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Recent progress in microbial ecology is allowing for the

new discovery of the vast, poorly-characterized microbial

world. The following four topics are intensively highlighted

as perspectives we can use to look into the novel microbial

world in nature; unexplored habitats, unexpected microbial

diversity/function, microbial community including eukaryotic

microbes, and complex microbial ecosystems characterized

by large data sets. 

Unexplored habitats

Microorganisms are found in a wide variety of environ-

ments and novel microbial species are constantly being

reported. Molecular ecological analyses and new efforts to

isolate uncultured microbes (40) are opening previously

unexplored habitats of microbes. Hydrothermal vents and the

deep subseafloor have widely attracted attention of biologists

exploring extremophiles (32, 34). Ettoumi et al. reported

great diversity of marine Bacillales in deep-sea sediments

(8). Recently, microbes in high-altitude snow (4), in the

stratosphere and troposphere (63) and on the International

Space Station were investigated (17). The phytosphere is

also a collection of interesting habitats for microbes. New

findings about microbial communities in the phytosphere of

leguminous and other agricultural crops, as well as in natural

environments are continuously reported (19, 47, 50, 55, 61).

Although metazoans have been well recognized as a habitat

of pathogenic microorganisms, we have also become aware

of mutualistic relationships between microbes and their host

animals (10, 25). Huge numbers of animals and plants remain

to be examined as unexplored habitats for microbes.

Unexpected microbial diversity/function

Analyses based on SSU rRNA genes are a powerful

tool for microbial ecological studies. Advances in DNA

sequencing techniques deepen our knowledge about bacterial

and archaeal worlds (27). Itoh et al. utilized colony picking

equipment for clone library analysis (21). The equipment

used can pick up to 20,000 colonies, providing a high-

throughput approach for traditional sequencing analysis. They

obtained long DNA sequences of 16S rRNA genes from more

than 1,000 clones for 10 libraries each and successfully

identified a fine scale succession of bacterial and archaeal

communities using this approach.

The physiological properties of microbes are sometimes

not supported by phylogenetic relationships. For example, a

novel methanogenic lineage was recently found in the class

Thermoplasmata which had previously consisted of mainly

aerobic or sulfur-reducing archaea (6, 18, 39). Analyses of

environmental DNAs encoding for physiologically key

enzymes involved in processes such as ammonia oxidation,

methane oxidation, denitrification, and acetogenesis (29, 46,

58, 62, 65) have discovered functional diversity and patterns

of the distribution of microbial communities in nature.

Alfreider and Vogt suggested a chemolithoautotrophical

bacterial world in groundwater systems by detection of CO2-

fixation genes (1). Reliable extraction methods of RNA from

various environments will accelerate these studies (60).

Likewise, stable isotope probing (SIP) of cellular molecules

such as nucleic acids and phospholipid fatty acids has been

widely utilized for detection of microbes which assimilate

particular chemicals (7). Saito et al. successfully found

novel denitrifying species from rice paddy soil using SIP

(45). Microscopic analysis after specific labeling visualizes

spatial micro-distribution of microbial cells. Various imaging

techniques detecting physiological or metabolic activities

have been developed (28, 32, 36) and opened uncovered

microbial worlds (44). Micro-environments where microbial

communities develop are now able to be characterized using

microsensors (48).

Naturally, it should be noted that microorganisms are often

in a dormant state in nature. Microbes in a dormant state are

not active but are occasionally activated by changes in their

environment. Examination of dormant microbes is required

for comprehensive understanding of microbial communities,

because dormant microbes provide clues to the hidden

function of microbial community and they may contribute to

stability of microbial ecosystems. Recently, physiological

states in response to environmental stress have been well-

studied in microbial ecology (16, 22, 67, 69).

Physiological properties which have been determined

under pure culture conditions are not always detected in

microbial ecosystems. Clarification of the ecophysiology of

microbes in microbial ecosystems provides new insights

into the microbial world. Both fluctuations of micro-

environments and other microbes affect behavior of microbes

in situ. Pseudomonas aeruginosa is one of the well-studied

bacteria in interspecies interactions. Tashiro et al. com-

prehensively reviews the interspecies interaction between P.

aeruginosa and other bacteria (56). Low molecular-weight

compounds such as antibiotics and quorum-sensing signaling

molecules secreted by bacteria are widely known to affect

growth or transcriptional profile of other bacterial species

(56). High molecular-weight compounds such as bacteriolytic
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enzymes (43) and resuscitation promoting protein (41) also

work as intercellular messengers. Clarification of interspecies

relationships is uncovering the hidden sides of the microbial

world.

Microbial community including eukaryotic microbes

Prokaryotes, i.e., bacteria and archaea, coexist with

eukaryotic microbes such as fungi and protists, including the

eukaryotic algae. Molecular ecological studies are being

conducted on eukaryotic microflora with useful technical

reports being published (23, 49, 52, 64). Diene et al. found

a novel species of fungi from soils by cultivation and isolation

(5). Bao et al. reported a pioneering work in which they

compared microbial communities including bacteria, fungi

and nematodes in soils collected from four sites (2). This

report tried to clarify effects of environmental parameters on

whole microbial ecosystem in soils using multivariate

analyses. They found that soil properties had a simultaneous

impact on bacteria, fungi, and nematode communities. Their

results also suggested that the nematode community may

regulate the bacterial and fungal communities. Steele et al.

characterized bacteria, archaea and protists in the marine

environment after time-series sampling (51). They extracted

possible microbial relationships using network analysis based

on microbial compositions and environmental parameters.

Viruses should also be considered as a part of microbial

ecosystems because prokaryotic communities are known to

be affected by phages (54, 66) and eukaryotic microbial

communities are also affected by viruses (33). 

Complex microbial ecosystems characterized by large 

data sets

As introduced above, we have noticed the “complexity”

of microbial ecosystems in nature. Multivariate statistics are

helpful tools to interpret large data sets, e.g., multidimensional

scaling (57), canonical correspondence analysis (37), and

principal component analysis (13). A community-wide meta-

analysis can also be applied to synthesize data on microbial

community composition, microbial processes and environ-

mental parameters (e.g., 3). Characterization of biological

processes by microbial communities will be an increasingly

important issue for defining ecosystem metabolisms (20,

38, 68). Analysis of community-level responses against

disturbance or change in environmental parameters is a

practical approach to find out the key members and

interspecies relationships within microbial communities (9,

12, 14, 26, 30, 53). At present, several software/web tools

are available for data analysis, e.g., ECOMICS for trans-

omics investigation (35) and cMonkey for network modeling

of complex systems (42). Likewise, mathematical modeling

is also a useful approach to indicate novel interspecies

relationships or microbial function in microbial ecosystems

(11, 24, 31, 59). In the current issue of Microbes and

Environments, advantages and limitations of mathematical

modeling are introduced as a mini-review (15). In this

review, it is also proposed that theoretical biology/systems

microbiology provides a perspective for understanding the

plasticity, robustness and stability of complex ecosystems.

Theoretical and mathematical approaches combined with

traditional microbial ecology are disclosing the complex

microbial world and will clarify central and general tenets

of microbial ‘societies’ where a variety of microorganisms

closely interact with each other. 
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