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High bone mass (HBM), detected in 0.2% of DXA scans, is characterised by a mild skeletal dysplasia largely
unexplained by known genetic mutations. We conducted the first systematic assessment of the skeletal phe-
notype in unexplained HBM using pQCT in our unique HBM population identified from screening routine UK
NHS DXA scans.
pQCT measurements from the mid and distal tibia and radius in 98 HBM cases were compared with (i) 65
family controls (constituting unaffected relatives and spouses), and (ii) 692 general population controls.
HBM cases had substantially greater trabecular density at the distal tibia (340 [320, 359] mg/cm3), compared
to both family (294 [276, 312]) and population controls (290 [281, 299]) (pb0.001 for both, adjusted for age,
gender, weight, height, alcohol, smoking, malignancy, menopause, steroid and estrogen replacement use).
Similar results were obtained at the distal radius. Greater cortical bone mineral density (cBMD) was observed
in HBM cases, both at the midtibia and radius (adjusted pb0.001). Total bone area (TBA) was higher in HBM
cases, at the distal and mid tibia and radius (adjusted pb0.05 versus family controls), suggesting greater peri-
osteal apposition. Cortical thickness was increased at the mid tibia and radius (adjusted pb0.001), implying
reduced endosteal expansion. Together, these changes resulted in greater predicted cortical strength
(strength strain index [SSI]) in both tibia and radius (pb0.001). We then examined relationships with age; tibial
cBMD remained constant with increasing age amongst HBM cases (adjusted β −0.01 [−0.02, 0.01], p=0.41),
but declined in family controls (−0.05 [−0.03, −0.07], pb0.001) interaction p=0.002; age-related changes
in tibial trabecular BMD, CBA and SSI were also divergent. In contrast, at the radius HBM cases and controls
showed parallel age-related declines in cBMD and trabecular BMD.
HBM is characterised by increased trabecular BMD and by alterations in cortical bone density and structure,
leading to substantial increments in predicted cortical bone strength. In contrast to the radius, neither trabec-
ular nor cortical BMD declined with age in the tibia of HBM cases, suggesting attenuation of age-related bone
loss in weight-bearing limbs contributes to the observed bone phenotype.

Crown Copyright © 2012 Published by Elsevier Inc. Open access under CC BY license.
Health Service; pQCT, peripheral quantitative computed tomography; OA, osteoarthritis; L1, 1st lumbar vertebra; cBMD,
ineral density; TBA, total bone area; CBA, cortical bone area; SSI, strength strain index; SD, standard deviation; PVE, partial
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Introduction

High bone mass (HBM) is a sporadic finding of generalised raised
bone mineral density (BMD) on dual-energy X-ray absorptiometry
(DXA) scanning, and when defined as such has a prevalence of 0.2%
amongst a UK DXA-scanned population [1]. In a family of HBM cases
due to activating low-density lipoprotein receptor-related protein 5
(LRP5) gene mutations, which enhance osteoblast activity, radiographs
have shown widened long bones and cortices [2]. More recently high
resolution peripheral quantitative computed tomography (HRpQCT)
scanning of 19 individuals, from 4 families, with HBM caused by a
T253I LRP5 mutation has identified increased cortical and trabecular
BMD at the distal tibia [3]. However, much HBM is not explained by
established LRP5mutations, and detailed characterisation of bone struc-
ture in a large population of individuals with this unexplained HBM has
yet to be described. Within such a HBM population it is not known
whether HBM is associated with features of enhanced bone modelling
(e.g. increased periosteal expansion) or reduced bone remodelling
(e.g. reduced endosteal expansion), increased trabecular or cortical
bone mass, nor whether the phenotype results from enhanced peak
bone mass accrual or reduced age-related bone loss. Recent studies of
heterogeneous populations with low bone mass have provided impor-
tant insights into the pathogenesis of osteoporosis [4]. Thus examining
individuals with excess bone mass, identified as a population extreme,
is anticipated to be equally informative.

We have collected a unique HBM population; having screened
335,115 historical DXA scans across 13 UK National Health Service
(NHS) centres for BMD Z/T-scores ≥+4. We have previously de-
scribed the associated clinical characteristics suggestive of a mild
skeletal dysplasia in those with unexplained HBM [1]. We recruited
a contemporaneous family control population, comprising unaffected
relatives and spouses [1]. However, family controls can be expected to
be more similar to cases, due to shared environmental and inherited
factors, than unrelated controls sampled from the general population.
Hence, in exploring the phenotype of our HBM cases, additional com-
parison is needed with unrelated general population controls, with
the expectation that the characteristics of family controls lie between
those of HBM cases and general population controls.

Peripheral quantitative computed tomography (pQCT) is a low radi-
ation dose research tool enabling measurement of key components
of bone geometry which conventional DXA is unable to assess. In the
present study, we performed the first systematic evaluation of the skel-
etal phenotype of HBM individuals sampled from the UK DXA popula-
tion, assessed using pQCT. In particular, we aimed to establish to what
extent alterations in cortical and/or trabecular bone contribute to the in-
creased bone mass observed in HBM, to characterise changes in bone
structure underlying these findings, and to determine to what extent al-
tered age-related bone loss contributes to the observed phenotype.

Methods

Participant recruitment

High bone mass cases and family controls
The HBM study is a UK based multi-centred observational study of

adults with unexplained HBM. This pQCT study was limited to our
largest study centre, where 196 cases of unexplained HBMwere iden-
tified by screening a NHS GE Lunar DXA database (n=105,333) (Hull
Royal Infirmary). Full details of DXA database screening and partici-
pant recruitment have previously been reported [1]. In brief, HBM
was defined as (a) L1 Z-score of ≥+3.2 plus total hip Z-score of
≥+1.2 or (b) total hip Z-score ≥+3.2 plus L1 Z-score of ≥+1.2.
Cases with significant osteoarthritis (OA) and/or other causes of
raised BMDwere excluded (e.g. Paget's disease, malignancy, artefacts,
etc.). L1 was used as it was not associated with the presence of OA,
reflecting the recognized pattern of progressive OA changes seen
in descending sequential lumbar vertebrae [5]. Index cases were
asked to pass on study invitations to their first-degree relatives and
spouse/partner(s). Relatives/spouses with HBM were in turn asked
to pass on study invitations to their first-degree relatives and spouses.
First-degree relatives and spouses were recruited; in these individuals,
HBM status was defined as the sum of L1 plus total hip Z-scores of
≥+3.2. Family controls comprised unaffected relatives as defined in
this manner, and spouses. Spouses were recruited to increase sample
size, reduce residual confounding from unmeasured environmental fac-
tors shared with HBM cases and who, as a function of their genetic inde-
pendence, would be unlikely to share common polygenic influences over
BMD. Recruitment ran from September 2008 until April 2010. All partic-
ipants were clinically assessed by one doctor using a standardised struc-
tured history and examination questionnaire, after which DXA scans
were performed for relatives and spouses, using local GE Lunar Inc.
Madison, WI, USA) DXA systems applying manufacturer's standard scan
and positioning protocols, and weight and routine height measurements
were recorded. Body mass index (BMI) was calculated as weight
(kilograms)/height (metres)2. Current and historical physical activity
datawere collected fromHBMcases and family controls by questionnaire
(including the validated international physical activity questionnaire
[IPAQ] [6–9]). Participants were excluded if under 18 years of age, preg-
nant or unable to provide written informed consent for any reason.

Population controls
The Hertfordshire Cohort Study is a population based cohort study

tracing 42,974 men and women born in Hertfordshire during
1931–1939 and still living there during the period 1998–2003. Individ-
uals were traced using the NHS central registry at Southport and the
Hertfordshire Family Health Service Association. Full details of the
study design have previously been reported [10]. A planned subsample
of 6099 individuals were invited to participate in a clinical study and
3225 (53%) men and women aged 60–75 years were recruited and
completed home interviews [10]. In 2004 and 2005 a subgroup (from
East Hertfordshire) were followed up and 322 men (65%) and 321
women (69%) re-attended, completed lifestyle questionnaires which
included questions concerning medical history including fractures,
smoking and alcohol consumption. Heightwasmeasured to the nearest
0.1 cm using a Harpenden pocket stadiometer and weight to the
nearest 0.1 kg using floor scales, at the time of pQCT assessment [11].

pQCT methods

pQCT scans were performed at the distal and mid-shaft of the tibia
(4 and 66% from the distal endplate) in the non-dominant lower
limb using a Stratec XCT2000L (Stratec Medizintechnik, Pforzheim,
Germany); voxel size 0.5 mm, CT speed 30 mm/s, XCT software ver-
sion 5.50d. A reference line at the distal endplate was determined
from initial frontal scout view. Cortical bone was defined using a
threshold above 650 mg/cm3 (optimal for bone geometry [12]). Tra-
becular bone was identified by elimination of cortical bone and there-
fore trabecular bone mineral density (tBMD) was defined as a density
b650 mg/cm3. Cortical thickness, periosteal circumference and end-
osteal circumference were derived using a circular ring model. Further
cortical parameters were measured: cortical bone mineral density
(cBMD), total bone area (TBA) (i.e. total bone cross-section, reflecting
periosteal expansion), cortical bone area (CBA) (reflecting a combina-
tion of periosteal and endosteal expansion) and CBA/TBA (%). Strength
strain index (SSI) was calculated according to Stratec's user manual
(SSI=SM*(cBMD[mg/cm3]/1200[mg/cm3]), where 1200 mg/cm3 rep-
resents the normal physiological density of bone (stated by Stratec)
and SM (Section Modulus)=CSMI/periosteal radius, where CSMI
(cross-sectional moment of inertia [cm4])=Π(periosteal radius4−
endosteal radius4)/4) [13]. Twenty population controls were scanned
twice on the same day after repositioning and measurement precision
(CV) was typically between 1 and 3% [11]. Stratec pQCT machines
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were calibrated using a COMAC phantom; mean (SD) difference be-
tween scanners was 1.18 (0.82) %. Data acquisition and analysis
methods were the same for all cases and controls.

pQCT scans were also performed at the distal and mid-shaft of the
radius (4 and 60% from the distal endplate) in the non-dominant
upper limb. The 60% site was not scanned in population controls, so
comparisons could not be made.

Ethics

Written informed consent was collected for all participants in line
with the Declaration of Helsinki [14]. This research was approved by
the Bath Multi-centre Research Ethics Committee (REC), the North
and East Yorkshire and Northern Lincolnshire NHS Local REC and
the East and North Hertfordshire Ethical Committees.

Statistical methods

Descriptive statistics are presented as mean (standard deviation
[SD]) for continuous and count (percentages) for categorical data. Linear
regression was used to analyse continuous pQCT variables, which were
normally distributed. A random effects model was used in HBM case-
family control analyses to allow for the lack of statistical independence
due to within-family clustering of environmental factors and shared ge-
notypes. Age, gender andmenopausal status inwomenwere considered
a priori confounders of the associations between HBM status and all
pQCT geometric parameters. Further confounders included weight,
height, limb length, smoking status, alcohol intake, physical activity, pre-
vious or current use of steroids, estrogen replacement, or experience of
malignancy (which also acted as a proxy for use of aromatase inhibitors
for breast cancer and anti-androgens for prostate cancer). Adjusted
means and mean differences with 95% confidence interval [CI] are
presented for two sets of analyses: (i) HBM cases vs. family controls,
(ii) HBM cases vs. population controls. Further analyses of continuous
variables by age, stratified by case–control status, are presented as ad-
justed β coefficients and 95% CIs for standardized outcomes. Data were
analysed using Stata release 11 statistical software (StataCorp, TX, USA).
Table 1
Clinical characteristics of high bone mass cases, compared firstly with family controls and s

HBM cases (n=98) Family controls (n=63)

Mean (SD) Mean (SD) Mean differen

Age (years) 61.0 (13.8) 55.5 (15.8) 5.5 (1.0, 10.0)
Height (cm) 166.8 (8.0) 171.0 (10.0) −4.2 (−6.9,,−
Weight (kg) 86.4 (16.7) 82.3 (16.9) 4.1 (−1.3, 9.5
BMI (kg/m2) 31.1 (6.0) 28.1 (5.0) 3.0 (1.4, 4.6)
L1 Z-score 3.7 (1.1)d 0.4 (1.3) 3.26 (2.89, 3.6
Total hip Z-scorec 3.0 (1.0)d 0.4 (0.8) 2.54 (2.25, 2.8

n (%) n (%) OR (95%CI)

Female 80 (81.6) 33 (50.8) 4.31 (2.13, 8.7
Post-menopausal 65 (81.3) 17 (51.5) 5.35 (5.35, 1.7
Estrogen replacementa 44 (58.7) 8 (27.6) 7.84 (7.84, 1.6

Malignancya 14 (14.3) 4 (6.2) 2.54 (2.54, 0.8
Steroid usea 28 (28.6) 13 (20.0) 1.60 (1.60, 0.7
Fracture since aged 45 7(8.3)b 3(6.7) b 1.27 (0.31, 5.1
Self-reported alcohol consumption

None 27 (27.6) 14 (21.5) 1.00
Occasional 13 (13.3) 5 (7.7) 1.36 (1.36, 0.4
Regular 51 (52.0) 29 (44.6) 0.92 (0.92, 0.4
Heavy 7 (7.1) 17 (26.2) 0.21 (0.21, 0.0

Self-reported smoking status
Never 38 (38.8) 27 (41.5) 1.00
Ex-smoker 45 (45.9) 29 (44.6) 1.10 (1.10, 0.5
Current 15 (15.3) 9 (13.8) 1.18 (1.18, 0.4

Continuous and categorical data presented (without adjustment).
BMI: body mass index, CI: confidence interval, OR: odds ratio, SD: standard deviation, L1: 1
aEver reported. bLimited to participants aged >45 years. cMaximum of left and right total hi
≥+3.2 and 12 had a total hip Z-score ≥+3.2 without a L1 Z-score ≥+3.2.
Results

In total 98 HBM cases (71 index cases and 27 affected relatives),
65 family controls (43 unaffected relatives and 22 unaffected
spouses) and 692 population controls were assessed. HBM cases
(age range 26–87 years) were younger than population controls
(range 65–74 years), but older than family controls (range 19–
88 years) (Table 1). HBM cases were heavier with greater BMI than
both control groups. A higher proportion of HBM cases were female
than in the control groups, and although population controls were al-
most all postmenopausal, HBM cases had more experience of estro-
gen replacement therapy. Age at menarche was similar between
HBM cases and family controls (mean [SD] 12.8 [1.6] and 12.6 [1.5]
years respectively, p=0.869). HBM cases were more likely to report
a history of cancer and steroid use. No participants gave a history of
hepatitis C or excess fluoride ingestion. All study participants were
of white European origin. No consanguinity was reported.
Tibia

Bone size
In unadjusted analyses, HBM cases had substantially greater TBA at

the distal tibia (4% site) than both family and population controls
(Table 2). Similar results were obtained after adjustment for con-
founding factors (age, gender, weight and height, alcohol consumption,
smoking status, malignancy and steroid and estrogen replacement use),
with amean difference of just over 2 cm2, betweenHBM cases and both
control groups (equivalent to a 19% increase above that of both family
and population controls) (Table 3, Fig. 1). At the mid-tibia (66% site),
after similar adjustment TBA was also greater in HBM cases compared
with both control groups, although this difference was smaller in pro-
portion to those changes observed distally; mid-tibial TBA in HBM
cases was approximately 4% and 8% larger compared with family and
population controls respectively (Table 3, Fig. 1). Consistent with
these increases in TBA, mid-tibia periosteal circumference was also in-
creased in HBM cases compared with family controls (adjusted mean
econdly with general population controls.

General population controls (n=691)

ce (95%CI) p value Mean (SD) Mean difference (95%CI) p value

0.017 69.3 (2.6) −8.5 (−9.7, −7.3) b0.001
1.5) 0.002 167.0 (9.2) −0.02 (−2.0, 1.9) 0.982

) 0.132 75.8 (16.7) 10.7 (7.8, 13.6) b0.001
b0.001 27.1 (6.0) 4.0 (3.0, 4.9) b0.001

3) 0.9 (1.4) 2.77 (2.47, 3.08)
4) 0.8 (1.0) 2.15 (1.94, 2.37)

p value n (%) OR (95%CI) p value

3) b0.001 299 (50.3) 4.38 (2.57, 7.49) b0.001
3) 0.004 287 (99.0) 0.05 (0.01, 0.16) b0.001
3) 0.010 121 (20.8) 5.40 (3.27, 8.91) b0.001
0) 0.115 25 (4.3) 3.71 (1.85, 7.41) b0.001
6) 0.219 9 (1.5) 25.4 (11.5, 56.1) b0.001
8) 0.736 111 (19.4) 0.38 (0.17, 0.84) 0.017

84 (14.5) 1.00
0) 0.026 107 (18.5) 0.38 (0.18, 0.78) 0.019
1) 331 (57.2) 0.48 (0.28, 0.81)
7) 57 (9.8) 0.38 (0.16, 0.94)

298 (51.5) 1.00
6) 0.930 241 (41.6) 1.46 (0.92, 2.33) 0.008
5) 39 (6.7) 3.02 (1.52, 5.98)

st lumbar vertebra.
p Z-scores. dAmongst HBM cases 36 had a L1 Z-score ≥+3.2 without a total hip Z-score



Table 2
Unadjusted distal and mid-shaft tibial pQCT measures in high bone mass cases compared with firstly family controls and secondly population controls.

HBM cases (n=98) Family controls (n=63) General population controls (n=691)

Site Mean (95%CI) Mean (95%CI) Mean difference
(95%CI)

p value Mean (95%CI) Mean difference
(95%CI)

p value

4% distal tibia Total BA (mm2) 1102 (1059, 1146) 996 (941, 1051) 107 (38.0, 175) 0.002 965 (945, 985) 140 (86.4, 194) b0.001
Trabecular BMD (mg/cm3) 315 (308, 322) 278 (269, 287) 37.4 (26.2, 48.7) b0.001 270 (267, 273) 45.1 (36.5, 53.6) b0.001
Cortical thickness (mm) 1.26 (1.08, 1.44) 1.12 (0.89, 1.34) 0.14 (−0.15, 0.43) 0.344 0.53 (0.47, 0.58) 0.73 (0.59, 0.88) b0.001

66% mid-shaft tibia Total BA (mm2) 630 (609, 651) 653 (628, 679) −23.0 (−56.0, 10.1) 0.173 602 (593, 611) 29.6 (6.6, 52.7) 0.012
Cortical BMD (mg/cm3) 1128 (1119, 1136) 1111 (1101, 1122) 16.3 (2.9, 29.7) 0.017 1078 (1075, 1081) 49.7 (40.9, 58.6) b0.001
Cortical thickness (mm) 4.54 (4.39, 4.69) 4.23 (4.04, 4.42) 0.31 (0.08, 0.55) 0.010 4.36 (4.30, 4.43) 0.18 (0.00, 0.35) 0.044
Cortical BA (mm2) 337 (325, 350) 325 (310, 340) 12.0 (−7.3, 31.3) 0.223 315 (310, 321) 22.0 (6.7, 37.3) 0.005
Cortical/total BA (%) 54.0 (52.4, 55.6) 50.1 (48.1, 52.1) 3.9 (1.6, 6.3) 0.001 53.8 (53.2, 54.5) 0.03 (−1.7, 1.8) 0.969
SSI (mm3) 1643 (1563, 1723) 1636 (1540, 1733) 6.6 (−119, 132) 0.918 1441 (1407, 1475) 204 (112, 296) b0.001

HBM: high bone mass, BA: bone area, BMD: bone mineral density, CI: confidence interval, SSI: strength strain index.
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difference 1.72 [95%CI −0.06, 3.49] mm, p=0.058) and population
controls (3.80 [2.59, 5.00] mm, pb0.001).

Cortical dimensions
Mid-tibial cortices were thicker in HBM, in unadjusted and adjusted

analyses, as compared with both family and population controls
(Tables 2 and 3). After adjustment HBM cases had on average 0.5 mm
thicker cortices compared with family and population controls respec-
tively (Table 3, Fig. 1). Furthermore, at the mid-tibia, CBA and CBA/
TBAwere also greater inHBMcases comparedwith both control groups,
suggesting a greater proportion of the cross-section of bone was corti-
cal. Although cortical thickness measured distally can be unreliable,
before adjustment HBMcases appeared to have increased cortical thick-
ness compared with population controls (Table 2). After adjustment
HBM cases had on average 37% and 112% thicker cortices compared
with family and population controls respectively (Table 3).

Bone density and strength
Both trabecular and cortical BMD, measured at the distal and

mid-tibia respectively, were greater in HBM cases than family con-
trols, and greater still when compared with population controls,
both before and after adjustment for confounding factors (Tables 2
and 3, Fig. 1). After adjustment for confounding factors, SSI at the
mid-tibia was substantially higher in HBM cases compared with
both control groups (as were CSMI and SM, data not shown).

Radius

Bone size
Consistent with observations at the tibia, TBA at the distal radius

was also greater (by approximately 20% after adjustment for con-
founders detailed above) in HBM cases compared with both control
groups (supplementary Tables 1s and 2s). However, differences in
Table 3
Fully adjusted distal and mid-shaft tibial pQCT measures in High Bone Mass cases compare

HBM cases (n=98) Family controls

Site Mean (95%CI) Mean (95%CI)

4% distal tibia Total BA (mm2) 1239 (1107, 1370) 1037 (915, 116
Trabecular BMD (mg/cm3) 340 (321, 360) 294 (276, 312)
Cortical thickness (mm) 2.10 (1.40, 2.81) 1.54 (0.88, 2.20

66% mid-shaft tibia Total BA (mm2) 668 (608, 728) 642 (586, 698)
Cortical BMD (mg/cm3) 1130 (1094, 1166) 1101 (1068, 11
Cortical thickness (mm) 5.32 (4.77, 5.86) 4.73 (4.22, 5.23
Cortical BA (mm2) 401 (370, 432) 357 (327, 386)
Cortical/total BA (%) 59.9 (53.7, 66.2) 54.8 (49.0, 60.6
SSI (mm3) 1974 (1789, 2159) 1720 (1548, 18

HBM: high bone mass, BA: bone area, BMD: bone mineral density, CI: confidence interval, S
Adjusted for age, weight and height, alcohol consumption, smoking status, malignancy and
mid-radial TBA between HBM cases and family controls were only ap-
parent after adjustment, when the difference was approximately 5%.

Cortical dimensions
Similarly, at the mid-radius, only after adjustment did HBM cases

have thicker cortices than family controls (e.g. 3 mm mean differ-
ence), and of a lesser magnitude to that observed in the lower limb.
At the mid-radius, both CBA and CBA/TBA were higher in HBM
cases; however, again these differences were not as overt as those
seen in the lower limb. Bearing in mind pQCT resolution limitations,
after adjustment distal cortical thickness was also greater in HBM
cases compared with both family and population controls (supple-
mentary Table 2s).

Bone density and strength
Findings from the radius were consistent with those in the tibia.

Both trabecular and cortical BMD, measured at the distal and
mid-radius respectively, were greater in HBM cases compared with
controls, both before and after adjustment for confounding factors, al-
though differences in radial tBMDwere smaller than those seen in the
tibia (supplementary Tables 1s and 2s). Only after adjustment was a
difference observed in terms of greater radial SSI amongst HBM
cases compared with family controls.

Further analyses

In general, gender stratified analyses revealed similar differences be-
tween HBM cases and control groups in males and females (Table 4,
unadjusted results shown in supplementary Table 3s); no evidence
was detected to support a gender interaction. Results comparing HBM
cases and family controls were not materially affected by adjustment
for limb length rather than height, or by further adjustment for
questionnaire-assessed physical activity (data not shown).
d with firstly family controls and secondly population controls.

(n=63) General population controls (n=691)

Mean difference
(95%CI)

p value Mean (95%CI) Mean difference
(95%CI)

p value

0) 201 (146, 257) b0.001 1097 (1052, 1141) 212 (167, 256) b0.001
46.0 (33.5, 58.4) b0.001 291 (282, 300) 56.6 (47.7, 65.5) b0.001

) 0.57 (0.27, 0.87) b0.001 0.90 (0.75, 1.04) 1.01 (0.86, 1.15) b0.001
25.4 (0.1, 50.6) 0.049 636 (619, 653) 52.3 (35.5, 69.2) b0.001

35) 28.5 (13.4, 43.7) b0.001 1093 (1083, 1103) 58.0 (48.0, 68.0) b0.001
) 0.59 (0.36, 0.81) b0.001 4.82 (4.65, 5.00) 0.47 (0.30, 0.64) b0.001

44.5 (31.6, 57.4) b0.001 354 (341, 367) 47.7 (34.4, 61.0) b0.001
) 5.2 (2.5, 7.8) b0.001 56.7 (54.7, 58.6) 1.9 (−0.1, 3.9) 0.064
91) 254 (176, 332) b0.001 1654 (1579, 1729) 346 (272, 421) b0.001

SI: strength strain index.
steroid use, and menopausal status and estrogen replacement use in women.
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Fig. 1. Fully adjusted distal and mid-tibia pQCT measures in high bone mass cases compared with family and population controls. BMD: bone mineral density, SSI: strength strain
index, HBM: high bone mass cases, FC: family controls, PC: population controls. Means and 95% CI shown adjusted for age, weight and height, alcohol consumption, smoking status,
malignancy and steroid use, and menopausal status and estrogen replacement use in women. Mid-tibia total bone area shown. FC compared with HBM, PC compared with HBM,
pb0.001 for all except total bone area for FC where p=0.05. PC radial measures were not available hence presented results limited to the tibia.
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Relationships between pQCT parameters and age: Tibia
The fully adjusted model was used to investigate the strength of as-

sociations between age and pQCT parameters of interest, separately in
HBM cases and family controls (population controls were omitted as
their age range was too narrow). A strong inverse association was
seen between age and cBMD at the mid-tibia amongst family controls
(adjusted β −0.046 [−0.026, −0.067], pb0.001), but not amongst
HBM cases (−0.007 [−0.022, 0.009], p=0.405), interaction p=0.002
(Fig. 2, Table 5). In contrast, distal cortical thickness declined with
age in a similar pattern in HBM cases and controls. At the distal tibia a
strong inverse association was also seen between age and tBMD
amongst family controls (adjusted β −0.035 [−0.020, −0.049],
pb0.001), but not amongst HBM cases (−0.006 [−0.021, 0.008], p=
0.407), interaction p=0.001; changes inmid-tibia CBA and SSI followed
very similar patterns. TBA increased with age in both HBM cases and
controls at the distal tibia.

Relationships between pQCT parameters and age: Radius
In contrast to the tibia, cBMD at the mid-radius declined with age in

bothHBM cases (adjusted β−0.027 [−0.009,−0.046], p=0.004), and
Table 4
Gender-stratified fully adjusted distal and mid-shaft tibial pQCT measures in high bone ma

Mean (95%CI) Mean (95%CI)

Female HBM cases (n=80) Family controls (n=

4% distal
tibia

Total BA (mm2) 1063 (955, 1172) 836 (728, 945)
Trabecular BMD (mg/cm3) 295 (270, 320) 250 (225, 275)
Cortical thickness (mm) 1.19 (0.64, 1.74) 0.73 (0.18, 1.29)

66% mid-shaft
tibia

Total BA (mm2) 599 (547, 650) 576 (526, 627)
Cortical BMD (mg/cm3) 1119 (1086, 1152) 1096 (1063, 1128)
Cortical thickness (mm) 4.36 (3.90, 4.81) 3.87 (3.42, 4.32)
Cortical BA (mm2) 320 (295, 344) 281 (257, 305)
Cortical/total BA (%) 52.4 (46.9, 58.0) 48.2 (42.7, 53.7)
SSI (mm3) 1532 (1385, 1679) 1324 (1180, 1469)

Male HBM cases (n=18) Family controls (n=

4% distal
tibia

Total BA (mm2) 1233 (1022, 1445) 1098 (898, 1298)
Trabecular BMD (mg/cm3) 327 (287, 366) 281 (244, 318)
Cortical thickness (mm) 1.6 (0.6, 2.6) 0.94 (−0.03, 1.90)

66% mid-shaft
tibia

Total BA (mm2) 742 (676, 809) 706 (640, 771)
Cortical BMD (mg/cm3) 1108 (1076, 1140) 1085 (1054, 1116)
Cortical thickness (mm) 5.62 (4.87, 6.37) 5.00 (4.27, 5.73)
Cortical BA (mm2) 437 (3889, 485) 382 (335, 429)
Cortical/total BA (%) 60.2 (52.8, 67.6) 55.7 (48.5, 62.9)
SSI (mm3) 2199 (1935, 2463) 1857 (1597, 2116)

HBM: high bone mass, BA: bone area, BMD: bone mineral density, CI: confidence interval,
Adjusted for age, weight and height, alcohol consumption, smoking status, malignancy and
family controls (β −0.025 [−0.003, −0.047], p=0.023), without evi-
dence of interaction (p=0.153) (Fig. 2, Table 5). Similar declines in
both HBM cases and controls were seen for the proportion of TBA
which constituted cortex at the mid-radius, although cortical thickness
measured at both the mid and distal radius did not follow such a clear
pattern. Further declines with age were seen for radius tBMD in HBM
cases (adjusted β −0.021 [0.000,−0.041], p=0.047), and family con-
trols (β−0.023 [−0.030,−0.044], p=0.027), (interaction p=0.424).
Whilst TBA increasedwith age at both themid and distal radius, in both
HBM cases and family controls (Table 5).

Discussion

This study is the first to use pQCT to define the bone phenotype of
a large population of individuals with unexplained HBM. We found
HBM cases, identified by screening routine NHS DXA scans, to have
both a characteristic cortical and trabecular phenotype (Fig. 3). In
terms of the former, after taking into account confounding factors,
HBMwas characterised by increased cBMD, thicker cortices, and larg-
er TBA which was most apparent distally. The net effect of these
ss cases compared with firstly family controls and secondly population controls.

Mean difference
(95%CI)

p value Mean (95%CI) Mean difference
(95%CI)

p value

32) General population controls (n=299)

227 (155, 299) b0.001 811 (763, 859) 213 (160, 266) b0.001
45.1 (28.4, 61.7) 0.010 250 (240, 260) 54.4 (43.2, 65.7) b0.001
0.46 (0.09, 0.82) 0.015 0.19 (0.09, 0.30) 0.92 (0.80, 1.03) b0.001
22.5 (−11.3, 56.3) 0.192 564 (548, 581) 48.6 (30.3, 67.0) b0.001
23.7 (2.4, 45.0) 0.029 1066 (1055, 1078) 60.0 (47.1, 72.9) b0.001
0.48 (0.19, 0.78) 0.001 4.02 (3.86, 4.18) 0.41 (0.23, 0.60) b0.001
38.9 (22.8, 54.9) b0.001 286 (277, 295) 40.9 (30.8, 60.0) b0.001
4.2 (0.6, 7.9) 0.023 50.6 (48.5, 52.6) 1.8 (−0.6, 4.1) 0.136
208 (112, 305) b0.001 1269 (1223, 1315) 301 (249, 352) b0.001

31) General population controls (n=295)

135 (32.3, 238) 0.010 1145 (1057, 1233) 199 (107, 292) b0.001
45.6 (25.2, 66.0) b0.001 295 (279, 311) 63.2 (46.1, 80.3) b0.001
0.66 (0.08, 1.24) 0.025 0.84 (0.48, 1.21) 1.17 (0.79, 1.56) b0.001
36.6 (−3.3, 76.4) 0.073 606 (570, 643) 76.2 (37.9, 115) b0.001
23.0 (5.0, 41.0) 0.012 1103 (1086, 1120) 43.3 (25.1, 61.4) b0.001
0.62 (0.21, 1.02) 0.003 5.14 (4.78, 5.51) 0.46 (0.07, 0.84) 0.020
55.1 (28.4, 81.8) b0.001 373 (338, 408) 61.1 (24.3, 97.9) 0.001
4.5 (0.5, 8.5) 0.028 59.1 (55.1, 63.1) 0.6 (−3.7, 4.8) 0.797
343 (185, 500) b0.001 1688 (1485, 1891) 490 (275, 704) b0.001

SSI: strength strain index.
steroid use (and menopausal status and estrogen replacement use in women).



Fig. 2. Unadjusted and fully adjusted regressions for changes in cortical and trabecular BMDbyage inHBMcases and family controls. 1A: Unadjusted cortical BMDvalues by agewithfitted
linear regression lines for HBM cases (black circles) (standardized β=−0.009 [95%CI (shaded) −0.021, 0.003], p=0.143) and family controls (FC) (grey triangles) −0.041 [−0.059,
−0.023], pb0.001. 1B: Fully adjusted (gender, weight and height, alcohol consumption, smoking status, malignancy and steroid use, and menopausal status and estrogen replacement
use in women) regression for cortical BMD by age in HBM cases (−0.007 [−0.022, 0.009], p=0.405) and family controls (FC) (−0.046 [−0.067, −0.026), pb0.001), interaction p=
0.002. 2A: Unadjusted trabecular BMD values by age with fitted linear regression lines for HBM cases (0.004 [−0.008, 0.016], p=0.532) and FC (−0.029 [−0.042,−0.016], pb0.001).
2B: Fully adjusted (as above) regression for trabecular BMD by age in HBM cases (−0.006 [−0.021, 0.008], p=0.407) and family controls (FC) (−0.035 [−0.049, −0.020), pb0.001),
interaction p=0.001. 3A: Unadjusted cortical BMD values by age with fitted linear regression lines for HBM cases (−0.003 [−0.017, 0.011], p=0.663) and FC (−0.014 [−0.028,
0.000], p=0.050). 3B: Fully adjusted (as above) for cortical BMD by age in HBM cases (−0.027 [−0.046,−0.009], p=0.004) and FC (−0.025 [−0.047,−0.003], p=0.023), interaction
p=0.153. 4A: Unadjusted trabecular BMD values by age with fitted linear regression lines for HBM cases (−0.018 [−0.030, −0.007], p=0.002) and FC (−0.036 [−0.053, −0.0182],
pb0.001). 4B: Fully adjusted (as above) regression for trabecular BMD by age in HBM cases (−0.021 [−0.041, 0.000], p=0.047) and FC (−0.023 [−0.044,−0.003], p=0.027), interaction
p=0.424.
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Table 5
Fully adjusted regression coefficients for changes in tibia and radius pQCT parameters with age in HBM cases and family controls.

n Adjusted β (95% CI) p value Int. pa

4% distal
tibia

Total BA HBM cases 96 0.016 (0.004, 0.028) 0.010 0.413
(mm2) Family controls 63 0.023 (0.011, 0.034) b0.001
Trabecular BMD HBM cases 96 −0.006 (−0.021, 0.008) 0.407 0.001
(mg/cm3) Family controls 63 −0.035 (−0.049, −0.020) b0.001
Cortical thickness HBM cases 96 −0.019 (−0.036, −0.001) 0.035 0.358
(mm) Family controls 63 −0.023 (−0.039, −0.007) 0.005

66% mid-shaft
tibia

Total BA HBM cases 91 0.013 (0.000, 0.026) 0.058 0.293
(mm2) Family controls 64 0.005 (−0.007, 0.016) 0.404
Cortical BMD HBM cases 91 −0.007 (−0.022, 0.009) 0.405 0.002
(mg/cm3) Family controls 64 −0.046 (−0.067, −0.026) b0.001
Cortical thickness HBM cases 88 0.011 (−0.003, 0.026) 0.128 0.542
(mm) Family controls 61 0.000 (−0.012, 0.013) 0.943
Cortical BA HBM cases 91 0.003 (−0.008, 0.015) 0.540 0.009
(mm2) Family controls 64 −0.016 (−0.027, −0.004) 0.007
Cortical/total BA HBM cases 91 −0.010 (−0.028, 0.007) 0.237 0.264
(%) Family controls 64 −0.028 (−0.046, −0.010) 0.002
SSI HBM cases 91 0.006 (−0.004, 0.016) 0.249 0.005
(mm3) Family controls 64 −0.011 (−0.020, −0.001) 0.034

4% distal
radius

Total BA HBM cases 95 0.019 (0.003, 0.035) 0.022 0.706
(mm2) Family controls 65 0.016 (−0.002, 0.035) 0.087
Trabecular BMD HBM cases 95 −0.021 (−0.041, 0.000) 0.047 0.424
(mg/cm3) Family controls 65 −0.023 (−0.044, −0.003) 0.027
Cortical thickness HBM cases 95 0.010 (−0.005, 0.025) 0.204 0.835
(mm) Family controls 65 0.001 (−0.033, 0.035) 0.950

60% mid-shaft
radius

Total BA HBM cases 94 0.025 (0.008, 0.041) 0.003 0.915
(mm2) Family controls 63 0.015 (0.000, 0.030) 0.051
Cortical BMD HBM cases 94 −0.027 (−0.046, −0.009) 0.004 0.153
(mg/cm3) Family controls 63 −0.025 (−0.047, −0.003) 0.023
Cortical thickness HBM cases 94 −0.010 (−0.027, 0.006) 0.227 0.353
(mm) Family controls 63 −0.029 (−0.049, −0.008) 0.006
Cortical BA HBM cases 94 0.006 (−0.009, 0.022) 0.411 0.538
(mm2) Family controls 63 −0.009 (−0.024, 0.007) 0.267
Cortical/total BA HBM cases 94 −0.024 (−0.042, −0.006) 0.011 0.219
(%) Family controls 63 −0.041 (−0.063, −0.018) b0.001
SSI HBM cases 94 0.013 (−0.003, 0.029) 0.103 0.597
(mm3) Family controls 63 0.001 (−0.014, 0.016) 0.886

β represents number of SD changes in each pQCT parameter per year increase in age. a p value for interaction. Adjusted for weight and height, alcohol consumption, smoking status,
malignancy and steroid use, and menopausal status and estrogen replacement use in women.
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differences produced an increase in CBA, and in estimated cortical
bone strength as reflected by SSI. In terms of the trabecular pheno-
type, trabecular density was markedly increased in HBM. These phe-
notypes affected men and women equally.

The increase in TBA in HBM cases was most marked distally
(approximately 20% greater than controls) and was only apparent at
the mid-shaft of both tibia and radius after adjustment for confounding
factors (approximately 4% greater). Increased TBA may reflect en-
hanced periosteal apposition secondary to increased osteoblast activity.
However, the greater proportion of cortical bonewithin the tibia and ra-
dius of HBM bones would also support reduced endosteal expansion.
Any tendency for reduced bone turnover in HBM cases is likely to
have contributed to the observed higher cBMD, by reducing cortical po-
rosity, and prolonging the time available for secondary mineralisation.
Unfortunately we were unable to explore this aspect of the phenotype
in more detail, since bone biopsies were not performed. TBA tended to
increase with age to a similar extent in controls and HBM cases, partic-
ularly at the radius, suggesting the greater TBA in HBM largely arises in
earlier life prior to accrual of peak bone mass.

At the tibia, the differences in tBMD and cBMD between HBM
cases and family controls increased substantially with age, reflecting
a decrease in these parameters in controls which was not seen in
HBM cases. Since age-related decreases in trabecular and cortical
density are likely to be mediated by increased bone resorption, ab-
sence of these age-related changes in HBM cases may reflect some
form of protection against excessive osteoclast activity. In contrast, al-
though radial tBMD and cBMD were greater in HBM cases for any
given age, these parameters declined with age to the same extent in
both HBM cases and controls, suggesting there may be an interaction
between age-related changes in cortical and trabecular BMD, HBM
case status and weight-bearing activity.

Our results suggest the HBM phenotypemight arise through a com-
bination of excessive osteoblast activity and reduced osteoclast activity.
This raises the possibility of two distinct biological actions on bone. The
genetic basis remains unknown, and could theoretically arise from a
single gene mutation with pleiotropic effects, or frommultiple variants
with diverse effects. Phenotypic analysis of HBM families arising from
an activating LRP5 mutation revealed a similar phenotype to that ob-
served here, with higher total cortical areas suggestive of increased
periosteal apposition, but also increased cBMD, increased cortical thick-
ness and reduced bone turnover indicative of reduced bone resorption
[3]. Rather than reflecting two distinct biological effects, recent animal
studies suggest that LRP5 activation leads to increasedmechanosensory
responsiveness, resulting in a cortical bone phenotype similar to
that reported here, characterised by a combination of increased osteo-
blast and reduced osteoclast activities [15]. Our observation that age-
associated declines in cortical and trabecular BMD appeared attenuated
in the lower rather than upper limb is consistentwith increased respon-
siveness to mechanical strain possibly contributing to the HBM skeletal
phenotype. In fact, direct sequencing of our 98 HBM cases formutations
affecting exons 2, 3 and 4 of LRP5 and the entire coding region of SOST
have thus far identified causative mutations in only one individual
[16], whose pQCT parameters lay within the HBM distribution as a
whole. Therefore, although enhanced mechanosensory responsiveness



Fig. 3. Theoretical representation of changes observed in long bones of HBM individuals based upon distal and mid-tibia pQCT findings.
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may contribute to the cortical bone phenotype observed, this is not gen-
erally explained by activating mutations in LRP5. The genetic basis un-
derlying currently unexplained HBMwill be the focus of future studies.

In several instances, the bone phenotype of family controls was
intermediate between that of HBM cases and population controls.
Comparisons were made between HBM cases and a second general
population-based control group firstly due to concerns that family
controls may have limited validity due to shared environmental and
heritable factors, and secondly to place HBM results within the con-
text of a general UK population. A clustered analysis was used to
allow for within-family clustering of shared factors. Although the ef-
fect of unmeasured environmental factors such as strontium in soil
cannot be excluded, BMD Z-scores >+3 are unlikely to be explained
by such factors. Our population controls have previously been shown
to be representative of the UK population in terms of BMD and
smoking habits, improving generalizability [10]. Baseline differences
between HBM cases and family controls reflect our study design
given the biases inherent to those referred to NHS DXA services e.g.
those receiving steroids, estrogen replacement, or aromatase inhibitors
for breast cancer are more likely to be referred for DXA assessment. The
71 index cases (of 98 HBM cases) were more often female so partner
controls were more often male [1].

Mid-tibial SSI was substantially greater in HBM cases than controls,
suggesting greater bone strength and reduced fracture risk. Application
of failure loads to cadaveric specimens has demonstrated a strong asso-
ciation between pQCT measured bone geometric parameters at the ra-
dius and fracture points [17–19]. SSI particularly strongly correlates
with load to fracture [19]. However, no clear association in overall frac-
ture prevalence has previously been observed in our HBM population
[1], although lower- and upper-limb fractures were not differentiated.
Longitudinal follow-up of HBM is required to assess fracture incidence.

Our study design has limitations. Our data are not longitudinal and
thereforewe cannot determine the true age-related changes in bone ge-
ometry. Observed associations betweenHBM cases and population con-
trols may in part be explained by residual confounding as clinical
co-variables were collected using different methods; face-to-face inter-
view and self-completed questionnaire respectively. However, differ-
ences in the year of data collection, of on average 5 years, are unlikely
to have introduced any significant confounding by period effect and
family controls were assessed contemporaneously. Hull, in the North
of England where HBM cases and family controls were recruited, and
Hertfordshire, in the South from where our population controls origi-
nated, may well differ in terms of lifestyle, socio-economic position
and medical practice. For example, a greater proportion of HBM cases
had a history of estrogen replacement use, than had population con-
trols, which may reflect historical regional prescribing preferences
[20,21]. Physical activity data were available for HBM cases and family
controls, but not population controls. Whilst further adjustment made
no material difference to family-based analyses, residual confounding
by physical activity cannot be excluded from population control analy-
ses. In addition, sample size restricted our ability to determined
gender-specific age-associated changes in HBM bone geometry, as pre-
viously identified within the general population [22].

pQCT has some inherent technical limitations. Non-differential
partial volume effect (PVE) may bias pQCT parameter differences be-
tween HBM cases and controls, as PVE has a greater impact on thinner
than thicker cortices. Furthermore, a larger tibia will be less prone to
PVE than a smaller radius, possibly explaining some of the weaker
trends observed in the upper limb, although application of a PVE cor-
rection algorithm did not materially influence results [23]. We used a
standard voxel size of 0.5 mm (resolution 500 μm) which is both
time efficient and avoids areal measurement drift of cortical densities
[24]. Cortical thickness is often not measurable at the 4% level of the
distal tibia/radius, as cortical thinning leads to inconsistencies in the
cortical shell contour, although the cortex was clearly visible on visual
inspection of HBM pQCT images. However, with resolution 500 μm,
small changes in cortical bone loss may be missed. Moreover, differ-
ences in age-related changes in trabecular BMD might reflect an arte-
fact secondary to trabecularisation of the cortex, given the greater
cortical thickness in HBM cases. Comparisons with other published
values for pQCT measured bone parameters are problematic as
methods, scan sites and threshold settings vary greatly. No consensus
regarding optimal pQCT methodology currently exists and reference
data are limited; pQCT density measurements from different devices
cannot be compared [25].

Conclusion

We used pQCT to study the skeletal phenotype of HBM cases identi-
fied by screening NHS DXA databases, comparing our results with both
family and population-based controls. As well as alterations in trabecular
bone, comprising increased trabecular BMD, HBM cases showed a
marked cortical bone phenotype, comprising increased cBMD, TBA, CBA
and cortical thickness (Fig. 3). An increase in predicted cortical bone
strengthwas also observed as reflected by SSI. Further analysis suggested
HBM cases may experience attenuated age-related declines in tBMD,
cBMD, CBA and SSI in weight bearing but not non-weight bearing
bones, possibly suggesting resistance to higher rates of bone remodelling

image of Fig.�3
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associatedwith ageing, potentially reflecting alteredmechanosensitivity.
Future studies are justified to understand the basis for this phenotype, for
example by investigating its genetic origins, as a means of defining new
pathways involved in the pathogenesis of age-related bone loss.
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