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Experiments often challenge the null hypothesis that an intervention, for instance
application of non-invasive brain stimulation (NIBS), has no effect on an outcome
measure. In conventional statistics, a positive result rejects that hypothesis, but a
null result is meaningless. Informally, however, researchers often do find null results
meaningful to a greater or lesser extent. We present a model to guide interpretation
of null results in NIBS research. Along a “gradient of surprise,” from Replication nulls
through Exploration nulls to Hypothesized nulls, null results can be less or more
surprising in the context of prior expectations, research, and theory. This influences
to what extent we should credit a null result in this greater context. Orthogonal to
this, experimental design choices create a “gradient of interpretability,” along which
null results of an experiment, considered in isolation, become more informative. This
is determined by target localization procedure, neural efficacy checks, and power and
effect size evaluations. Along the latter gradient, we concretely propose three “levels of
null evidence.” With caveats, these proposed levels C, B, and A, classify how informative
an empirical null result is along concrete criteria. Lastly, to further inform, and help
formalize, the inferences drawn from null results, Bayesian statistics can be employed.
We discuss how this increasingly common alternative to traditional frequentist inference
does allow quantification of the support for the null hypothesis, relative to support for
the alternative hypothesis. It is our hope that these considerations can contribute to
the ongoing effort to disseminate null findings alongside positive results to promote
transparency and reduce publication bias.

Keywords: TMS, TES, bayes, localization, null, negative, inference

INTRODUCTION

With advent of digital-only journals, attention the to the downsides of publication bias, and
preregistration of experiments, the call for dissemination of null results becomes louder. And
indeed, it appears that null results are more often and more easily accepted for publication
(see current issue). We support this development not only because we believe the community
should have a more complete view of performed experiments (pragmatic argument), but also
because we believe null results can be meaningful (interpretability argument). Seven years ago
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(de Graaf and Sack, 2011) we argued against a dichotomous
distinction of positive and negative findings in non-invasive brain
stimulation (NIBS) research, discussing criteria that could raise
the interpretability of null results. We opened our paper with the
familiar adage: absence of evidence is not evidence of absence. We
then spent the remainder of the article arguing against it.

Of course, the core message is sound; absence of evidence
does not necessarily, or always, imply evidence of absence. In
classical statistics, frequentist inference, null results are formally
meaningless: there was insufficient evidence in the dataset to
reject the null hypothesis, but that is all one can say. The P-value
reflects only the likelihood of obtaining an effect minimally
as large as observed in the sample (e.g., difference between
condition means), on the assumption that the null hypothesis
is true. The P-value does not translate into a likelihood that
the alternative hypothesis is true or false, and does not reflect
the likelihood that the null hypothesis is true (Wagenmakers,
2007; Wagenmakers et al., 2018b). From a formal statistical
point of view, a null result thus never constitutes evidence of
absence (i.e., evidence for the null hypothesis). But that fact
primarily reflects the constraints and limitations of this dominant
statistical framework. Informally, null results can be less or
more convincing, less or more meaningful, to an experienced
researcher. In this article, we analyze on what grounds such
meaning is assigned.

Brain stimulation research methodology has developed
rapidly in the last decade, with increasingly sophisticated
paradigms and applications (Sandrini et al., 2010; Herrmann
et al., 2015; Romei et al., 2016; Ten Oever et al., 2016).
But many of those still share a fundamental aim of NIBS:
to evaluate the causal role, or functional relevance, of a
given brain region/mechanism. Such a brain process is often
initially found to correlate to some cognitive, emotional, or
behavioral function, in a neuroimaging experiment with fMRI
or EEG for example, and is thus possibly of crucial importance.
But it might also be epiphenomenal, perform a related but
different function, or occur as a consequence of still other
brain processes that co-occur and are in fact the actual
substrate for the task at hand (de Graaf et al., 2012). In
this light, NIBS offers something unique in neuroscience: the
ability to bring brain activity or specific brain mechanisms
(e.g., oscillations) in specific regions or even whole networks
under transient experimental control, allowing assessment
of their causal relevance (Sack, 2006; de Graaf and Sack,
2014).

But the question whether a brain process is causally relevant
has two possible outcomes: either it is (positive finding), or it is
not (null finding). Considered this way, an a priori rejection of
any outcome that is not a positive finding, i.e., complete rejection
of null results as not informative, means one can only accept one
of those two outcomes. It means NIBS experiments are a waste
of time and resources if the null hypothesis is in fact true. It
means that confirming the hypothesis that a brain process is not
functionally relevant is not possible, and thereby any experiment
to test it is doomed from the start. It has traditionally also meant
that NIBS experiments with null results were (more) difficult
to publish, preventing transparency, and completeness in the

available NIBS literature. In sum, this restrictive view severely
limits the usefulness of, and range of experimental questions open
to, NIBS research.

If we do not want to categorically reject NIBS null results,
we need to reflect on what can make them meaningful.
Certain design decisions and parameters particularly contribute
to the interpretability of NIBS null results, including the
localization procedure, implementation of neural efficacy checks,
and power and effect size. So how can one optimize experimental
design or planned data analysis approaches prior to an
experiment to maximize the interpretability of potential null
results? And after obtaining null results, or reading about null
results in publications, how can we assess how informative
they are? How much do we let them change our beliefs
and inform our own work? In this article, we discuss
these issues with the still dominant frequentist inference
framework in mind. But we also discuss an alternative
statistical framework, Bayesian inference, which is not subject
to the same formal limitations. We first outline factors that
make NIBS null results particularly difficult to interpret,
and how to address them. We then present conceptual
handholds to evaluate null results along two orthogonal
gradients, leading to a classification scheme of “levels of null
evidence.” Lastly, we will explain what Bayesian analysis can
contribute to such evaluation in a more formal and quantitative
fashion.

WHAT MAKES NULL RESULTS
DIFFICULT TO INTERPRET IN NIBS?

In de Graaf and Sack (2011), we discussed a perceived “dichotomy
of meaningfulness” in transcranial magnetic stimulation (TMS)
research: positive results were considered meaningful, negative
results were considered meaningless. In part this might be
attributable to the constraints of frequentist inference, but we
suggested there were additional concrete arguments against
null result interpretation specifically in NIBS: the localization
argument, the neural efficacy argument, and the power argument.
Though then focused on TMS, these arguments largely apply
when it comes to other forms of NIBS, such as low-intensity
transcranial electrical stimulation (TES).

According to the localization argument, one cannot be sure
that the correct anatomical, or more importantly functional,
area was stimulated with NIBS. Many NIBS studies still
base their target localization on Talairach coordinates, MRI
landmarks, or even skull landmarks. This can certainly
be appropriate, scientifically and/or practically, but it
means that in many participants the “functional hotspot”
underlying a task/behavior might not be affected by NIBS.
With TMS, error additionally contributes, with shifting or
tilting coils, moving participants, or human error in initial
coil placement. With TES, selecting electrode montages is
not trivial. Even if a large electrode is placed on the skull,
almost certainly covering an underlying functional hotspot,
the exact individual anatomy as well as reference electrode
placement may determine which neurons are most affected
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and how effectively they are modulated (Miranda et al., 2006;
Wagner et al., 2007; Bikson et al., 2010; Moliadze et al.,
2010).

The neural efficacy argument appears related but reflects
a separate concern. While “localization” refers to the success
of cortical targeting, the “neural efficacy” argument reflects
uncertainty about whether there was any effective stimulation
at all. In each participant, or even the whole sample: did
the NIBS actually modulate neural activity? In TMS, the
infinite parameter space (number of pulses, pulse shape,
pulse width, intensity, (nested) frequency, coil geometry, etc.)
allows for a nearly infinite number of protocols (Robertson
et al., 2003), many of which might not achieve neural
stimulation. Moreover, between participants anatomy differs,
in terms of gyrification or distances between coil and cortex
(Stokes et al., 2005). The neural efficacy argument thrives
in TES methodological discussions as well, with ongoing
investigation on how much of the electrical current even
reaches the cortex (Vöröslakos et al., 2018). In short, in
NIBS one can often doubt in how many participants neural
stimulation/modulation was successful, aside from which cortical
area was targeted.

The power argument is more general but applies to NIBS
research also. Perhaps a positive finding was not obtained,
simply because the experimental design lacked statistical power.
Aside from the usual sources of noise in experimental data,
the methodological uncertainties inherent to NIBS research,
of which localization and neural efficacy are examples, only
exacerbate this concern. Moreover, it appears that inter-
individual differences in response to NIBS are substantial
(Maeda et al., 2000). For instance, inter-individual differences
in network states (Rizk et al., 2013), structural organization
of the corpus callosum (Chechlacz et al., 2015), and neuronal
oscillatory parameters (Goldsworthy et al., 2012; Schilberg
et al., 2018) have been related to NIBS response. If unknown,
or not taken into account, such differences can contribute
strongly to reduced statistical power on the group level. The
power argument leaves one with the uncomfortable question:
perhaps more trials per condition, or more participants
in the sample, or even a small change in experimental
tasks or design, could have yielded a positive result after
all. So how meaningful is a null result in NIBS research,
really?

To summarize, if no effect was found: (1) perhaps the
intended cortical region was not successfully targeted, (2) perhaps
no neural stimulation/modulation took place in some or all
participants, or (3) perhaps the experiment lacked power. These
arguments indeed make it difficult to draw strong conclusions
from null results in NIBS research. But in our view they
do not make NIBS null results categorically uninformative
(“dichotomy of meaningfulness”). Above, we argued why such
a dichotomy would be unfortunate and even wasteful, given
the original mission of NIBS to determine whether a brain
process is, or is not, functionally relevant for a task. Below,
we discuss what can be done in terms of experimental design
to address these three arguments, and in turn how one can
evaluate such design choices in one’s own work, or research

published by others, to evaluate how informative a null
result is.

WHAT CAN MAKE NULL RESULTS
EASIER TO INTERPRET IN NIBS?

We suggest that the null results of any NIBS experiment,
considered in isolation, can be interpreted along a “gradient
of interpretability.” Where null results fall along this gradient,
i.e., how strongly we allow ourselves to interpret them, is
determined by the extent to which the localization argument,
neural efficacy argument, and power argument can be countered
through experimental design decisions and analysis.

One way to combat the localization argument is through
hardware selection. Figure-8 TMS coils stimulate more focally
than some (older model) circular coils (Hallett, 2007), electrical
currents are more concentrated under the central electrode in
a high-density TES montage compared to conventional large
electrodes (Edwards et al., 2013). But focality does not help if it
is aimed at the wrong cortical target. The localization argument
against interpreting null results becomes less problematic
as the localization procedure becomes more sophisticated.
We previously compared the statistical power inherent to
different TMS target site localization procedures, including
anatomical landmarks, Talairach coordinates, individual
MRI-based landmarks, and individual fMRI-based functional
localizers, using frameless stereotactic Neuronavigation to
determine and maintain coil positioning (Sack et al., 2009).
The number of participants required to obtain a statistically
significant effect (calculated based on obtained effect size
for each method) rose rapidly, from only 5 using individual
functional localizer scans, to 47 using the anatomical landmark
(EEG 10–20 P4 location) approach. As power rises with
localization procedure sophistication, for a given sample size the
interpretability of a potential null result rises also (although see
e.g., Wagenmakers, 2007; Wagenmakers et al., 2015). For TES,
exciting developments in computational modeling of current
flows, in increasingly realistic head models, similarly decrease
the strength of the localization argument. Such modeling
provides insight about how strongly, and where, electrical
currents affect underlying neuronal tissue (e.g., Datta et al.,
2009).

Clearly such modeling in TES also has a bearing on the neural
efficacy argument: modeling increases confidence that current
was sufficiently strong to reach and affect the cortical target. This
is not to say that all problems are solved for TES, because firstly
modeling is not trivial, and secondly a model of current density
across cortex does not yet reveal what the neural effects are of
this current density. Similarly for TMS, unless it is combined
with simultaneous imaging (fMRI, EEG), what happens in the
brain after each pulse is principally unknown to us. Maybe
the protocol is insufficiently strong to induce action potentials,
maybe the induced action potentials are insufficient to induce
cognitive/behavioral effects, maybe the stimulation does affect
the targeted area but other areas in a network compensate for
the insult (Sack et al., 2005). To combat at least some of these
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concerns, one might implement what we previously called a
neural efficacy check (de Graaf and Sack, 2011).

One way to see if NIBS affected brain activity, is to indeed
actually measure brain activity, by combining NIBS with fMRI
or EEG (Reithler et al., 2011), or all together simultaneously
(Peters et al., 2013): the concurrent neuroimaging approach.
Specifically for TMS, if the target region has a behavioral marker
(motor response, phosphene perception), both the localization
and neural effects of a TMS protocol can be verified using such
markers independently from the behavioral tasks of interest.
Hunting procedures, using independent tasks known to be
affected by certain TMS protocols over the target regions, can
also be used to achieve the same thing (Oliver et al., 2009).
Ideally, however, the experimental design includes not only the
main experimental condition of interest, on which a positive
or null result can be obtained, but also a second experimental
condition on which a positive result is expected. For example,
we applied offline rTMS to frontal cortex in a bistable perception
paradigm with a passive viewing condition and a voluntary
control condition using the same stimuli (de Graaf et al., 2011b):
two experimental conditions with their own controls. TMS
modulated bistable perception in the voluntary control condition
(positive result) but not in the passive viewing condition (null
result). The presence of the positive finding made the null
result for passive bistable viewing more meaningful to us, since
it inspired confidence that our TMS protocol and procedures
indeed had neural effects with the potential to affect behavior.

In that study, passive bistable viewing behavior was very much
unchanged. It was not a case of a small effect in the hypothesized
direction not reaching significance. And this is really all one can
do against the power argument: ensure sufficient power in the
experimental design through a priori sample size calculations,
and evaluate the effect size after data collection. The possibility
that an even larger sample size, and more reliable estimation
through more trials, could eventually lead to a statistically
significant positive finding, is irrefutable. In fact, it is inevitable:
in classical frequentist hypothesis tests, with large enough sample
sizes even true null hypotheses will be rejected (Wagenmakers,
2007). This is not unique to NIBS research. What may be to
some extent unique to NIBS research, and indeed an exciting
development, is the inclusion of individual markers that predict
response to NIBS. As we continue to discover sources of inter-
individual variability, we can either select participants (Drysdale
et al., 2017), adapt protocols (Goldsworthy et al., 2012), or refine
our statistical analyses to increase detection power.

A GRADIENT OF SURPRISE AND A
GRADIENT OF INTERPRETABILITY

In Figure 1, we distill the discussion so far into a conceptual
model to help us evaluate null results in NIBS. The model
contains two orthogonal axes. Horizontally, the relevant
parameters and design decisions in an experiment, discussed
above, are mapped along the “gradient of interpretability.” Where
an experiment ranks along this dimension determines how
informative its null result is, considered in isolation. Vertically, the

“gradient of surprise” indicates how unexpected the null result is,
in the context of prior research and theory.

Along the gradient of surprise, we find Replication nulls on
one end, Exploration nulls in the middle, and Hypothesized nulls
at the opposite end. Sometimes a positive finding is strongly
expected, based on previous research or strong theoretical
background, but not found. For instance, a null result in an
experiment explicitly designed to replicate a well-established
finding seems most surprising (Replication null). On the other
hand, some null results can be received more neutrally, if the
research was more exploratory and a result could “go either way.”
For instance, because research is very original and breaks new
ground in uncharted territory, or because competing theories
with approximately equal support make opposite predictions for
the outcome of an experiment. Thus, Exploration nulls sit in
the middle of the continuum. At the other end of the gradient
are Hypothesized nulls. These may be something of a rarity still,
since not many experiments are explicitly designed to obtain null
results (in the experimental condition). Perhaps this is because
null results seem less interesting or impactful, or simply because
negative findings are a priori considered meaningless for reasons
discussed above. Either way, a null result that was expected is of
course least surprising.

Along the gradient of interpretability, multiple factors
contribute to null result interpretability. Among these the
selected localization procedure, existence of neural efficacy
checks, and the power and effect size. Together, these “design
choices” help determine to what extent a null result can be
interpreted. But these are several factors that contribute to
null result interpretability along this same dimension somewhat
independently, and additively. Combining this with the breadth
of approaches, techniques, parameters, and even further design
decisions in NIBS research, it seems the landscape of null
results is rather complex. Therefore, we propose three concrete
“Levels of evidence” for NIBS null results (Levels A, B,
and C), as heuristic guidelines to help us determine how
informative the null results from an individual experiment
are. These Levels of evidence explicitly apply to the gradient
of interpretability. They are visually added to Figure 1, but
only to make intuitive how they are ordered along this
continuum.

THREE LEVELS OF NULL EVIDENCE

Our heuristic taxonomy of null result interpretability demarcates
three levels of null evidence, from least (Level C) to most
interpretable (Level A) null results. We want this taxonomy to be
useful independent of Bayesian analysis, but will later comment
on how Bayesian analysis fits into this scheme.

Level C evidence is assigned to null results from experiments
with localization procedures not based on individual anatomy
or functional mapping (i.e., landmark- or Talairach-/MNI-
coordinate based) and no neural efficacy checks. Often, such
null results may result from exploratory studies, studies with
exploratory NIBS parameters, high risk studies, small-scale
student projects, etc. Such studies might be meaningful to
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share with the community, for the sake of transparency. They
could help others remain aware of what has been tried, which
parameters, tasks, cortical sites, have been targeted under which
procedures, even if the null result itself cannot be strongly
interpreted (the Pragmatic argument; de Graaf and Sack, 2011).
Opinions may differ, however, on what minimal level of
sophistication an experiment requires for the ‘attempt’ to be
meaningful to others and therefore published (see also de Graaf
et al., 2018).

Level B evidence is assigned to null results from experiments
with either sophisticated localization procedures (individual
MRI- or fMRI guided neuronavigation for TMS, current
simulations in individual anatomy for TES) or neural

efficacy checks (behavioral markers, hunting procedure,
concurrent neuroimaging). Thus, either through individual
neuronavigation/modeling, or through a neural efficacy check,
one is relatively sure that the intended cortical region was targeted.
For level B evidence, it is not necessary to have the strongest
form of a neural efficacy check, demonstrating behavioral
effects on a related task by the NIBS protocol used also in the
condition leading to the null result. In the absence of Bayesian
analysis: there should be clear absence of effects in the data
despite – as far as could be determined a priori – sufficient
statistical power for the selected sample size. Null results with
Level B evidence should, in our view, always be acceptable for
publication, irrespectively of whether the null result is surprising,

FIGURE 1 | Orthogonal gradients of surprise and interpretability. A null result in an experiment aiming to replicate a well-established finding is very surprising. A null
result that was hypothesized is not at all surprising. A null result in an exploratory study with no prior expectations can be received neutrally (middle of the continuum,
not shown). The level of surprise (vertical axis) essentially reflects how a null finding relates to our prior expectations. From a Bayesian perspective, even without
Bayesian statistics, we should let this level of surprise (if justified based on theory or previous research) influence to what extent we let the result “change our beliefs.”
This explicitly refers to interpretation of a null result in the greater context of knowledge, theory, and prior research. Orthogonal to this, one might evaluate the
experiment and its parameters in terms of localization procedure, neural efficacy checks, and power and effect size, together making up a gradient of interpretability
(horizontal axis). This continuum reflects how informative we should consider the null result in isolation, ignoring expectations, theory, or previous research. The figure
displays our view on how design choices impact the interpretability of a null finding along this dimension (toward the right is more informative, see legend top-right).
At the bottom, we schematically visualize how the collective of such “leftward” design choices can place a null result into the “Level C evidence category,” which
means the null result in isolation is not very informative, while the collective of such “rightward” design choices can place a null result in the highest “Level A
evidence” category, which means a null result appears informative and should be taken seriously. A few caveats are important. This figure aims to visualize concepts
discussed in more detail in main text, and how they relate to each other. The visualization of Level C through Level A evidence is meant to make intuitive how they
roughly fit into this overview, our proposal for what exactly differentiates Level A through C evidence is in main text. Lastly, we do not suggest that every design
decision “on the right” in this figure is always best for every experiment, or that experiments yielding Level C evidence are somehow inferior. Note also that the figure
reflects how design factors influence how informative null findings are, it does not apply to positive findings in a straightforward way.
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exploratory, or hypothesized (not publishing just because of
surprise contributes to publication bias).

Level A evidence is assigned to null results with individually
calibrated localization procedures (same as in level B) and
strong neural efficacy checks. The neural efficacy checks
should confirm not only successful targeting of the intended
cortical site, but successful neural stimulation/modulation,
either by demonstrating behavioral effects in an experimental
condition with related stimuli/task and identical NIBS protocol,
or by revealing neural effects of the NIBS intervention in
appropriate regions/networks/mechanisms through concurrent
neuroimaging. Level A classification further requires clear
absence of effects in the experimental condition, despite sufficient
statistical power for the given sample size. Level A null results
constitute sufficiently meaningful contributions to warrant
dissemination.

Note that these descriptions of Levels C through A reflect
a first proposal, and the criteria are open to debate. It is
an unavoidably flexible classification scheme, since multiple
factors along the same continuum (see Figure 1) contribute
to null result interpretability. Moreover, with continuing
developments, certain design choices and procedures may
fall between such classifications. For instance, is the cortex-
based alignment approach for TMS localization, in which
group fMRI-based Talairach coordinates can reliably be
mapped onto individual MRI-based brain anatomy, a Level
B localization procedure or not (Duecker et al., 2014)?
We therefore consider these Levels of evidence a rough
classification that may be applied directly, but in equal
measure can guide a more informal evaluation of null result
meaningfulness.

THE ORTHOGONAL CONTRIBUTIONS
OF INTERPRETABILITY AND SURPRISE

We here discuss more explicitly how this model can guide
informal assessment of null results. As mentioned, the gradient
of interpretability underlying the Levels of evidence is orthogonal
to the gradient of surprise, since it focuses on how informative
an individual null finding is in isolation, ignoring our prior
expectations or level of surprise by the outcome. But of course,
the a priori likelihood of a positive finding or a null result, in other
words our level of surprise at the obtained null result, should
influence how we interpret and credit such a result in the greater
context of previous research and theory.

In fact, this lies at the heart of the Bayesian school of thought:
we integrate our prior beliefs with the new data, to come to a
new belief. We suggest that evaluating a null result along the
two gradients of our model can essentially guide an “informal
Bayesian analysis.” In the informal procedure of integrating our
prior understanding with the new data, we can for instance
allocate less or more weight to the new data (null result) and less
or more weight to our prior expectations. The weight allocated
to the new data is determined by the position of the null result
along the gradient of interpretability (horizontal in Figure 1),
while the weight of the prior expectations directly relates to

the level of surprise instigated by the null result (vertical in
Figure 1).

For example, if a Level C null result is very surprising, because
a dominant theory and several previous studies predicted a
positive finding, we should not be so quick to reject the theory,
and seriously consider the possibility that we obtained a Type-II
error. And, of course, we should design a new experiment that
would yield more informative null results. In contrast, a Level A
null result could make us rethink the theory, or inspire follow-up
experiments to determine what caused the discrepancy. Yet, in
this scenario we still do not outright accept even a Level A null
result. But had the very same Level A null result been obtained
in the absence of prior expectations, because the experiment
addressed a fundamentally new research question, then this Level
A Exploration null result could guide our beliefs more strongly,
even forming the starting point for a new theory.

These arguments are quite abstract, so perhaps it is useful to
consider two more concrete examples. Imagine an experiment
that fails to replicate a well-established TMS effect, suppression
of visual stimuli by a single occipital TMS pulse at 100 ms
after stimulus onset (Amassian et al., 1989; de Graaf et al.,
2011a,b,c, 2015). This Replication null would very much surprise
us, given the extensive literature supporting this effect (de
Graaf et al., 2014). Independently of this surprise, we would
consider the null result less meaningful if the TMS coil was
simply positioned just a few centimeters above the inion,
versus if the TMS coil elicited phosphenes in the retinotopic
stimulus location (neural efficacy check based on perceptual
marker), or were neuronavigated to an individual hotspot
in V2 corresponding to the retinotopic stimulus location
(sophisticated localization procedure). Similarly, if an imaginary
fMRI experiment found that appreciation of magic tricks scales
with posterior parietal cortical BOLD activation, one might
follow it up with an exploratory TMS experiment. Not finding
any reduced appreciation for magic tricks after inhibitory TMS,
an Exploration null result, might not necessarily surprise us. But,
again independently of our lack of surprise, we would find the
null result much more informative if we had neuronavigated the
TMS coil to individual hotspots as compared to placing the TMS
coil over the EEG 10-20 P4 location (sophisticated localization
procedure), or if the reduction in magic appreciation was zero
as compared to a reduction in magic appreciation that was in
the right direction but just failed to reach significance (effect size
evaluation).

THE BAYESIAN INFERENCE APPROACH

In sum, positioning a null result along the gradients of
interpretability and surprise can help us in the interpretation
of such a null result and the extent to which we should let it
change our beliefs. We even called this an “informal Bayesian
analysis.” But, as mentioned previously, formally null results
cannot be interpreted at all. At least, not in the conventional
frequentist statistical framework of classical null hypothesis
testing yielding P-values. Some examples of limitations of
P-values (Wagenmakers, 2007; Wagenmakers et al., 2018b):
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1 we cannot interpret any outcome as supporting the null
hypothesis;

2 many find it difficult to correctly interpret P-values
(Nickerson, 2000; Verdam et al., 2014);

3 hypothesis tests are biased against the null hypothesis,
since the P-value ignores both predictions of and a priori
likelihood of the alternative hypothesis, only testing
predictions of the null hypothesis;

4 P-values not only fail to quantify evidence for the null
hypothesis, they also fail to quantify evidence for any
alternative hypothesis;

5 the entire analysis framework relies on imaginary
replications that form a sampling distribution, required to
obtain a P-value.

Perhaps due to such limitations, P-values are increasingly
reported alongside additional statistics, such as effect sizes and
confidence intervals. But they remain the mainstay of inference in
NIBS research. Classical null hypothesis testing does not consider
the prior likelihood of null or alternative hypotheses. It does not

account for how likely any outcome is based on previous research,
solid theoretical foundations, or just common sense. As a result,
the same P-value coming out of the same hypothesis test might
convince an experienced researcher in one case, but not at all in
another case. This applies to positive findings as well as negative
findings. As such, experienced researchers do not merely take
P-values at face value, but generally evaluate them in greater
context already.

The Bayesian approach is fundamentally different, and its
formal implementation as an alternative statistical approach
is becoming increasingly widespread. It can incorporate those
prior beliefs we mentioned, formalizing in the Bayesian analysis
framework some of what experienced researchers informally do
when dealing with frequentist analysis outcomes. Model priors
reflect the a priori likelihood of null or alternative hypotheses.
But also prior expectations about particular parameters, such
as an effect size in a population, can be quantified under the
null and alternative hypothesis, prior to data collection. The
analysis takes those priors, then takes the collected data from an
experiment, and integrates these sources of information (updates

FIGURE 2 | Bayesian analysis to assess support for a null hypothesis. (A) Results of two fictional within-subject conditions in a (random-walk) generated dataset
with 40 virtual observers. There does not seem to be a meaningful difference in RT between both conditions. (B) A traditional paired-samples t-test provides no
reason to reject the null hypothesis (P > 0.05). But it can provide no evidence to accept the null hypothesis. The Bayesian paired-samples t-test equivalent yields a
BF01 = 5.858. This means that one is 5.858 times more likely to obtain the current data if the null hypothesis is true, than if the alternative hypothesis is true. In the
recommended interpretational framework, this constitutes “moderate” evidence for the null hypothesis (BF > 3, but < 10 which would constitute “strong” evidence).
(C) A plot of the prior distribution (dashed) and posterior distribution (solid), reflecting probability density (vertical axis) of effect sizes in the population (Cohen’s d,
horizontal axis). In these tests, the prior distribution is conventionally centered around 0, but its width can be set by the user to reflect strength of prior expectations.
The width of the posterior distribution reflects confidence about effect size based on the prior and the data: the horizontal bar outlines the “credible interval” which
contains 95% of the posterior distribution density. This width/interval will be smaller with increasing sample size. The median of the posterior distribution (0.002) is a
point estimate of the real effect size. BF10 here is simply the inverse of BF01, and the “wedge-chart” visualizes how much more likely one is to obtain the current
data given H0 versus H1. (D) Since setting a prior (width) is not always straightforward, one can plot how much the outcome of the analysis (BF01, vertical axis)
depends on the selected prior (horizontal axis). At the top are the BF values for a few points on the plot (user-selected prior, in this case the JASP-provided default of
Cauchy prior width = 0.707, wide, and ultrawide prior). Clearly the evidence for the null hypothesis (likelihood of obtaining current data if null hypothesis is true)
ranges for most reasonable priors from moderate to strong.
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the prior distribution) to yield a “posterior distribution.” The
posterior distribution is our updated belief about the effect under
investigation, yields a certain “credible interval” when it comes to
an estimated parameter (a 95% credible interval for a parameter
means we are 95% sure the parameter lies in that interval), and
can directly be evaluated for hypothesis testing.

Bayesian hypothesis testing uses the priors and the available
data to weigh the evidence for and against the null and alternative
hypotheses. The analysis can yield a single numerical value
called the Bayes Factor, which quantifies the relative evidence. It
quantifies which hypothesis is more supported by the data and to
what extent, or in other words, which of the two hypotheses best
predicted the data and by how much. This approach, as any, has
its own limitations; the quantification of priors may not always
be trivial, for example, and just as the classical P < 0.05 criterion
for classification of a significant effect is arbitrary, the Bayes
Factor (BF) is descriptively interpreted as providing “anecdotal,”
“moderate,” or “strong” evidence for either hypothesis at some
arbitrary boundaries. However, the approach does offer benefits
and capabilities not afforded by classical statistics. In the context
of the current discussion, Bayesian analysis has one particularly
important advantage: in Bayesian analysis, one can interpret a
null result and formally draw conclusions based on it (see also
in this issue: Biel and Friedrich, 2018).

This article is not intended to be a (Bayesian) statistics tutorial,
but it may be useful to provide an example with just a little
bit more concrete information. In Figure 2 we show generated
data from a simple fictional TMS experiment, measuring reaction
times in a real TMS condition as compared to a sham TMS
condition (2A). The figure shows the outcomes of a standard
paired-samples t-test, as well at the outcomes of a Bayesian
equivalent paired-samples test (2B). These analyses were all
performed with the free and open-source statistical software
package JASP (JASP Team, 2018; Wagenmakers et al., 2018a,b).
A relevant outcome of the Bayesian test is the BF. The Bayes
Factor BF10 reflects how much more likely the data were to
occur under the alternative hypothesis as compared to the null
hypothesis (1C). Bayes Factor BF01 is the inverse (1/BF10). If the
BF is larger than 3, the evidence is considered “moderate,” if larger
than 10, the evidence is considered “strong” (Wagenmakers et al.,
2018a). If one is worried about the concept of priors, and how
much of an influence a chosen prior has on the outcome of the
analysis, this can simply be evaluated quantitively (2D). See the
figure caption for further details.

BAYESIAN STATISTICS AND LEVELS OF
EVIDENCE

Bayesian statistics can formally and quantitatively evaluate the
strength of evidence of a null result. Since this is what we
informally intended to achieve with a classification of Levels of
null evidence, should we not simply demand Bayesian statistics
instead? Or require certain ranges of BFs before we accept null
results as Level B or A evidence? This is an interesting question,
but currently we think not. Firstly, because Bayesian analysis is
not yet commonplace, although it is increasingly implemented.

This does not mean we doubt the approach, but we would like
our model to be helpful also to researchers not ready to commit
to Bayesian analysis. Secondly, the BF quantifies the support for
the null (and alternative) hypothesis in the data. The gradient of
interpretability, however, (also) ranks how much faith we should
put in those data in the first place, based on certain experimental
design decisions. As such, the results of Bayesian analysis (or
classical inference) only become meaningful once we reach a
certain level of confidence in the experimental design and its
power to yield meaningful data.

Having said that, we do strongly advocate the application of
Bayesian analysis, at least to complement classical hypothesis
tests when presenting null results. We are hesitant to propose,
for example, that a Level A classification can only be extended
to a null result backed up by Bayesian statistics. We would,
however, suggest that, to build a case against a null hypothesis
based on a null result, adding Bayesian analysis is preferred and
would usually make the case stronger. A Level A null result
comes from an experiment with such a sophisticated design
that its data should be considered meaningful. Therefore, formal
Bayesian quantification of support for the null hypothesis would
be meaningful also.

CONCLUSION

This is an opinion paper, meant to provoke thought, insight,
and discussion. Some of the ideas, and especially criteria
for classification of null result interpretability, are somewhat
arbitrary and may change with new insights, developments, or
time. But the fundamental idea underlying it, is that not all null
results are created equal. And it may be useful to reflect on
what it is about null results, and especially the design of NIBS
experiments underlying them, that allows us to consider them
less or more meaningful. Our proposals here provide concrete
heuristics, but are open to amendment, correction, or expansion.
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