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Identification of novel inhibitors 
of Keap1/Nrf2 by a promising 
method combining protein–protein 
interaction‑oriented library 
and machine learning
Yugo Shimizu1, Tomoki Yonezawa1,2, Junichi Sakamoto3, Toshio Furuya4, Masanori Osawa1 & 
Kazuyoshi Ikeda1* 

Protein–protein interactions (PPIs) are prospective but challenging targets for drug discovery, because 
screening using traditional small-molecule libraries often fails to identify hits. Recently, we developed 
a PPI-oriented library comprising 12,593 small-to-medium-sized newly synthesized molecules. This 
study validates a promising combined method using PPI-oriented library and ligand-based virtual 
screening (LBVS) to discover novel PPI inhibitory compounds for Kelch-like ECH-associated protein 1 
(Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2). We performed LBVS with two random 
forest models against our PPI library and the following time-resolved fluorescence resonance energy 
transfer (TR-FRET) assays of 620 compounds identified 15 specific hit compounds. The high hit 
rates for the entire PPI library (estimated 0.56–1.3%) and the LBVS (maximum 5.4%) compared to a 
conventional screening library showed the utility of the library and the efficiency of LBVS. All the hit 
compounds possessed novel structures with Tanimoto similarity ≤ 0.26 to known Keap1/Nrf2 inhibitors 
and aqueous solubility (AlogP < 5). Reasonable binding modes were predicted using 3D alignment of 
five hit compounds and a Keap1/Nrf2 peptide crystal structure. Our results represent a new, efficient 
method combining the PPI library and LBVS to identify novel PPI inhibitory ligands with expanded 
chemical space.

Protein–protein interactions (PPIs) have received increasing attention as attractive targets for drug discovery over 
the past decade1. However, unlike major drug targets such as kinases and G protein-coupled receptors (GPCRs), 
PPIs are recognized as intractable targets2 because the properties required for PPI-modulating molecules are 
different from those for small-molecule drugs that follow Lipinski’s rule of five (i.e., molecular weight < 500, 
etc.)3. PPI interfaces are relatively larger than the average interaction areas of single protein targets, and thus 
molecules inhibiting PPIs tend to be larger and have diverse conformations4. High-throughput screening (HTS) 
is commonly used to find active compounds in early drug discovery processes, but it has been shown that the 
rate of obtaining hit compounds is significantly low for HTS targeting PPIs using a chemical library composed 
of small-molecule compounds5. Therefore, there is a need for a focused library specific to PPIs, for example, 
consisting of small-to-medium-sized molecules with properties that extend the rule of five (e.g., molecular 
weight ranging from 450 to 750)6, and compounds that mimic secondary structures (α-helix and β-sheet) and 
3D structures of function-related motif sequences on the interfaces. Recently, a PPI-oriented library, called DLiP, 
was developed in the Japan Agency for Medical Research and Development (AMED) project7. The DLiP library 
was designed based on the 3D structure of the interface of 117 diverse PPI complexes and the physicochemical 
properties of known PPI inhibitors. It consists of small-to-medium-sized (molecular weight ranging from 450 
to 650) compounds with new synthetic structures selected from a virtual library of over 6 million commercially 
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available (synthesizable) compounds. However, the small-to-medium-sized molecules have not sufficiently been 
validated so far by assays against specific PPI targets.

Experimental validation of all compounds in such a PPI library is not practical because of the high cost. To 
find hit compounds efficiently from a library, in silico methods have been widely used in drug development8. 
Virtual screening (VS) is a standard procedure in the discovery of hit and lead compounds that enables compu-
tational evaluation of the activity of a large number compounds with unknown activity9. VS is mainly classified 
into two methods: structure- and ligand-based VS (SBVS and LBVS, respectively)10,11. SBVS involves docking of 
compounds into the target protein structure, whereas LBVS uses activity information of known ligands to create 
prediction models without requiring the knowledge of protein crystal structures. Such an in silico approach is 
also important in the rational design of PPI-modulating molecules. Recently, the discovery of novel inhibitors 
of some PPI targets using a ligand-based approach was successful12,13. For example, Melagraki et al.12 combined 
SBVS and LBVS to discover novel small-molecule PPI inhibitors of tumor necrosis factor (TNF) and receptor 
activator of nuclear factor κB ligand (RANKL). They created a ligand-based model from 2,481 known TNF 
inhibitors using majority vote of outputs from three machine learning algorithms: k-nearest neighbor, nearest 
neighbor, and random forest (RF), and used it to analyze compounds shortlisted using SBVS of 14,400 com-
mercial compounds. Reker et al.13 created RF models of CXC chemokine receptor 4 and its endogenous ligand 
CXCL-12 from 287 curated ligands, which were used to analyze 1,465,960 compounds from an HTS compound 
collection to filter compounds used for bioassay. Furthermore, they included the results of their bioassay into the 
known activity dataset to refine the model and further obtain hits. We conceived that a similar approach using 
LBVS could efficiently streamline the compounds in a PPI library to a limited number, to use in an experimental 
validation of the library for a specific PPI target, which leads to discovery of hit compounds at a lower cost.

To validate the utility of a PPI library for practical screenings and the effectiveness of ligand-based predict-
ing methods for a PPI library, we focused on Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor 
erythroid 2-related factor 2 (Nrf2) as a desirable PPI target. Nrf2 is a major transcription factor that protects 
cells from oxidative stress14 and inflammatory responses15. Therefore, Nrf2 is involved in various diseases such 
as cancer16, neurodegenerative diseases (e.g., Alzheimer’s Disease17,18, Parkinson’s disease17,19, and Huntington’s 
disease20), diabetes21, liver disease22, respiratory disease23, sepsis24, and other diseases25,26. The Kelch domain of 
Keap1 binds to the Neh2 domain of Nrf2, which leads to ubiquitination and subsequent degradation of Nrf227. 
Thus, Keap1 acts as a negative regulator of Nrf2. Inhibition of their PPI activates Nrf2 and is a promising thera-
peutic target for diseases such as neurodegenerative disease, diabetes, liver disease, and sepsis.

Although many electrophilic molecules that target the cysteine residues in Keap1 to activate Nrf2 have been 
found, most cause off-target problems due to an indiscriminate binding to cysteine residues of other proteins28,29. 
Hence, direct inhibitors of the Keap1/Nrf2 PPI are desired. A number of Keap1/Nrf2 PPI inhibitors have been 
discovered recently by screening using several strategies30 such as HTS31,32, SBVS33–36, and fragment-based 
approaches37. However, no drugs for direct Keap1/Nrf2 PPI inhibition have been approved to date38; therefore, 
discovering novel inhibitors with new scaffolds and increasing chemical diversity using a compound library in 
screening would be useful in drug development. The DLiP library contains new and diverse compounds designed 
for PPI targets, and thus it is a good candidate as a screening library for Keap1/Nrf2 PPI. Meanwhile, use of LBVS 
in the selection of screening compounds is expected to uncover a variety of hit compounds other than SBVS. 
LBVS for Keap1/Nrf2 PPI needs a number of known ligands validated in experimental assays. In this study, we 
obtained activity data of Keap1/Nrf2 PPI ligands from public databases such as ChEMBL39 and TIMBAL40, and 
collected a potentially suitable number of known active/inactive compounds for LBVS using machine learning 
techniques. Hence, combining the newly constructed PPI library, DLiP, and LBVS may be prospectively used to 
discover new PPI inhibitors of Keap1/Nrf2; its effectiveness is demonstrated in this paper.

Results and discussion
Overview of discovering new Keap1/Nrf2 inhibitors using a PPI‑oriented library combined 
with LBVS.  First, we created two RF models distinguishing known Keap1/Nrf2 inhibitors from non-inhibi-
tors or general screening compounds (Fig. 1). Then, prospective Keap1/Nrf2 inhibitor compounds were selected 
using LBVS with the two RF models from a PPI-oriented library. To evaluate the effectiveness of LBVS and the 
utility of the PPI library, additional compounds were randomly sampled from the library. Finally, the inhibitory 
activities of the selected compounds were validated using time-resolved fluorescence resonance energy transfer 
(TR-FRET) assays for Keap1/Nrf2 and counter TR-FRET assays for B-cell lymphoma 6 (Bcl6)/F1325.

Two RF models using different types of negative data.  With an aim to build models predicting 
Keap1/Nrf2 PPI inhibitory activity of compounds, we used an RF classification algorithm. RF is a supervised 
machine learning method that uses numerous decision trees41. RF is a common, easy-to-use method because it 
requires few parameter adjustments and has a fast computation run time using parallel processing. To expand 
the scope of the learning, we created two RF models: RF-true inactive (RF-TI) and RF-putative inactive (RF-PI). 
While the RF-TI model was generated from active and inactive compounds for Keap1/Nrf2 comprehensively 
collected from three public databases, the RF-PI model was from active compounds in the ChEMBL database 
and putative inactive compounds. The use of putative inactive compounds as negative training data is known 
as an alternative strategy for dataset preparation in LBVS42,43. Most compounds in large compound libraries are 
not tested for particular targets and are generally assumed to have a low likelihood of being active and are used 
as putative inactive compounds. In this study, we used commercial compounds as the putative inactives in the 
RF-PI model. Although training dataset using true inactives tends to be imbalanced (i.e., the numbers of actives 
and inactives are not equal) for a target in general, that of RF-TI was inadvertently almost balanced. In contrast, 
use of putative inactives enables the training dataset to be balanced. Therefore, the result from the RF-PI model 
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could be used as a rough guide in the expansion of models for other general targets (e.g., > 1,500 targets in 
ChEMBL). To evaluate the performance of the RF models, the average performance scores of seven basic metrics 
were calculated using fivefold cross-validation that randomly split their original training dataset to generate five 
pairs of training and test sets (Table 1, please refer to the Materials and Methods Section for the details). All the 
metrics showed high values, indicating good performance of the two RF models against similar compounds used 
in the training. The high performance of the RF-PI model is reasonable because the difference between actives 
and putative inactives tend to be large, and the classifying task would be relatively easy.

Compound selection for Keap1/Nrf2 assay using two RF models and random sampling.  We 
used a PPI-oriented library, the DLiP library, as a compound source to search Keap1/Nrf2 PPI inhibitors. All 
compounds in the DLiP library have low similarity (< 0.32) to the known Keap1/Nrf2 inhibitors (Fig. 2), and 
thus should serve as a good source in discovering Keap1/Nrf2 PPI inhibitors with novel structures. We selected 
candidate compounds from the DLiP library using the RF models and random sampling, and tested their Keap1/
Nrf2 PPI inhibitory activities by bioassay (Fig.  3). To select the candidate compounds, probability scores of 
potential Keap1/Nrf2 PPI inhibitors were calculated for a total of 12,593 compounds in the DLiP library using 
the two RF models, and the compounds were sorted in descending order based on the prediction scores. The top 
1,000 compounds ranked using each model were selected as bioassay candidates. In practice, 2,684 compounds 
from the DLiP library had been synthesized, and were available for bioassay in October 2019. The diversity of 
the structural similarities of the available subset to the known Keap1/Nrf2 inhibitors did not decrease compared 
to that of all the DLiP library sets (Fig. 2). After being filtered based on availability, 329 of the 2,684 compounds 
were selected for bioassay, consisting of 96 that overlapped in both models, and 106 and 127 in the RF-PI and 
RF-TI models, respectively also indicating that different scopes between the two RF models are expected (Sup-
plementary Fig. S1). Furthermore, 20.2% and 22.3% of available compounds were from the high-ranked selec-
tion by RF-PI and RF-TI, respectively, which was not different from the percentage (2,684 of 12,593, 21.3%) of 
availability of the whole set. Therefore, the 329 selected compounds were not biased in terms of the prediction 
results. In addition to these compounds, 291 other compounds were randomly sampled from the remaining 
2,355 compounds for comparison. In total, 620 compounds were selected for the bioassay.

Figure 1.   Overview of the process to discover new Keap1/Nrf2 inhibitors.

Table 1.   The average performance scores of the RF models in fivefold cross-validation, where the original 
training set of each RF model was split into five pairs of training and test sets (please refer to the Materials and 
Methods Section for the details). MCC Matthews correlation coefficient, AUCROC the area under the receiver 
operating characteristic curve, AUCPR the area under the precision-recall curve.

Model Accuracy Precision Recall Specificity MCC AUCROC AUCPR

RF-TI 0.79 0.81 0.76 0.81 0.57 0.85 0.86

RF-PI 0.99 0.98 1.00 0.98 0.98 1.00 1.00
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Keap1/Nrf2 TR‑FRET assay.  The 620 compounds were tested using TR-FRET to evaluate their inhibitory 
activities against the Keap1/Nrf2 PPI. The TR-FRET assay resulted in 16 hit compounds with the inhibition 
rate > 15% at 100 μM concentration (Table 2), among which compounds 1 and 2 exhibited a high inhibition rate 
(85.5% and 74.3%, respectively). A counter assay using Bcl6/F1325 was also performed to confirm the specificity 
of the tested compounds (Table 2). Only compound 1 exhibited a high inhibition rate (65.2%) at 100 μM in the 
counter assay, which suggests that it is a non-specific inhibitor. Finally, 15 compounds were identified as Keap1/
Nrf2 PPI inhibitors.

Characteristics of hit compounds.  The 15 hit compounds were separated into two groups based on 
their molecular weights (450–500 and 610–650). AlogP of most hit compounds (13 out of 15) were < 5, suggest-
ing good aqueous solubility. The combinations of molecular weight and AlogP of the hit compounds were also 
widely distributed, showing their diversity in the molecular properties (Supplementary Fig. S2). The structures 
of the hit compounds are distinct from known Keap1/Nrf2 inhibitors. Specifically, the structural similarities 
between the hit compounds and their closest compounds in the known Keap1/Nrf2 inhibitors were 0.14–0.26 

Figure 2.   Distribution of structural similarities (Tanimoto similarities of FCFP_6) of all (N = 12,593, light red) 
compounds of the DLiP library and their available subset in this study (N = 2,684, cyan) to their closest known 
Keap1/Nrf2 PPI inhibitors in the databases.

Figure 3.   A diagram of the flow from compound selections to TR-FRET assay results. The number of hit 
compounds marked by asterisk includes a non-specific hit.
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Structure
TR-FRET (Keap1/
Nrf2)a (%)

TR-FRET (Bcl6/ 
F1325)a (%) Rank (RF-TI)b Rank (RF-PI)b Structural similarityc

1 85.5 65.2 129* 44* 0.228

2 74.3 NI 1320 419* 0.253

3 47.0 4.9 2604 426* 0.241

4 29.9 NI 905* 775* 0.262

5 29.2 NI 19* 70* 0.256

6 27.1 NI 6830 326* 0.155

Continued
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Structure
TR-FRET (Keap1/
Nrf2)a (%)

TR-FRET (Bcl6/ 
F1325)a (%) Rank (RF-TI)b Rank (RF-PI)b Structural similarityc

7 22.1 NI 1253 242* 0.175

8 22.1 5.1 44* 51* 0.258

9 18.5 NI 1578 3366 0.141

10 18.3 NI 1475 256* 0.164

11 18.2 1.0 1868 525* 0.233

12 18.1 6.4 1365 3382 0.143

Continued
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(Table 2). Compounds 2, 3, 5, 8, and 11 have the same substructure of an ortho-substituted aromatic amide with 
a carboxylated piperidine (Fig. 4). Of the assayed 620 compounds, 17 have this substructure, and 29.4% (5/17) 
of tested compounds having the substructure were hit. The common substructure does not exist in the known 
Keap1/Nrf2 inhibitors and rarely (< 0.001%) exist in the ChEMBL database, indicating the novelty of the five hit 
compounds in terms of substructure.

Effectiveness of in silico predictions.  Among the 16 hit compounds, including one non-specific inhibi-
tor, twelve, six, and three were selected by RF-PI, RF-TI, and random sampling, respectively (Table 2, Fig. 3). The 
hit rates of the RF-PI and RF-TI models, and random sampling were 5.9%, 2.7%, and 1.0%, respectively. Assum-
ing that the hit rate of 2,064 compounds not used for the assay was same as the random hit rate (1.0%), the num-
ber of total possible hits would be 16 + 2064 × 1.0/100 = 37. The possible hit rate of a random sampling from all 

Structure
TR-FRET (Keap1/
Nrf2)a (%)

TR-FRET (Bcl6/ 
F1325)a (%) Rank (RF-TI)b Rank (RF-PI)b Structural similarityc

13 17.7 NI 10,755 527* 0.151

14 17.2 NI 497* 274* 0.170

15 16.8 NI 898* 1946 0.234

16 15.2 NI 3,197 5548 0.138

Table 2.   Hit compounds in TR-FRET assays for Keap1/Nrf2. a Inhibition rates (%) of the compounds at 
100 μM concentration of TR-FRET assays for Keap1/Nrf2 and Bcl6/F1325 (counter assay) are shown as mean 
value of two measurements. NI no inhibition. b The prediction results using two RF models (RF-TI and RF-PI) 
are shown as the rank of the prediction scores. The ranks that satisfied the selecting threshold (i.e., ≤ 1000) are 
marked with asterisks. c Structural similarities to the closest known Keap1/Nrf2 PPI inhibitors are shown.

Figure 4.   A common substructure of five hit compounds (2, 3, 5, 8, and 11). The uncommon part is shown as R1.
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the available compounds in the library was estimated as 37/2684 = 1.4% (36/2684 = 1.3% for specific hits), which 
indicates that the two RF models were effective. The structural similarities (Tanimoto similarities of FCFP_6)44 
of the 13 hits obtained by RF models to their closest known inhibitors were 0.15–0.26 (Table 2) and their distri-
bution was not biased in the highest similarity region (~ 0.32, Fig. 2), which indicates difficulty in finding them 
by structural similarity alone, and the power of the machine learning method. On the other hand, the other three 
hits were not high-ranked by the RF models and obtained by random sampling. This may be because of innate 
difficulty in prediction using machine learning for those having relatively low structural similarities (≤ 0.143) 
to known inhibitors. Surprisingly, the RF-PI model resulted a higher hit rate than the RF-TI model, despite the 
use of a relatively small number of actives and no true inactives in the learning. This seems to be caused by the 
limited applicability of the model due to the low structural similarities (< 0.32 and < 0.35, respectively, Fig. 2 
and Supplementary Fig. S3) between all the DLiP library compounds to the known Keap1/Nrf2 PPI databases’ 
actives and inactives, and the high structural similarities (~ 0.62 on average) between the known actives and 
their closest known inactives. Considering that many drug targets have insufficient inactives reported, the use of 
putative inactives in model building would be a better option in LBVS for other targets than Keap1/Nrf2.

Utility of the PPI library.  Marcotte et  al.35 performed HTS and counter screening for Keap1/Nrf2 PPI 
against 267,551 compounds of the Evotec Lead Discovery library and 1,911 compounds selected by SBVS from 
three vendor catalogs. Their screening resulted in 18 hit compounds and a hit rate of 0.0067% for a thresh-
old of 21% inhibition at a concentration of 50 μM. The specific hit rate of the DLiP library was at least 0.12% 
(15/12,593). Because the available subset seemed not to be biased compared to the whole library in terms of the 
prediction result and structural similarity to the known inhibitors, the hit rate of the DLiP library was estimated 
to be at least 0.56% (15/2,684). Moreover, the possible hit rate of the DLiP library was calculated as 1.3% if the hit 
rate of the remaining available compounds (N = 2,064) was same as the random sampling (1.0%). Therefore, the 
hit rate of the DLiP library was estimated to be 0.56–1.3%, suggesting that the DLiP library had a high hit rate for 
Keap1/Nrf2 PPI in comparison with that using a general library as mentioned above even though the difference 
of the thresholds for hit identification was considered.

Ligand–protein Interaction predicted by 3D alignment.  To deepen the understanding of the molec-
ular structure–activity relationship of the hit compounds, we selected five hit compounds (2, 3, 5, 7, and 8) with 
inhibition rates > 20% at 100 μM for Keap1 and no inhibition for the counter assay, and constructed their 3D 
alignment models against an X-ray crystal structure of Keap1/Nrf2 peptide (PDB ID: 2flu)45. The 3D alignment 
models showed the fit of the five hit compounds into the binding pocket of Keap1 (Fig. 5a). It has been shown 
that hydrogen bond acceptors (Glu79 and Glu82) of Nrf2 interact with Keap1 at Arg415, Arg483, and Ser508; 
Ser363, Arg380, and Asn382, respectively45. Moreover, these interactions contribute to high binding affinity 
between Keap1 and the known ligands46. The binding poses derived from 3D alignment models showed simi-
larities to the X-ray structures in the former acceptor interaction to Keap1 (Fig. 5b). Tyr572 of Keap1 forms a 
π-stacking interaction with several known ligands5,35. The interaction was also observed in the binding poses of 
hit compounds (2, 3, 5, and 8) and the contributing aromatic ring was in their common substructure (Figs. 4 and 
5b). These observations suggested that our hit compounds are reasonable as Keap1/Nrf2 inhibitors. However, 
quantitative activity analysis using highly potent compounds would be required in further verification studies.

Conclusions
We performed LBVS against a PPI library, DLiP, for Keap1/Nrf2 PPI, which identified 12 specific hits in the 
TR-FRET assay. In addition, random sampling of the DLiP library identified three other hits. The comparison 
of these results showed that our prediction method using two RF models was an effective screening method. 
Moreover, the DLiP library had a higher rate of identifying Keap1/Nrf2 PPI inhibitors than the general (i.e., not 
focused on PPI) large library for HTS. Considering the diversity of the interfaces of referenced targets of the 
DLiP library, it would also be useful for general PPI targets.

The DLiP library is a collection of newly synthesized compounds with numerous diverse chemical structures 
including novel substructures, and thus an attractive source for finding hit compounds. All the compounds in 
the DLiP library had structures that were dissimilar to those of previously known Keap1/Nrf2 PPI inhibitors. In 
general, it is difficult to predict the activity of compounds when their chemical space is distant from the training 
set’s chemical space; nevertheless our predicting methods could identify compounds with novel structures includ-
ing a unique substructure, showing their practical applicability. In addition, we demonstrated the effectiveness 
of the predicting method using a relatively small number of actives and putative inactives, suggesting that the 
method would be applicable for a wide range of targets.

The inhibition rate of the hit compounds not being high in this study remains a concern. The increase of 
known activity data usually enables creating new and more efficient prediction models. More hits can be identi-
fied by creating refined models using our assay results, which helps finding active compounds with high activity. 
Moreover, increase in hits (including similar substructures) leads to the creation of effective regression models 
that directly predict the quantitative activity of compounds, which is further beneficial. Taken together, the 
findings of this study present a new efficient method for investigating novel ligands with PPI inhibitory activity.

Materials and methods
PPI library.  We recently developed a chemical library, the DLiP library, consisting of 12,593 small-to-
medium-sized molecules that target PPI inhibition. The DLiP library was designed based on the 3D structure 
of the PPI interface and the physicochemical properties of various known PPI inhibitors. It should be noted 
that the reference PPI targets used for the library construction did not include Keap1/Nrf2, and thus the library 
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Figure 5.   A binding pose of Nrf2 peptide to Keap1 protein (PDB ID: 2flu)45 and predicted binding poses of five 
hit compounds (2, 3, 5, 7, and 8) to Keap1 based on 3D alignment. (a) The compounds fitted the binding pocket 
of Keap1. (b) Acceptor interaction (orange dashed lines) between carboxy terminus of the five compounds and 
Keap1 (Arg415, Arg483, and Ser508), and π-stacking interaction (yellow dashed lines) between compound (2, 3, 
5, and 8) and Keap1 (Tyr572) were observed.
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could be used as a general PPI library for Keap1/Nrf2 PPI. The molecular weights of the designed compounds 
mainly ranged from 450 to 650. To ensure the quality and diversity of the library, compounds with spherical or 
new scaffold structures were selected based on the principal moment of inertia. All the compounds passed pan-
assay interference compounds (PAINS) filters47 that are an assembly of unfavorable substructures for screening.

Data collection for machine learning.  The compounds experimentally tested for Keap1/Nrf2 PPI inhi-
bition and their activity values were found and obtained from three public databases: ChEMBL, TIMBAL, and 
2P2I48. We defined the binary activity classification, active or inactive, for those compounds based on the activity 
values. Specifically, compounds from ChEMBL and TIMBAL with the minimum standardized activity values 
corresponding to ≤ 10 μM were defined as active samples, and those with higher values were defined as inactive 
samples. In contrast, only active samples were extracted from the 2P2I database.

A putative inactive dataset was created by randomly selecting vendor (Maybridge) compounds prepared in 
Pipeline Pilot (Dassault Systèmes BIOVIA, BIOVIA Pipeline Pilot, release 2018, San Diego, Dassault Systèmes, 
2018). To avoid misplacement of true actives in the putative inactive dataset, the compounds with structures 
that were identical to any active compounds were excluded from the vendor catalog.

Calculation of molecular descriptors and structural similarity.  The chemical structures of the 
curated compounds were obtained in the SDF format. The structures of the largest fragment were used in the 
following calculation of compound descriptors. Five molecular properties (molecular weight; AlogP; and num-
ber of H acceptors, H donors, and rotatable bonds) and functional structural fingerprints (FCFP_649) of the 
compounds were calculated using Pipeline Pilot. Structural similarity between compounds was calculated by 
Tanimoto similarity (i.e., Tanimoto coefficient) of the FCFP_6 bits.

Machine learning.  RF models classifying active and inactive compounds for Keap1/Nrf2 PPI were created 
using molecular properties and fingerprints as features. The calculation was performed using the R package 
ranger 0.10.150,51 that enables fast computation against datasets with numerous features. We used 1,000 trees 
in the models and the default number of features was set for node splitting (square root of the number of fea-
tures). We created two RF models from different datasets. The first (RF-PI) was created using 52 Keap1/Nrf2 PPI 
active compounds with molecular weight < 1,200 and ≤ 10 μM for IC50, EC50, or Kd in the ChEMBL 23, and 52 
“putative” inactive compounds from the vendor catalog. The second model (RF-TI) was created using 108 and 
106 Keap1/Nrf2 PPI active and “true” inactive compounds respectively, based on activity values of AC50, IC50, 
EC50, Kd, or Inhibition (%) from the DLiP database (https://​skb-​insil​ico.​com/​dlip) that is a curated collection 
of PPI activity data from public databases including ChEMBL, TIMBAL, and 2P2I. The training set for RF-PI 
and RF-TI composed of 1,277 and 1,518 features, respectively. The models were evaluated using fivefold cross-
validation: all data were randomly split into five even test sets and the predicting performance of each test set 
by the model created from the data excluding the test set was evaluated. We used it in stratified manner (i.e., 
the class balance of training and test sets of each fold was maintained as that of the entire set) with performance 
metrics: accuracy, precision, recall, specificity, and Matthews correlation coefficient (MCC):

where TP, TN, FP, and FN denote the number of true positives, true negatives, false positives, and false negatives, 
respectively. The area under the receiver operating characteristic curve (AUCROC) and precision-recall curve 
(AUCPR) were used for evaluation of the performance without threshold. The value of MCC ranges from − 1 to 
1, although those of the other metrics range from 0 to 1. Random predictions for balanced dataset show 0 for 
MCC and 0.5 for the other metrics, and good prediction models show higher values than those values.

Bioassay materials.  Library compounds were synthesized in the AMED project. The synthetic procedures 
of the hit compounds are described in Supplementary Method. The purity and MS information of the hit com-
pounds were obtained via LC–MS on a Shimadzu LCMS-2020 [gradient from 5% MeCN/95% H2O to 100% 
MeCN/0% H2O (+ 0.05% trifluoroacetic acid) in 2 min with a Shim-pack XR-ODS column or gradient from 
10% MeCN/90% H2O to 95% MeCN/5% H2O (+ 5 mM NH4HCO3) in 2 min with a Kinetex EVO C18 column] 
and were described in Supplementary Table S2. The purity of the samples was assessed using a UV detector at 

(1)Accuracy =
TP+ TN

TP+ TN+ FP+ FN

(2)Precision =
TP

TP+ FP

(3)Recall =
TP

TP+ FN

(4)Specificity =
TN

TN+ FP

(5)MCC =
TP× TN− FP× FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

https://skb-insilico.com/dlip
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254 nm. Nrf2 (TAMRA-LQLDEETGEFLPIQ-NH2) and F1325 (TAMRA-Abu(4)-VWYTDIRMRDWM) pep-
tides were synthesized by TORAY Research Center. Streptavidin-Tb cryptate was purchased from Cisbio Bioas-
says.

Preparation of human Keap1 and Bcl6 protein.  The hKeap1 Kelch domain (residues Ala321–Thr609) 
and hBcl6 domain (residues Ala5–Glu129) were amplified by PCR using human cDNA libraries. Three cysteine 
residues of hBcl6 were then mutated (Cys8Gln, Cys67Arg, Cys84Asn) as reported52. Hereafter, this mutant is 
referred to as hBcl6. hKeap1 and hBcl6 were ligated into a pET21 vector (Merck Millipore) next to the His-Avi 
and His-Avi-SUMO-FLAG tags (LifeSensors), respectively. The proteins were expressed with isopropyl β-D-
1-thiogalactopyranoside (IPTG) induction in Escherichia coli BL21 (DE3) (Nippon Gene). The proteins were 
purified using Ni–NTA (FUJIFILM Wako Pure Chemical) and Superdex 200 (GE Healthcare). Next, the puri-
fied proteins were enzymatically biotinylated in vitro. Briefly, the proteins were incubated for 3 h at 30 °C with 
purified Escherichia coli BirA in the presence of D-biotin, magnesium chloride (MgCl2), and ATP, which was 
replaced with final buffer (50 mM Tris-hydrochloride [HCl, pH 8.0], 150 mM sodium chloride [NaCl], and 5% 
glycerol). The proteins were concentrated and quantified using a TaKaRa bicinchoninic acid (BCA) protein assay 
kit (Takara Bio). The biotinylation rate of the Avi tag was calculated from its protein binding rate to streptavidin 
sepharose high-performance (GE Healthcare).

PPI inhibition assay development using TR‑FRET.  Keap1/Nrf2 PPI inhibition and Bcl6/F1325 PPI 
inhibition counter assays were performed using TR-FRET as previously described52,53 to determine the potency 
of selected inhibitors using 384-well white flat-bottom small volume plates (Greiner Bio-One). Assay buffer 
consisting of 50 mM Tris–HCl (pH 7.5, FujiFilm Wako Pure Chemical), 100 mM NaCl (Nacalai Tesque), 0.01% 
Tween-20 (Bio-Rad), 1 mM dithiothreitol (FujiFilm Wako Pure Chemical), and 0.01% bovine serum albumin 
(Merck Millipore) was used to dilute the reagents. The test compounds were prepared in DMSO solution and 
dispensed into each well using the Echo 555 Liquid Handler (Labcyte). The biotinylated hKeap1 or hBcl6 pro-
teins conjugated with streptavidin-Tb cryptate (final 0.5 nM) were added to each well, pre-incubated for 1 h, and 
then TAMRA-Nrf2 or TAMRA-F1325 peptides (final concentration, 6.0 and 12 nM, respectively) were added to 
each well, followed by incubation for 1 h at 24 °C in the dark. TR-FRET signals of individual wells were measured 
using an Envision multilabel plate reader (PerkinElmer; excitation wavelength [Ex] 337 nm, emission wave-
length [Em] 570 nm/535 nm). To determine the inhibition rate, TR-FRET signal of the PPI between hKeap1 
and Nrf2 peptides (counter assay: hBcl6 and F1325) was set as 0% inhibition and that of the Nrf2 peptide alone 
(counter assay: F1325 alone) was set as 100% inhibition. The test compound inhibition (%) was calculated as: 
[1 − (Tsample − T100% inhibition)/(T0% inhibition − T100% inhibition)] × 100, where T indicates the TR-FRET signal.

3D alignment analysis.  The 3D alignment model was constructed using the ligand-based method with 
Forge 10.654. We used the X-ray crystal structure of the Nrf2 peptide in the human Keap1 Kelch domain (PDB 
ID: 2flu)45. The 3D conformations of the hit compounds confirmed by our assay were generated using the con-
formational hunt function of Forge. We used default settings, except for constraint on the negative charge of 
the positions, where contacts between Nrf2 and Keap1 were observed in the X-ray crystal structure. The sum of 
field and shape similarity scores was used as total score to rank predicted binding poses. Finally, representative 
binding poses were selected from the top five predicted poses by visual inspection as the common substructure 
forming the same conformation.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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