeat Containing 
3) was upregulated 1.7-fold in LN+ patients. CD300LG 
(Nepmucin), on the other hand, was downregulated 1.5-
fold in LN+ patients. Table 3 compares the accuracy of 
the various models tested, while Figure 2 shows the ROC 
curve comparison of the 4 models. Figure 3 shows the 
Random Forest decision surface and a decision tree using 
the 2 genes with the training set.

Alternative models were developed using the final 2 
genes with different algorithms, but these models showed 
slightly lower performance than the Random Forest model. 
A Support Vector Machine with Radial Basis Function 
(RBF) kernel had 94.4% ROC-AUC, and a Gaussian 
Naïve Bayes model had 84.7% ROC-AUC.

The Random Forest model correctly classified 
88.2% of the test set patients, n = 17. All 8 of the LN+ 
patients were correctly classified; out of the 9 LN- 
patients, 7 were correctly classified. The test set ROC-
AUC was 98.6%, 95% CI [66.7%, 100%]. Sensitivity for 
detection of LN involvement was 100%, and specificity 
was 77.8%. Precision was 80.0% and Negative Predictive 
Potential was 100%.

DISCUSSION

Lymph node involvement represents one of the most 
significant determinants of cervical cancer prognosis and 
impacts treatment approach [3–6]. Our pilot study shows 
that lymph node involvement in cervical cancer can be 

predicted with RNA-seq data, and our two-gene lymph 
node predictive signature showed 88% predictive accuracy 
when evaluated in a separate cohort.

Cervical cancer lymph node involvement can be 
determined by surgical staging or imaging, such as FDG-
PET/CT or MRI. Several studies suggest that lymph 
node status on FDG-PET is a more significant predictor 
of disease outcome than clinical FIGO stage [6–8]. 
The presence of lymph nodes also influences treatment 
decisions, such as the need for adjuvant chemoradiation 
after surgery or the extent of the radiation field and dose 
for definitive chemoradiation treatment. Currently, no 
simple lab test that accurately predicts cervical cancer 
lymph node involvement exists. Additionally, the 
incidence of cervical cancer is increasing in developing 
countries with limited health care resources for surgery, 
imaging, and treatment. A simple pathologic tool that 
could help stratify patients based on predicted lymph node 
status could be particularly beneficial for determining 
the best utilization of treatment resources. If treatment 
or radiation resources are particularly limited, knowing 
which patients have no lymph nodes could help identify 
the patients to treat with a definitive or curative approach 
versus those to treat more palliatively. Alternatively, if 
imaging resources are limited but surgical and/or radiation 
resources are available, it might be that patients with a 
biomarker predicting for lymph nodes undergo surgical 
lymph node resection and/or extended field radiation or 
additional chemotherapy.

A limited number of microarray gene expression 
studies have been performed involving cervical cancer, and 
a few groups have attempted to identify a gene expression 
signature that can predict lymph node involvement in 
cervical cancer [9–12]. Many of these studies were 
relatively small and lacked a validation cohort. Grigsby 
et al., for example, included 8 cervical cancer patients, 3 
with supraclavicular metastases, and identified 75 out of 
12,000 genes with at least 3-fold differential expression 
to create a 12 gene signature to distinguish the groups [9]. 
Biewenga et al. evaluated tumor samples from 35 patients 
(16 with lymph node metastases) and found that 5 genes 
with differential expression had a prediction accuracy of 
64.5% [10]. Using 43 primary cervical cancer samples (16 
with lymph node metastases), Kim et al. created a lymph 
node prediction model using 156 genes with a prediction 
accuracy of 77% [11]. While Huang and colleagues did 
include a validation cohort, they evaluated early stage 
cervical cancer patients undergoing hysterectomy with 
fairly low rates of lymph node metastases [12]. In contrast, 
our study includes a range of stages, a greater proportion 
of advanced stage, a higher proportion with lymph node 
metastases, and also used deep sequencing with RNA-seq 
that assayed over 16,000 genes, as opposed to microarrays 
with fewer than 1,500 genes. Unfortunately, these different 
microarray studies for cervical cancer had minimal 
overlap in significant genes, suggesting that a new, more 
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reproducible approach with RNA-seq might be a better 
method for a lymph node predictive model.

In benchmarking studies, RNA-seq has been 
shown to outperform microarray for both sensitivity and 
specificity [13–17], and therefore gene signatures derived 
from RNA-seq studies are likely to have greater extrinsic 
validity compared with those derived from microarray 

studies. RNA-seq is a direct high-throughput sequencing 
method that does not rely on hybridization, in contrast to 
microarray.

Among the 20 proteins corresponding to the 
differentially expressed genes with UniProt Gene Ontology 
annotation, 18 have annotation of integral membrane 
component, extracellular, ion/solute transport, or surface 

Table 1: Characteristics of patients with cervical cancer in the three cohorts–breakdown of patient 
groups by LN status, histology, and tumor stage
Characteristic Stanford Medical 

Center (N = 47)
Cancer Hospital of 
Shantou Medical 
Center (N = 10)

Training Cohort
(N = 57)

Validation Cohort: Santa 
Clara Valley Medical 

Center (N = 17)

Lymph node status - no. (%) Positive 30 (64) 2 (20) 32 (56) 8 (47)

Negative 17 (36) 8 (80) 25 (44) 9 (53)

Positive lymph node location - no. Pelvic 22 1 23 4

Para-aortic 8 1 9 4

Lymph node status method - no. PET/CT 38 1 39 11

Histology 9 9 18 6

Histology - no. (%) Squamous cell 
carcinoma

43 (92) 10 (100) 53 (93) 11 (65)

Adenocarcinoma 3 (6) 0 (0) 3 (5) 4 (24)

Adenosquamous 1 (2) 0 (0) 1 (2) 2 (12)

FIGO 2008 Stage - no. (%) I 10 (21) 6 (60) 16 (28) 4 (24)

II 25 (53) 4 (40) 29 (51) 6 (35)

III 8 (17) 0 (0) 8 (14) 4 (24)

IV 4 (9) 0 (0) 4 (7) 3 (18)

LN status determined by pathology or PET/CT imaging. Tumor stage corresponds to FIGO 2009 staging.

Figure 1: Heatmap of differentially expressed genes. (A) 22 genes were differentially expressed in the training set. Genes were 
arranged by hierarchical clustering using correlation distance and average linkage. Fold-change is expressed in linear scale as Z score across 
samples. (B) 5 genes were selected from the original 22 by forward selection. Clustering for 5 gene heatmap was performed separately.
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receptor (http://www.geneontology.org/). Considering that 
membrane proteins have key roles in the cellular changes 
that contribute to adhesion, epithelial-mesenchymal 
transition (EMT), and metastasis, these genes could 
potentially be linked to lymph node involvement.

BIRC3, one of the significant genes of our model, 
has an important role in the inhibition of apoptosis and 
could be related to the survival of cervical cancer cells 
during metastasis. In The Cancer Genome Atlas (TCGA) 
comprehensive characterization of cervical cancer, BIRC3 
was highlighted for showing amplification events in 17% 
of tumors [18]. These amplification events were enriched 

in a cluster of primarily squamous tumors, which is similar 
to our dataset, composed of nearly all squamous tumors. 
While BIRC3 and CD300LG may play a role in the 
pathophysiology of cervical cancer metastasis, our gene 
expression study simply suggests a correlative connection. 
Further study of these genes in the context of cervical 
cancer progression is warranted.

A gene signature composed of two genes offers 
important advantages compared to larger gene signatures 
for the purpose of prediction. A smaller model is less 
likely to overfit to the training cohort, and its operation 
is less computationally expensive. A smaller gene set, 

Table 2: Differentially expressed genes in the training set–22 genes in the training set were 
differentially expressed, which was defined as fold-change > 1.5 and FDR ≤ 0.01
Gene Symbol Gene Name Fold-Change (LN+/LN–) FDR Gene Symbol

OGN Osteoglycin 0.605 0.001 OGN

DES Desmin 0.564 0.001 DES

CD300LG CD300 Molecule Like 
Family Member G

0.658 0.001 CD300LG

C8G Complement C8 Gamma 
Chain

0.553 0.002 C8G

OVGP1 Oviductal Glycoprotein 1 0.580 0.003 OVGP1

SLC2A3 Solute Carrier Family 2 
Member 3

1.757 0.003 SLC2A3

CDH16 Cadherin 16 0.598 0.004 CDH16

FAM196A Inhibitory Synaptic Factor 
2A

0.568 0.004 FAM196A

LDB3 LIM Domain Binding 3 0.568 0.004 LDB3

MME Membrane 
Metalloendopeptidase

1.656 0.004 MME

MYH11 Myosin Heavy Chain 11 0.575 0.004 MYH11

NBLA00301 HAND2 Antisense RNA 1 0.601 0.004 NBLA00301

TFPI2 Tissue Factor Pathway 
Inhibitor 2

2.050 0.004 TFPI2

KCNAB1 Potassium Voltage-Gated 
Channel Subfamily A 

Member Regulatory Beta 
Subunit 1

0.591 0.006 KCNAB1

MATN4 Matrilin 4 0.580 0.007 MATN4

ABCB11 ATP Binding Cassette 
Subfamily B Member 11

1.605 0.008 ABCB11

BIRC3 Baculoviral Iap Repeat 
Containing 3

1.664 0.008 BIRC3

FXYD1 FXYD Domain 
Containing Ion Transport 

Regulator 1

0.588 0.008 FXYD1

BIRC2 Baculoviral Iap Repeat 
Containing 2

1.677 0.009 BIRC2

MICB MHC Class I Polypeptide-
Related Sequence B

1.653 0.009 MICB

PHYHIPL Phytanoyl-CoA 
2-Hydroxylase Interacting 

Protein Like

0.598 0.010 PHYHIPL

CNN1 Calponin 1 0.597 0.010 CNN1

Fold-change is represented on linear scale. Genes are ranked by increasing FDR.

http://www.geneontology.org/
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moreover, may focus on fewer pathways or networks, 
potentially contributing to a more coherent interpretation 
of the biological factors involved. Additionally, a small 
panel is easier to assay in follow-up studies and could 
possibly translate into a more tractable clinical test, such 
as a reverse transcription-quantitative polymerase chain 
reaction (RT-qPCR) assay.

While our study has several unique and valuable 
findings, it also has some limitations. Our study included 
a range of stages and histologies, so stage IV and 
adenocarcinoma are included in more limited numbers. 
Patients were only assessed for lymph node status and 
were not uniformly followed for disease outcomes. The 
significant genes of our study have limited overlap with 
existing cervical cancer microarray studies.

Our study shows that lymph node involvement in 
cervical cancer can be predicted with RNA-seq data, and 
our limited gene lymph node predictive signature shows 
high predictive accuracy when evaluated in a separate 
cohort. Our study has several strengths, including the 
relatively large number of patients, the use of RNA-seq 
for the evaluation of gene expression, the validation of 
the predictive model with a separate cohort, and the high 
classification accuracy of lymph node status in the testing 
cohort. Further evaluating our findings in additional 
cohorts would be beneficial. In particular, a follow-up 
study involving survival data could assess the ability to 
predict clinical outcomes. Upon further validation, this 
biomarker tool that could predict lymph node involvement 
based on cervical tumor biopsy could be useful for risk 

Figure 2: Receiver operating characteristic curve comparing 4 models–models based on each combination of the top 
3 genes were evaluated for sensitivity and specificity. Receiver operating characteristic curve displays false positive rate (1 – 
specificity) versus true positive rate (sensitivity).

Table 3: Comparison of lymph node prediction accuracies of potential models – each combination 
of the top 3 genes was used to develop a Random Forest model
Model Accuracy training 

cohort (N = 57)
ROC-AUC [95% 

CI] training cohort
Accuracy test 

cohort (N = 17)
ROC-AUC [95% CI] 

test cohort
BIRC3, CD300LG 87.7 97.0 [90.4, 99.6] 88.2 98.6 [86.1, 100]
BIRC3, CD300LG, 
BIRC2

87.7 98.5 [94.2, 100] 82.4 94.4 [71.6, 100]

BIRC2, CD300LG 87.7 98.2 [92.5, 100] 70.6 86.1 [51.7, 100]
BIRC3, BIRC2 93.0 98.9 [94.6, 100] 64.7 75.0 [40.3, 95.7]

Models are ranked by test set classification accuracy.
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stratification of cervical cancer patients in developing 
countries with limited imaging and healthcare resources.

MATERIALS AND METHODS

Tissue collection

With IRB approval 74 cervical biopsy samples were 
prospectively collected from cervical cancer patients, 
prior to the initiation of treatment or at the time of initial 
surgery. Inclusion criteria was for patients with known 
or suspected cervical cancer. If diagnostic and research 
biopsy were obtained at the same time and diagnostic 
biopsy found that the patient did not have cervical cancer, 
the patient and tissue sample were excluded from analysis. 
Additional clinical information prospectively collected 
included tumor stage, histology, and location of local 
lymph node involvement. The patient cancers mainly 
consist of squamous cell carcinomas (Table 1). Lymph 
node status was assessed by a combination of pathology 
(n = 24) and diagnostic FDG-PET/CT imaging (n = 50). 
Patients who underwent surgical assessment of lymph 
nodes generally had a pelvic lymph node dissection with 
or without para-aortic lymph node sampling. Lymph 
nodes were considered positive on FDG-PET/CT based 
on the interpretation by the nuclear medicine physicians. 
Clinical characteristics between LN+ and LN- patients are 
displayed in Table 4.

The primary tumor biopsies were collected at 
3 different institutions: Stanford University (n = 47), 
Cancer Hospital of Shantou University Medical College 
(n = 10), and Santa Clara Valley Medical Center (n = 17). 
The tissue was collected from primary cervix tumor prior 
to the initiation of any therapy and was immediately put 
into RNAlater (Qiagen, Redwood City, California, USA). 
The cervical tumor samples were flash frozen in liquid 
nitrogen and stored at –80°C.

Preparation of cDNA libraries for next-
generation sequencing

For each tumor sample, total cDNA libraries for 
next-generation sequencing were prepared from RNA 
samples extracted from the tumor samples using the 
Qiagen AllPrep DNA/RNA Kit (Qiagen, Redwood City, 
California, USA). Each library was prepared using 1 μg of 
total RNA. This material was used to prepare sequencing 
libraries using the TruSeq™ RNA Sample Preparation 
kit (v2) from Illumina Proprietary (Illumina Inc., San 
Diego, CA, USA). Verification of cDNA library quality 
was performed using the high sensitivity DNA assay 
run provided by the protein and nucleic acid facility at 
Stanford University (Stanford University, Stanford, CA). 
The quality of the genomic product contained in the 
libraries was assessed with an Agilent 2100 Bioanalyzer 
(Agilent Technologies, Santa Clara, California, USA) 

Figure 3: Decision surface and decision tree. (A) Decision surface of a decision tree derived from the training cohort using the same 
genes as the Random Forest model. The background is the decision boundary generated by the decision tree based on the training cohort 
data. Light color represents the prediction of lymph node negative sample, and dark color represents prediction of lymph node positive 
sample. The validation cohort samples are overlaid. Light samples are lymph node negative tumors and dark samples are lymph node 
positive tumors. (B) Decision tree created from the training cohort using the same genes.
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that determined the sizing and quantification of the DNA 
fragments and smears. The libraries were sequenced using 
an Illumina HiSeq sequencer using the manufacture’s 
standard protocols at the Stanford Functional Genomics 
Facility (Stanford University, Stanford, CA). The first 24 
samples were sequenced using the NextSeq GA single end 
read at 75 base pairs per cycle. The subsequent 50 samples 
were sequenced using the NextSeq GA paired end read at 
150 base pairs per cycle.

Alignment of mRNA next-generation sequencing 
reads

RNA sequencing reads were processed from raw 
FASTQ files and analyzed using STAR 2.3.0. Reads were 
filtered using the quality control program FASTQC (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) and 
subsequently trimmed using the FASTX-Toolkit (http://
hannonlab.cshl.edu/fastx_toolkit/). The quality control 
plots were checked, and a file with unique reads and their 
corresponding counts was generated for each sample. The 
final processed unique reads were mapped with STAR to 
the human reference genome (https://code.google.com/p/
rna-star/). Mapped reads were aligned and counted based 
on genomic annotations using Samtools (http://samtools.
sourceforge.net/), and the reads were converted to counts 
using HTSeq (Version 0.9.1).

Analysis

Genes without > 10 counts among > 7 samples 
(~10% of all samples) were filtered out from downstream 
analysis, eliminating extremely lowly expressed genes. 
Normalization was performed with DESeq2 using default 
parameters [19]. Variance Stabilizing Transformation was 
implemented to mitigate excessive dispersion in genes with 
low read counts for visualization and model development.

The patient samples from Stanford Medical Center 
and Cancer Center of Shantou Medical Center were used 
as a training cohort of 57 samples; the 17 samples from 
patients from Santa Clara Valley Medical Center were 
used as the test cohort. The training and test cohorts each 

have a nearly even distribution of LN+ and LN- samples. 
Standard scaling was performed on the training set, and 
the scaling factors derived from the training set were 
subsequently used to transform the test set.

Using the training set, differential expression 
between the LN+ and LN- samples was performed in 
DESeq2. The normal shrinkage estimator was used for 
effect size log fold-change shrinkage, and Benjamini-
Hochberg False Discovery Rate (FDR) p-value adjustment 
was performed. Genes that displayed > 1.5 fold-change and 
≤ 0.01 FDR adjusted p-value were considered differentially 
expressed. The stringent FDR adjusted p-value threshold 
was selected to minimize the likelihood of false positive 
identification of differentially expressed genes.

To determine which differentially expressed genes to 
include as candidates in the lymph node predictive model, 
the RandomForestClassifier package (Python Scikit-learn) 
was implemented with 1000 trees on the training set for 
forward selection using the greedy algorithm [20].

The final selection of candidate genes was 
performed in two steps. First, we excluded the genes 
with unknown biological function as previous data had 
suggested improved performance of a model by using 
previous knowledge about biology [21, 22]. Second, a 
Random Forest model was fit to all possible subsets and 
the model with the highest predictive accuracy for the 
training set was selected as the final model.

To build the models, Random Forest was used with 
1000 trees and 10-fold cross-validation. For comparison, 
the genes included in the final Random Forest model were 
used to train additional classifiers based on Support Vector 
Machine with RBF kernel and Gaussian Naïve Bayes 
method. The final Random Forest model was evaluated 
using the separate test cohort, and the accuracy was 
calculated as the proportion of patients with lymph node 
status correctly classified.

Quantifications and analyses were performed using 
Python version 3.6.3 and R version 3.5.0. Statistical 
learning was performed with the Python package scikit-
learn version 0.19.1. Plots and graphs were produced 
using the Python packages Matplotlib version 2.2.2 and 
Seaborn version 0.9.0.

Table 4: Characteristics of patients with LN+ and LN- cervical cancer – breakdown of patient 
groups by histology and tumor stage
Characteristic Lymph node positive patients Lymph node negative patients
Histology - no. (%) Squamous cell 

carcinoma
36 (90) 28 (82)

Adenocarcinoma 3 (8) 4 (12)
Adenosquamous 1 (3) 2 (6)

FIGO 2008 Stage - no. (%) I 6 (15) 14 (41)
II 19 (48) 16 (47)
III 10 (25) 2 (6)
IV 5 (13) 2 (6)

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
https://code.google.com/p/rna-star/
https://code.google.com/p/rna-star/
http://samtools.sourceforge.net/
http://samtools.sourceforge.net/
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