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A B S T R A C T   

Resting-state functional connectivity (rsFC) measured with fMRI has been used to characterize functional brain 
maturation in typically and atypically developing children and adults. However, its reliability and utility for 
predicting development in infants and toddlers is less well understood. Here, we use fMRI data from the Baby 
Connectome Project study to measure the reliability and uniqueness of rsFC in infants and toddlers and predict 
age in this sample (8-to-26 months old; n = 170). We observed medium reliability for within-session infant rsFC 
in our sample, and found that individual infant and toddler’s connectomes were sufficiently distinct for suc-
cessful functional connectome fingerprinting. Next, we trained and tested support vector regression models to 
predict age-at-scan with rsFC. Models successfully predicted novel infants’ age within ± 3.6 months error and a 
prediction R2 

= .51. To characterize the anatomy of predictive networks, we grouped connections into 11 infant- 
specific resting-state functional networks defined in a data-driven manner. We found that connections between 
regions of the same network—i.e. within-network connections—predicted age significantly better than between- 
network connections. Looking ahead, these findings can help characterize changes in functional brain organi-
zation in infancy and toddlerhood and inform work predicting developmental outcome measures in this age 
range.   

1. Introduction 

The first two years of life are characterized by rapid development of 
behavioral capabilities and dramatic changes in brain structure and 
function (Benson, 2020; Silbereis et al., 2016; Almli et al., 2007), 
including changes in functional network organization (Gao et al., 2015a, 
2015b; Cao et al., 2017). Resting-state functional connectivity (rsFC) 
measured with functional MRI offers one way to measure functional 
brain organization as well as changes in this organization over time. In 
particular, changes in rsFC patterns over time have been shown to relate 
to development, indexed with chronological age, in childhood and 
adulthood (Nielsen et al., 2019; Dosenbach et al., 2010), as well as the 

first year of life (Pruett et al., 2015). However, rsFC’s reliability and 
utility in tracking development in the second year of life—a period 
marked by many developmental milestones (Lewis, Ramsay, 2004; 
Hayne, MacDonald, and Barr, 1997; Courage, and Howe, 2002) but one 
of understudied functional brain architecture (Edde et al., 2021)—is 
unclear. In the current work, we evaluate the reliability of rsFC patterns 
in infants between the ages of 8–26 months and characterize its rela-
tionship to chronological age. 

Functional connectivity is typically measured by calculating the 
statistical dependence (e.g., correlation) between two brain regions’ 
blood-oxygen-level-dependent (BOLD) signal time series. Doing so for 
all pairs of brain regions in a whole-brain parcellation scheme, or brain 
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atlas, results in a functional connectivity matrix, or connectome, that 
reflects aspects of an individual’s functional brain organization (Van 
Den Heuvel and Pol, 2010; Hlinka et al., 2011; Kelly et al., 2012; Her-
mundstad et al., 2013). In adults, these rsFC patterns are relatively stable 
over time and unique across individuals (Tozzi et al., 2020), although 
the univariate reliability of single functional connections is poor (Noble 
et al., 2019) as indicated by low intra-class correlation (ICC) for single 
connections (~.29). Individuals’ overall functional connectivity pat-
terns individuate and stabilize across childhood and adolescence and 
delays in connectome individuation and stabilization are observed in 
psychiatric disorders (Kaufmann et al., 2017). This suggests that these 
connectivity changes are relevant for neurocognitive development. But, 
the degree to which individuals’ unique functional connectome “fin-
gerprints” (Miranda-Dominguez et al., 2014; Finn et al., 2015) are 
apparent in infancy is unclear. Although recent work has demonstrated 
medium to large intra-session reliability of resting-state functional 
connectivity in newborn infants (Wang et al., 2021a), other work sug-
gests that functional connectome identifiability—a proxy for con-
nectome reliability and uniqueness—is poor in infancy (Dufford et al., 
2021) 

In addition to showing reliability over short time scales, adults’ rsFC 
patterns also show high long-term inter-session stability, meaning 
different scanning sessions months apart would yield similar rsFC 
matrices for an adult individual (Horien et al., 2019; see Mir-
anda-Dominguez et al., 2018; Jalbrzikowski et al., 2019 for adoles-
cents). In infancy and toddlerhood, however, large developmental 
changes in rsFC could occur in short time scales such as months or even 
weeks, and therefore high long-term stability would be surprising (e.g., 
see Dufford et al., 2021). Rather than long-term stability, the question in 
the current study is whether the rsFC changes across development in 
infancy and toddlerhood are systematic and could be informative about 
the brain maturation. To understand rsFC’s potential utility for indexing 
brain maturation, it is important to understand the reliability of infant 
and toddler’s functional connectomes’ relationship with development. 
Work has shown the functional connectome’s relationship with cate-
gorical age (i.e., 6-month-old vs. 12-month-old infants, Pruett et al., 
2015) and socioeconomic status (Gao et al., 2015a,2015b) in the first 
year of life. However, its utility to predict continuous brain development 
indexed as chronological age in months during the late infancy and 
toddlerhood is not known. Predicting age based on rsFC enables us to 
understand systematic functional architectural changes during the brain 
maturation process in these early years, which in turn could help studies 
aiming to find brain indices of typical and atypical neuro-development 
of other phenotypes in cognitive, language, motor, and other domains. 

In the current study, we used a relatively large, high-quality MRI 
sample to investigate whether resting-state functional connectivity 
observed between 8 and 26 months is reliable within a scan session, 
distinct between individuals, and predictive of age in months. To do so, 
we first quantified the consistency of infants’ and toddlers’ rsFC patterns 
within a single scan session. We then assessed rsFC distinctiveness by 
comparing within-participant FC pattern similarity to between- 
participant FC pattern similarity (a “fingerprinting” analysis; Mir-
anda-Dominguez et al., 2014; Finn et al., 2015). We next quantified the 
degree to which rsFC predicted age, asking whether it explained addi-
tional variance in brain maturity above and beyond brain volume. 
Finally, we compared the degree to which different functional networks 
predicted age to characterize functional network development in this 
cohort. 

2. Methods 

2.1. MRI data 

Data from 259 MRI sessions collected when infants and toddlers were 
between 8 and 26 months old from the University of Minnesota site of 
the publicly available Baby Connectome Project (BCP; Howell et al., 

2019) were used in this investigation. Study samples were preprocessed 
and visually assessed for quality. After exclusions (see Data exclusion 
section below), 170 scan sessions remained for analysis (mean age =
15.7 months, SD = 5.2; range = 8–26 months). Included sessions were 
collected from 112 unique participants (52 female). When a participant 
had multiple included sessions, only one session was randomly sampled 
within each analysis iteration. Sessions from the same participants were 
collected at least 3 months apart. The BCP Study was approved by the 
University of Minnesota and University of North Carolina Institutional 
Review Boards and informed consent was acquired from the parents of 
all participants. 

In each MRI session, T1-weighted (TR=2400 ms, TE=2.22 ms, 0.8 
mm isotropic), T2-weighted (TR=3200 ms, TE=563 ms, 0.8 mm 
isotropic), spin echo fieldmaps (SEFM) (TR=8000 ms, TE=66 ms, 2 mm 
isotropic, MB=1), and resting-state fMRI (TR=800 ms, TE=37 ms, 2 mm 
isotropic, MB=8) data were collected from participants on a Siemens 3 T 
Prisma scanner with a 32-channel head coil. Resting-state fMRI data 
were collected in both the Anterior→Posterior (AP) and Posteri-
or→Anterior (PA) phase encoding directions. Each BOLD run consisted 
of 420 frames (5.6 min) with a minimum of two (11.2 min) and 
maximum of four runs (22.4 min) collected per scanning session. A 
subset of early scans (n = 68 sessions) was collected with a 720-ms TR. 
All scans were performed during natural sleep without the use of 
sedating medications, following procedures outlined in Howell et al. 
(2019). 

2.2. Functional MRI data processing 

Functional data processing steps were similar to those described in 
Feczko et al. (2021). Structural MRI data undergo an HCP-style pro-
cessing (see: Glasser et al., 2013; Feczko et al., 2021), where the struc-
tural data undergo ANTS N4 bias correction, ANTS denoising, T1/T2 
distortion correction/registration, and finally ANTS SyN algorithm 
deformation alignment to the infant MNI template. In addition, we 
performed a segmentation using templates derived for 8–26 months via 
Joint Label fusion, and produced a refined brain mask from this step. 
The mask and segmentation here were substituted within the freesurfer 
(Fischl, 2012) pipeline and used to refine the white matter segmenta-
tion, and guide the freesurfer surface delineation. The data were then 
converted to a CIFTI-template via a spherical registration from the 
native surfaces to the fsaverage LR32k. 

For fMRI preprocessing, a scout image was selected from the resting- 
state fMRI timeseries. The scout was used to perform distortion correc-
tion via spin-echo field maps, served as the reference for motion- 
correction via rigid-body realignment (Feczko et al., 2021), and regis-
tered to the native T1. These steps were combined in a single resampling 
with the MNI template transformation from the previous step, such that 
all fMRI frames were registered to the infant MNI template. Mode 1000 
normalization was performed, so that 10 units of BOLD correspond to a 
1% signal change. 

Standard connectivity processing steps were then applied beginning 
with demeaning/detrending across time. Denoising was performed 
using a general linear model with regressors including signal and motion 
variables. Signal regressors include mean CIFTI grey-ordinate times-
eries, JLF-defined white matter, and JLF-defined cerebrospinal fluid 
(CSF). Motion regressors include volume-based translational and rota-
tional components and their 24 parameter Volterra expansion. 
Framewise displacement (FD) was defined as the squared sum of the 
motion vectors provided by the frame alignment during fMRI pre- 
processing. As in adults, infant respiration can lead to perturbations in 
the B0 field, which, unlike spontaneous isolated head movements, do not 
result in BOLD signal disruption (Fair et al., 2020). This factitious head 
motion should not be taken as an indicator of degraded image quality. 
Following the methods of Kaplan et al. (2021) which showed that 
applying an age-specific respiratory notch filter (0.28–0.48 Hz) to the FD 
traces and motion parameter estimates in this dataset successfully 
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mitigates the effects of respiratory motion, we removed the respiratory 
apparent head motion and retained more of the data compared to mo-
tion censoring with no FD filtering (Kaplan et al., 2021). Frames were 
censored during demeaning/detrending if their FD value exceeded 0.3 
mm. Consequently, the denoised beta values only included the 
remaining low motion frames, while keeping a sufficient number of 
frames to demean/detrend. Bandpass filtering was applied using a 
second-order Butterworth filter (0.008–0.09 Hz). To preserve the tem-
poral sequence and avoid aliasing caused by missing timepoints during 
bandpass filtering, interpolation was used to replace missing frames, and 
residuals were acquired from the denoising general linear model. Par-
cellated timeseries were generated by averaging the voxel-wise time-s-
eries within each parcel using a predefined 333-node cortical atlas 
(Gordon et al., 2016) which defined parcels using rsFC boundary maps 
calculated by “watershed by flooding” algorithm in a sample of young 
adults (see Gordon et al., 2016).” Frames with FD values exceeding 0.2 
mm were excluded from any connectivity calculations. 

2.3. Data exclusion 

Frames with > 0.2 mm FD or outlier frames whose across-voxel 
standard deviation was more than 3 median absolute deviations from 
the median of all frames were removed from the BOLD timeseries prior 
to functional connectivity analysis. Scan sessions with fewer than 600 
total frames (i.e., 7.2–8 min of data) across all runs were excluded, 
resulting in 231 sessions. Visual quality control was performed on T1- 
weighted, T2-weighted, and BOLD images (at least 2 independent 
raters per image) with the Swipes for Science platform (https://swi-
pesforscience.org). Sessions with less than a 75% aggregated passing 
rate across images and raters on either anatomical or functional images 
were excluded, resulting in our final sample of 170 sessions. 

2.4. Functional connectivity matrix construction 

Preprocessed 333 Gordon parcellated cortical BOLD timeseries 
(Gordon et al., 2016) were truncated to their first k frames (k = 5, 10, 15, 
., 450 in the fingerprinting analysis and k = 300 in the age prediction 
analysis, described below) from the AP and PA scans separately. A 
Pearson correlation matrix was constructed for each session by pairwise 
correlating the 333 truncated time-series, resulting in 55,278 unique 
functional connections in each FC matrix. 

2.5. Functional connectome fingerprinting 

As one way to assess the reliability of subject-level FC in our sample, 
we performed a “fingerprinting” analysis (Miranda-Dominguez et al., 
2014; Finn et al., 2015). This analysis tests the degree to which in-
dividuals’ FC patterns are stable over time and unique from a group. To 
this end, we constructed pairs of FC matrices using the 333 parcels for 
each session (n = 170) using the first k TRs from AP and PA resting-state 
runs. We then computed the spatial correlation between these AP and PA 
FC matrices for all pairs of sessions. Correct identification was achieved 
if, at a given k, the correlation between the AP and PA matrices from the 
same participant was larger than the correlation between the AP matrix 
from that participant with the PA matrices of all other sessions of other 
participants and the correlation between the PA matrix from that 
participant with the AP matrices of all other sessions of other partici-
pants (excluding other sessions from the same participant). AP and PA 
runs were run consecutively and half of the sessions (87 out of 170) only 
had two runs of fMRI (one AP and one PA). Therefore, the fingerprinting 
was done by correlating AP and PA runs as opposed to two AP runs and 

two PA runs, which would have excluded the sessions with fewer than 4 
good quality runs (two AP and to PA). Overall identification accuracy for 
a given k was calculated as the percent of successful identifications 
across all sessions with at least k frames of data in both AP and PA runs, 
excluding sessions from the same participant if they had multiple ses-
sions (see Results section Fig. 1). Please note that for simplicity, we refer 
to the FC from the AP or PA run within a session as split-half FC in Fig. 1 
A, and refer to FC similarity of the two runs (one AP and one PA) within 
a session as split-half correlation in Fig. 1B of the Results section. Sup-
plementary section 1 contains a few examples of split-half matrices 
plotted side-by-side for comparison. 

2.6. Test-retest reliability of single edges 

Intra-class correlation (ICC) for each edge in the FC matrices were 
calculated as two-way random single score absolute ICC (Shrout and 
Fleiss, 1979; McGraw and Wong, 1996) for two runs in the same session 
using custom MATLAB code based on Thomas Zoeller (2022) imple-
mentation (https://www.mathworks.com/matlabcentral/fileexchange/ 
26885-intraclass-correlation-coefficient-with-confidence-intervals). 
The measure compares the variance due to participants compared to 
variance due to the two runs and noise, with higher ICC value for an 
edge indicating more within-session reliability of that connection be-
tween two runs of a participant. ICC was averaged over all edges to 
assess the edge-wise reliability in the sample. 

2.7. Age prediction 

Preprocessed 333 Gordon parcellated timeseries were truncated to 
their first 300 AP and first 300 PA frames (or the closest balance between 
AP and PA possible) for a total of 600 frames in all 170 sessions. For 12 of 
the 170 sessions, there were fewer than 300 TRs in one acquisition di-
rection (maximum difference = 240 AP and 360 PA TRs). A Pearson 
correlation matrix was then calculated from these 600 TRs and Fisher z- 
transformed (tanh− 1) to normalize the connectivity values. 

Support vector machine regression (SVR) with a linear kernel func-
tion (Christianini and Shawe-Taylor, 2000) and 10-fold cross-validation 
was used to predict infants’ and toddlers’ age in months from their 
resting-state FC pattern. An extension of support vector machine (SVM) 
learning for continuous prediction, SVR (Vapnik, 1995), uses a training 
set of observations with known ages and extracts the multivariate 
relationship between predictors (i.e., functional connections, or edges) 
and age as the continuous variable of interest. Predicted age values were 
aggregated across the 10 folds and assessed with measures of model 
performance: Pearson correlation between predicted and true age (r) 
and prediction R2 coefficient of determination (Alexander et al., 2015) 
(see Supplementary section 2 for more detail). 

In our final sample of 170 MRI sessions, some sessions were collected 
from the same participants at two different ages. To avoid potential is-
sues of data clustering, we randomly selected one session per participant 
(n = 112) 500 times and applied 10-fold SVR training and cross- 
validation to predict age. This approach resulted in a distribution of 
500 r and prediction R2 estimates, which were compared to null distri-
butions to assess significance. Null distributions were generated by 
applying 10-fold SVR to data from the same 112 sessions used to train 
and test the true models after permuting age values. 

2.8. Nuisance variables 

In addition to measuring r and prediction R2, we assessed the partial 
correlation between true and predicted age (partial r), adjusted for 
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nuisance variables in each iteration. Nuisance variables included mean 
remaining frame-to-frame head displacement in the session after motion 
censoring and outlier frame removal (FD), average visual quality control 
rating for functional and anatomical images for the session (QC ratings), 
and a dummy variable encoding whether the TR for the session was 0.72 
s or 0.8 s (TR). 

2.9. Predicting age above and beyond brain volume 

To test whether FC patterns predict chronological age above and 
beyond overall brain volume, we compared the variance in age 
explained by total brain volume alone to the variance explained by total 
brain volume and FC together. This provides an estimate of how changes 
in the brain’s functional architecture in this age range are coupled with 
brain maturity and predict age. This estimate is conservative in that all 
FC-based variance in age shared with brain volume is attributed to the 
brain volume model. 

To this end, we estimated total brain volume at each session using 
recon-all from Freesurfer (values in mm3 were taken directly from each 
subject’s aseg.stats file). We then regressed age in each of the 500 
resamples of 112 participants on nuisance variables (Model 1: Null), as 
well as nuisance variables plus brain volume and brain volume squared 
(Model 2: Brain volume). We calculated explained variance (adjusted 
R2) in each regression, resulting in a distribution of adjusted R2 values 
for each of Model 1 and Model 2. In Model 3: resting-state FC, SVR- 
predicted age (i.e., age fit score for the test 10-fold partitions) was 
then introduced in the linear regression model to calculate the addi-
tional explained variance uniquely contributed to age prediction from 
FC, above and beyond brain volume and nuisance variables. The ΔR2 in 
each of the regressions in the 500 data resamplings were calculated and 
its distribution was compared to 0 (i.e., the. Null hypothesis of no 
additional explained variance between Model 2 and Model 3). 

2.10. Investigating predictive power of within-network vs. between- 
network edges 

Reducing the feature space in connectivity-based predictive models 
can be performed in a data-driven or hypothesis-driven manner. Data- 
driven feature selection is optimal for reducing dimensionality 
without losing model generalizability but comes with the trade-off of 
potentially less interpretable results. Hypothesis-driven feature selection 
may penalize predictive power but can produce better theoretical in-
terpretations. To explore the functional anatomy of the functional con-
nections that predict age in our sample, we divided edges into two 
groups based on whether their nodes belonged to the same functional 
network or different networks. We used functional network definitions 
generated in the BCP Study sample itself and in an adult sample (Gordon 
et al., 2016). 

To define networks in the BCP Study sample, Infomap (Rosvall and 
Bergstrom, 2008) was applied to 8-to-26-months old data to generate 
BCP-specific networks using previously published methods (Wheelock 
et al., 2019; Eggebrecht et al., 2017). In brief, FC data from 94 BCP 
individuals (a single session per participant) were used to generate a 
group-average 333 × 333 connectome using the Gordon parcels (Gor-
don et al., 2016). The included subjects had a Mean age = 16.55 months 
(range 9–24 months) and had a minimum of 5 min of data (Mean-
=16.02 min, range 5.02–29.27 min) after motion censoring at FD 
threshold of 0.2 mm. To estimate pediatric-specific brain networks, the 
group average BCP connectome was thresholded across a range of edge 
densities (1–10%) and binarized as input into the Infomap community 
detection algorithm (Rosvall and Bergstrom, 2008). Although the 

Gordon 333 parcel boundaries were identical to those used in adults, the 
parcels were assigned to 11 pediatric functional networks rather than 
the (Gordon et al., 2016) networks (Fig. S2). These surface-based pedi-
atric functional networks resemble previously published infant and 
toddler networks derived using volumetric, spherical regions of interest 
(Eggebrecht et al., 2017). 

Importantly, the 11 infant/toddler networks were identified using FC 
data from a representative age range across all sessions and no within- 
dataset age-related variance is used in detection and assignment of 
communities. This is important because the 94 sessions used in the 
Infomap analysis were also included in the 170 sessions used in the age 
prediction analyses using within-network and between-network edges. 
(In other words, defining which edges constitute a community is not part 
of the cross-validation procedure used to compare the age-predictive 
power of within-network vs. between-network edges). 

3. Results 

3.1. Functional connectome fingerprinting and reliability 

Infants’ and toddlers’ rsFC patterns were more similar within par-
ticipants than across participants with medium level of identifiability 
(60%− 70%). Specifically, split-half correlation analysis (one half being 
the AP run and the other half being the PA run, see Methods) showed 
that resting-state functional connectomes constructed from only 300 
frames (3.6–4 min depending on the TR) in each half successfully 
distinguished the identity of the participant, with 62.0% accuracy across 
all available sample (n = 158 sessions with at least 2 × 300 frames, 
chance = 1/158 = 0.63%; Fig. 1A). As expected, identification accuracy 
increased as more frames were used to calculate the split-half FC 
matrices. Accuracy plateaued at 2 × 350 frames to 71.9% with a peak of 
73.2% at 2 × 400 frames, although identification was numerically 
above chance with as few as 20 frames per half.1 Additionally, at 
2 × 300 frames, we found medium reliability for within-session rsFC 
(mean correlation between runs from the same session: r = 0.470, SD =
0.098; Fig. 1B-C). The test-retest reliability for single edges (i.e., indi-
vidual connections), however, was low as shown by low average edge- 
level intra-class correlations (mean ICC = 0.20, SD = 0.13). This fol-
lows previous reports on low univariate reliability of single functional 
connections for infants (Dufford et al., 2021; Wang et al., 2021a) and 
adults (Noble et al., 2019). 

Notably, functional connectome identification accuracy was not 
driven by only older participants. Within-participant FC similarity did 
not increase with age (correlation between age and within-participant 
FC similarity: r = 0.064, p = .421; red circles in Fig. 1C are not higher 
for older sessions; sessions are ordered by age along the x axis). A par-
ticipant’s distinctiveness from the null distribution also did not signifi-
cantly increase with age (β = 0.05, p = .108 from logistic regression of 
identifiability on age; blue bars in Fig. 1 C). Thus, FC observed between 
8 and 26 months contains signal that can reliably identify individuals. 

Finally, analyses suggest that FC similarity is not strongly driven by 
age in this sample (Fig. 1B). That is, the correlation between the FC 
similarity matrix in Fig. 1B and a corresponding age difference matrix 
(in which values reflect the difference in age between two sessions) was 
low albeit statistically significant (r = − 0.097, p = .001 from permuting 
matrix elements 1000 times). In other words, rsFC pairs from more 
similar ages are slightly more similar than rsFC pairs from more distant 
ages across participants. 

1 Accuracy for 2 * 300 frames is 70.7% for AP-to-PA and 72.0% PA-to-AP 
halves, separately. Accuracy values shown here (e.g., 62.0% for 2 ×300 
frames) are based on when split-half FCs of a participant are more correlated 
than those of both AP and PA halves of other participants in the sample. 
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3.2. Predicting age from functional connectivity 

3.2.1. Functional connectivity patterns predict age in months 
Functional connectivity patterns successfully predicted infants’ and 

toddlers’ age in months when assessed with all measures of prediction 
performance (Fig. 2). Pearson’s correlations between true and predicted 
age were high (median r = 0.762, pz-test <0.0001, pperm < 1/500), with 
relatively precise predictions (median RMSE = 3.59 months) resulting in 
high prediction R2 (median prediction R2 =.506, pz-test <0.0001, pperm <

1/500). Results were consistent after adjusting for nuisance variables 
(FD, QC ratings, and TR; median partial r = 0.724, pz-test <0.0001, pperm 
< 1/500). Thus, continuous age in months is well-captured by functional 
connectivity in this sample of 8-to-26-month-olds. 

3.2.2. rsFC predicts age beyond brain volume 
We next asked if rsFC patterns carry reliable signal about chrono-

logical age above and beyond anatomical measures of brain volume. As 
shown in Fig. 3, rsFC patterns contributed to age prediction above and 
beyond brain volume measures (median ΔR2 =.139, pperm < 1/500). 

3.3. Functional anatomy of predictive connections and their relationship 
with age 

3.3.1. Adult and infant functional network assignments 
The average rsFC pattern across all 170 sessions is shown in Fig. 4, 

arranged in two ways. Here, we find that the functional “adjacency” of 
the nodes is better captured with the 11 infant/toddler network as-
signments rather than when nodes are arranged according to 12 ca-
nonical adult functional networks. This is indicated by the better 
aggregation of stronger elements along the diagonal in the right panel 
(mean within-network functional connectivity in infant/toddler net-
works arrangement r = 0.261, SD = 0.165) compared to left (mean 
within-network functional connectivity in adult networks arrangement 
r = 0.201, SD = 0.187; Cohen’s d = 0.241 between the two means). 
Since the canonical adult networks do not well-capture clusters of co-
ordinated activity in our sample as well as the infant/toddler networks, 
we proceeded with the infant/toddler network assignments to explore 
the functional anatomy of age-predictive edges in the better fit com-
munity space. 

3.3.2. Within-network connections better predict age than between-network 
connections 

After showing the relatively large predictive power of whole-cortex 
functional connectivity patterns for age, we investigated whether a 
subset of all 55,278 edges achieve similar performance. Specifically, 
more functionally similar vs. distinct edges (irrespective of the 
anatomical distance of the nodes) were separated into two models, one 
including only the 6017 within-network edges and the other including 
the remaining 49,261 edges—those crossing network boundaries. The 
within-network model performed better than the between-network FC 

Fig. 1. A: Functional connectivity fingerprinting identification percent accuracy (in blue) as a function of number of frames (k) included in each split-half con-
nectivity matrix generated from AP and PA data. The grey curve reflects data retention at a given k. For example, n = 158 at k = 300 indicates that, of the 170 
sessions in the sample with at least 600 frames after motion and outlier censoring, 158 had at least 300 frames in each AP or PA direction and were thus included in 
the analysis. The pink line shows chance % (i.e., 100 divided by n). B: Matrix plot where sessions, ordered by age, are rows/columns and cells reflect the correlation 
between sessions’ split-half functional connectivity patterns at k = 300. C: When 300 frames were used to generate each split-half matrix, overall identification 
accuracy was 62%. That is, 62% of sessions’ AP matrices are more correlated with their corresponding PA matrix than with the PA or AP matrix from any other 
participants’ session. Blue lines show the range of all between-participant correlations—of any ages— for each session. Sessions are ordered along the x-axis by age. 
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model in terms of precision (within-network: median RMSE = 3.31 
months and median prediction R2 =.579 vs. between-network: median 
RMSE = 3.69 months and median prediction R2 =.478). Prediction R2 of 
the within-network model was significantly greater than that of the 
between-network FC model (p = .008; Fig. 5, top panel). Furthermore, 
the amount of unique explained variance above and beyond nuisance 
variables and brain volume in the within-network regressions was 
significantly larger than that of the between-network regressions (me-
dian ΔR2 =.053, p = .024, between the two regression models’ R2; Fig. 5 
bottom panels). 

3.3.3. Predictive power of functional networks 
To assess the predictive power of each infant/toddler functional 

network, we trained separate SVR models using features from each of 
the 11 networks separately. Networks involving temporal regions, re-
gions overlapping with the canonical dorsal attention network (DAN), 
motor areas, anterior fronto-parietal network (aFPN), and frontal parts 
of the default mode network (infant-DMN) all reliably changed over 
8–26 months in manner that facilitates age prediction (Fig. 6). Networks 
involving the visual areas, on the other hand, did not predict brain 
maturation on their own better than chance in this age range. 

We also measured the relationship of age with properties of single 

connections, namely in terms of an edge’s test-retest reliability (ICC) as 
well as its differential power (DP; the likelihood of a connection being 
more similar across runs of the same participant compared to other 
participants). These results are reported across all the 55,278 connec-
tions in in Supplementary section 5. 

4. Discussion 

In this study we found that 8-to-26-month-olds’ resting-state func-
tional connectivity patterns are relatively reliable within-individuals 
during the same scan session, distinct across individuals, and diag-
nostic of age in months. The first two findings extend prior work 
assessing the utility of preterm-to-early-infancy rsFC for characterizing 
functional brain architecture (Smyser et al., 2010; Gao et al., 2013; 
Rudolph et al., 2018) as well as recent investigations of rsFC reliability 
and individuality in neonates and younger infants (Dufford et al., 2021). 
The third finding complements previous works on predictive models of 
brain maturation in the first year of life (Pruett et al., 2015) and in later 
childhood, adolescence, and adulthood (Nielsen et al., 2019; Dosenbach 
et al., 2010). 

Understanding the development of the brain’s functional architec-
ture and its individual variability in very young ages may be useful for 

Fig. 2. Distributions of age-prediction model performance metrics. Top: Pearson correlation between predicted age and true age. Middle: Prediction R2 estimated 
with mean squared error (MSE). Bottom: Partial correlation of predicted and true age adjusted for nuisance measures (remaining head motion, manual quality 
ratings, TR). 

Fig. 3. Distributions of R2 for age-prediction models based on nuisance variables (mean frame-to-frame head motion post-censoring, visual quality control rating, 
number of TRs; grey), with the addition of brain volume and brain volume squared (green), and the addition of rsFC-predicted age (blue). The addition of rsFC- 
predicted age significantly increased the explained variance in age (distribution of change in R2 shown in the right panel). 
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understanding both typical and atypical neurodevelopment. For rsFC to 
be a useful measure of neural development in infancy, however, it must 
be reliable: FC patterns that are not reproducible from one minute to the 
next are unlikely to reflect developmental change in functional brain 
organization. To predict developmental outcomes, FC patterns must also 
be, to some degree, distinct between individuals: if all infants showed an 
identical rsFC pattern this pattern would not be useful for distinguishing 

differences between them. To assess the stability and uniqueness of rsFC 
in our sample, we compared connectivity patterns calculated from two 
approximately 4-minute splits of fMRI data after rigorous motion 
exclusion and quality control. We found relatively stable FC multivariate 
patterns (split-half r = 0.5), which aligns with the medium intra-session 
reliability of rsFC in newborn infants reported by (Wang et al., 2021a). 
Single-edge ICC were low, however, which follows previous studies 

Fig. 4. Functional connectivity averaged over our sample of 8-to-26-month-olds. Nodes are arranged according to adult-defined canonical functional networks from 
(Gordon et al., 2016) (left) or BCP-specified functional networks (right). As expected, the BCP infant/toddler network assignments better capture the clusters of 
coordinated activity in infants as indicated by the better aggregation of stronger elements along the diagonal. Acronyms for infant networks names: DAN = Dorsal 
Attention Network; PCC = Posterior Cingulate Cortex; CO = Cingulo-Opercular; DMN = Default Mode Network; aFPN/pFPN = anterior/posterior 
Fronto-Parietal Network. 

Fig. 5. Top: Performance of the rsFC age-prediction models using only within-network connections (orange) or between-network connections (teal). See Supple-
mentary Fig. S3 for feature maps of the example models. Bottom: The within-network rsFC model significantly outperformed the between-network rsFC model when 
predicting age, above and beyond the brain volume measures model. The bottom right plot shows the distribution of difference in R2 between the additional variance 
in age (above and beyond nuisance variables and brain volume) explained by within-network and between-network connections. 
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(Noble et al., 2019; Dufford et al., 2021). We also achieved successful 
functional connectome fingerprinting (Miranda-Dominguez et al., 2014; 
Finn et al., 2015), with 63% accuracy in identifying an individual from 
other infants and toddlers (with chance being ≈ 1/158). This individual 
reliability and distinctness in our sample of 112 8-to-26-month-olds is 
comparable to the fingerprinting identification accuracies reported for 
the first year of life (Dufford et al., 2021: n = 55 scanned at both 1 
month and 9 months of age; best-case within-session ID accuracy =
49–71%) but lower than those reported by (Wang et al., 2021b) (n = 40 
neonates ID accuracy = 100%). 

Our results encourage examinations of large-scale functional brain 
network development in infancy. This is because, in addition to identi-
fying individuals, whole-cortex functional connectivity patterns predict 
infants’ and toddlers’ age-in-months with relatively large prediction R2 

(0.51) and a median prediction error of 3.6 months. Extending previous 
work predicting age from EEG functional connectivity in preterm and 
full-term neonates (Lavanga et al., 2018) and classifying 6- vs. 
12-month-old fMRI functional connectivity patterns (Pruett et al., 
2015), this finding demonstrates that rsFC patterns show rapid, stereo-
typed changes with age in early development. Furthermore, although a 
direct comparison of predictive power is difficult due to differences in 
age and brain measure variance, the current model performs nearly as 
well as connectome-based models of age in older children and adults 
defined with similar machine learning methods. For example, a recent 
model predicting age from rsFC in a sample of 7-to-35-year-olds ach-
ieved a prediction R2 of.57 (compared to.51 in the current sample) 
(Nielsen et al., 2019). 

Do all infant-to-toddler functional connections change similarly with 
age? From a broad perspective, we observed significant differences in 
the degree to which functional connections within and between resting- 
state networks matured with age. Specifically, functional connections 

within infant-defined functional networks better predicted age (pre-
diction R2 =.58) than functional connections crossing network bound-
aries (prediction R2 =.48). Although both types of connections predict 
age above and beyond brain volume, models trained on within-network 
edges significantly outperform models trained on between-network 
edges (median difference in prediction R2 = 10.0%), despite many 
fewer model features (6017 vs 49,261 edges). One possibility is that 
within-network models outperform between-network models simply 
because within-network edges are on average, stronger (i.e., Pearson 
correlations of the within-network edges are larger than the between- 
network edges; see Supplementary section 6). However, we found that 
within-network models still numerically outperform models based on 
the 25% strongest between-network edges, suggesting that edge 
strength is not the sole driver of this effect (see Supplementary section 6 
and Fig. S7). Together these results suggest that, in this age range, 
developmental change in between-network edges is more idiosyncratic 
than developmental change in within-network edges, making it less 
predictive of age across infants and toddlers. 

In addition to comparing within- and between-network connections, 
we also used predictive models based on functional connections in in-
dividual networks. This analysis suggested that connections in frontal 
and temporal lobes, as well as motor and dorsal attention network re-
gions, contributed most to age prediction in the 8-to-26-month range. 
Connections in visual areas, on the other hand, were not reliably related 
to age. These results are in line with studies showing improved syn-
chronization within both the dorsal attention and the default networks 
during the first two years of life (Gao et al., 2013). They also comple-
ment previous findings from infants younger than one year that the 
attention/default-mode and executive control networks start to mature 
later than the visual and sensorimotor networks (Gao et al., 2015a, 
2015b), as we found attention/default-mode networks are changing 
more (i.e., better predict age) in later infancy and in the second year of 
life compared to visual networks (Fig. 6). Notably, comparing the 
single-network results with the full within-network models shows that 
the combination of all 11 functional networks better predict age than 
any one network alone (see Fig. 6 dashed blue line). Additionally, a 
supplementary analysis (Supplementary section 7) showed that no single 
network outperforms size-matched models trained to predict age using 
random set of edges from outside of that network. Thus, single-network 
analyses reveal the networks that predict age above chance but 
demonstrate that no single network can outperform other connections 
outside of it to predict age. 

The current results demonstrate that rsFC tracks neurodevelopment 
in infancy and toddlerhood. In addition, they may also have implications 
for connectome-based models of phenotypes beyond age in this age 
range. That is, resting-state FC has been used to predict phenotypes such 
as clinical diagnoses and cognitive abilities in typically and atypically 
developing adults and children (Smyser et al., 2016; Jahedi et al., 2017, 
2013). Because it is challenging to characterize such phenotypes from 
behavior alone before language fluency and task competency develop, 
resting-state neural predictors of developmental outcomes could prove 
especially useful in infancy and toddlerhood (Fransson et al., 2011; 
Cusack et al., 2018; Linke et al., 2018; Marrus et al., 2018; Johnson 
et al., 2020). The relatively large and comparable-to-older-samples 
predictive power we found here indicates the tenability of using infant 
functional connectivity for predicting other phenotypic measures or 
individual differences in cognitive, language, or motor skills at very 
young ages. As long as the infant behavioral measures are reliable and 
reliably related to functional connectivity, their prediction with infant 
connectome-based predictive models could—with rigorous artifact and 
noise removal—be possible. For example, connectome-based predictive 
modeling of different behavioral measures has been successful in pre-
dicting outcomes such as ADHD symptoms or cognitive abilities among 
older children to adults samples (e.g., Rosenberg et al., 2016; Kardan 
et al., 2022), yet is currently underutilized in younger ages. 

Studies aiming to relate infant rsFC to behavioral measures of 

Fig. 6. Predictive power of individual infant/toddler functional networks 
against null models. The distribution of partial correlation coefficients between 
true and predicted age (adjusted for nuisance variables) is shown light blue and 
corresponding null model distributions are shown in grey. *Indicates p < .05 for 
each network (comparison of true model’s median of partial r with the null 
distribution from 500 bootstraps) with Holm-Bonferroni correction for multiple 
comparisons. Networks are ordered by size, with the largest network (aFPN) on 
the left. The dashed blue line shows the median partial r of full within-network 
model from the analyses in Fig. 5 for comparison. 
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development would benefit from our age-prediction model and under-
standing the signatures of growth in functional connectome during 
toddlerhood (Gao et al., 2020; Jasińska et al., 2021; Yu et al., 2021). For 
example, the difference between the predicted vs. observed chronolog-
ical age in a participant may be related to their behavioral performance 
and cognitive development status (e.g., see Rudolph et al., 2017). 
Furthermore, assuming brain maturation causes the most profound 
changes in rsFC in infants and toddlers, our results could inform studies 
looking to predict individual differences in measures of cognitive 
development in this age range by providing a theoretical ceiling in 
predictive power for their rsFC-phenotype (brain-behavior) models. 
Additionally, we found that within-network connections are better 
predictors of maturation. Future work and studies aiming to predict 
individual differences in cognitive and other developmental outcomes in 
early development can determine whether there will be benefits from 
such dimensionality reduction in the functional connectivity space for 
their purposes or if inter-network relationships are important in those 
domains. 

There are a few limitations to our study. First, although our sample 
size is relatively large in the field of infant fMRI, it is smaller in 
magnitude than recent sample sizes recommended for brain-based pre-
dictive models (e.g., Marek et al., 2020). Thus, it will be important for 
future work to externally validate the current age-prediction models 
across independent datasets to assess its generalizability. Second, 
because we found that infant FC predicts chronological age, indicative of 
brain maturity, in typical early development, our results may have 
clinical utility for the diagnosis of babies with atypical developmental 
trajectories (e.g., see Ciarrusta et al., 2020; Emerson et al., 2017). 
However, these models’ utility for predicting outcomes other than 
chronological age is untested. Third, despite using age-appropriate 
functional networks, the functional parcels we used to down-sample 
the voxel space were originally defined in adult resting-state data 
(Gordon et al., 2016). Infant-specific parcels may allow better network 
definitions or even higher age prediction accuracy. Finally, the func-
tional connectome fingerprinting accuracy we found in our sample is 
lower than that observed in adult data. Despite the fact that more reli-
able FC data and better fingerprinting accuracy (within the same ses-
sion) do not always correspond to better behavioral prediction (Noble 
et al., 2017; Finn and Rosenberg, 2021), studies characterizing devel-
opmental change in functional brain architecture should consider 
changes in functional connectome consistency and distinctiveness across 
infancy and toddlerhood. Despite these limitations, our findings 
contribute to a growing body of work characterizing FC reliability, 
distinctiveness, and predictive power in infancy and toddlerhood. 

In conclusion, resting-state functional connectivity in infancy and 
toddlerhood is relatively stable within scan sessions, distinct across in-
dividuals, and informative of chronological age above and beyond brain 
volume. Connections within functional networks significantly outper-
form connections between networks when predicting age. Looking 
ahead, the current findings can help characterize changes in functional 
brain organization across early development and may inform work 
predicting phenotypes beyond age in infancy. 
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