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Abstract: The number of metal-organic frameworks (MOF) as well as the number of applications of
this material are growing rapidly. With the number of characterized compounds exceeding 100,000,
manual sorting becomes impossible. At the same time, the increasing computer power and estab-
lished use of automated machine learning approaches makes data science tools available, that provide
an overview of the MOF chemical space and support the selection of suitable MOFs for a desired
application. Among the different data science tools, graph theory approaches, where data generated
from numerous real-world applications is represented as a graph (network) of interconnected objects,
has been widely used in a variety of scientific fields such as social sciences, health informatics, biolog-
ical sciences, agricultural sciences and economics. We describe the application of a particular graph
theory approach known as social network analysis to MOF materials and highlight the importance
of community (group) detection and graph node centrality. In this first application of the social
network analysis approach to MOF chemical space, we created MOFSocialNet. This social network is
based on the geometrical descriptors of MOFs available in the CoRE-MOFs database. MOFSocialNet
can discover communities with similar MOFs structures and identify the most representative MOFs
within a given community. In addition, analysis of MOFSocialNet using social network analysis
methods can predict MOF properties more accurately than conventional ML tools. The latter advan-
tage is demonstrated for the prediction of gas storage properties, the most important property of
these porous reticular networks.

Keywords: metal organic framework; social network analysis; centrality in the graph; community
detection

1. Introduction

The modelling and examination of complex systems that contain chemical, biological,
ecological, economic, social, technological, and other types of information is a very chal-
lenging process if the number of elements in the system becomes very large. Metal-Organic
Frameworks (MOFs), a class of chemical compounds composed of metal nodes connected
via organic linker molecules, represent a particularly complex example from materials
science. The wide variety of metal nodes and organic linker molecules suitable for MOF
synthesis and the virtually unlimited number of linker/node combinations lead to an enor-
mous size of the MOF chemical space. While the number of experimentally characterized
MOFs already exceeds 100,000 [1], there is no upper limit for the total number of these
reticular networks. This diversity in MOF chemistry makes it extremely difficult to navigate
through the large design space and to identify MOF materials with suitable properties for
a desired application or to identify most representative MOFs for an anticipated study,
that cover best the available design space. Identifying an appropriate MOF for a given
application in this huge chemical space can, in principle, be carried out by high throughput
screening of existing or hypothetical MOFs databases. This screening can be carried our
either experimentally or theoretically [2]. However, this approach becomes extremely
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costly with increasing size of the database. Recently, new paradigms for the discovery and
rational design of materials have been established that are based on Machine Learning
(ML) as well as sophisticated data science analysis methods and algorithms [3]. In the field
of MOFs, first examples, where ML methods were employed to predict material properties
or even to design new MOF structures and predict synthesis conditions have already been
successfully demonstrated [4].

The simulation of the adsorption capacity for gases, probably the most important
property of MOFs for existing applications, provides an interesting example of ML-based
strategies for handing materials classes with large size. The presently most popular ML al-
gorithms are Support Vector Machine, Random Forest and Neural Networks for predicting
the absorption of guest molecules by MOFs [5]. In addition, deep learning, a particularly
effective ML algorithm, has been used in a number of different applications [6]. For many
practical applications, the stability of MOFs in aqueous environments is an important
prerequisite and ML-based models could accurately predict water stability of MOFs [7].

When applying ML models, a first important step is the selection of descriptors. The
number of the different parameters describing MOF structures is simply too large for
a direct, straightforward analysis, therefore also ML-based workflows were introduced,
that allow extracting the most valuable descriptors within a given family of MOFs [8].
Combining data mining and machine learning has allowed for the prediction of MOF
synthesis [9] and MOF stability [10]. In another study, the authors proposed a machine-
learning algorithm to predict the possibility of metal-linker combinations for the guest
accessibility of MOFs. In this method, various ML models were evaluated to learn the
connection between component chemistry and MOF properties without explicitly requiring
a priori knowledge of the MOF structure [11].

In this work, we propose a new approach based on the social network analysis for
analysing the chemical space of metal organic frameworks. Social network analysis was
originally established in the field of social sciences [12,13], but has been expanded to
virtual learning [14], health informatics [15–18], life sciences [19–22], agriculture [23–25],
economy [25,26], and others.

Building a social network enables the use of machine learning techniques based
on graph mining to extract valuable knowledge from the MOFs data. Our goal in this
study is to demonstrate that "social networks" constructed from MOFs are a valuable
tool for analysing large MOFs databases, allowing to navigate through the MOF chemical
space, identify suitable MOFs for a given application or desired study, and to curate large
datasets efficiently.

We used social network analysis (SNA), rather than more traditional machine learning
algorithms, since SNA outperforms other ML models in visualizing complex relationships
between different MOFs. Additionally, SNA allows to extract information about the prop-
erties of a given (e.g., so far unknown) MOF by its relationship to “neighbouring” (known)
MOFs in the social graph. SNA therefore allows to extract useful information, e.g., find the
most representative MOFs or identify implicit and hidden dependencies between MOFs.

Two primary types of SNA were performed as part of the current research: centrality
and community detection. In the centrality analysis, parameters are determined that
measure the characteristics of a given MOF node in the graph in relation with other MOF
nodes (in this case other MOFs) in the graph. In MOFSocialNet, we deal with different
types of centralities, degree centrality, and closeness centrality. Degree centrality focuses on
the links of one MOF node to other MOF nodes. MOF nodes with a high degree centrality
can be regarded as important MOF structures with similar characteristics to many other
MOF structures in the dataset. The closeness centrality is computed by considering the
average distance from the target MOF node to the other MOF nodes in the networks. MOF
nodes with a high degree centrality can be regarded as very representative MOF structures
for the given set of analyzed MOF structures [27]. Node centralities allow to identify
the most important or influential node in a graph. For instance, a high value of degree
centrality identifies nodes that are in the middle of the network. Thus, by blending the
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information provided by the different centralities allows to analyze the MOF networks and
to find correlations between MOFs.

One other parameter, which we looked at in MOFSocialNet, is community detec-
tion [28–34]. Community detection is essentially a type of clustering problem. Community
detection aims to group the nodes according to the relations between them to form strongly
related sub-graphs from the entire graph. For example, detection of communities holds
an important place in the analysis and functional prediction of the interaction networks
between proteins and other molecules in biological cells [21] or to predict and identify
disease genes.

In the context of MOFSocialNet, community detection can be applied to provide an
overview and a structure to highly diverse MOF datasets. Social network analysis can
therefore help to rationalize the categories used to describe MOF types, moving away
from “most popular MOF types” towards categories based on more objective features or
properties of the MOFs.

2. Methods

In this paper, we construct a social network called MOFSocialNet from geometrical de-
scriptors of MOFs in the CoRE-MOFs database. MOFSocialNet is an undirected, weighted,
and heterogeneous social network. Following the construction of MOFSocialNet, we pro-
vide a set of social network analytic processes to extract valuable knowledge from the MOF
data using graph-mining algorithms. The full workflow of the MOFSocialNet is shown in
Figure 1. In the first step, we created a feature vector for each MOF. In the following step,
the similarity between each pair of MOF vectors is calculated based on vector similarity
methods. In this step we created the MOFs social graph, named MOFSocialNet, where
MOFs are the nodes and the similarity between the MOF feature vectors are the links (i.e.,
the relationships between MOFs). Finally, after removing irrelevant links in the graph, we
applied social network analysis methods to extract valuable knowledge from this graph. In
subsequent sections, all steps are described in detail.

2.1. Creating MOF Feature Vectors

A feature vector is an n-dimensional vector of numerical features that can e.g., describe
an object in pattern recognition using machine learning. In the case of MOFs, every property
depends on a set of specific descriptors, i.e., geometrical, chemical, topological, and energy-
based descriptors [35]. Before applying the data analysis process, it is critical to identify
key descriptors that are highly correlated with the property of interest of the MOF.

For a demonstration of the proposed approach, we limited ourselves to a subset of
1000 MOFs in the CoRE-MOFs database and used eight geometric descriptors for MOF (see
Table 1). Therefore, each MOF is assigned to an eight-dimensional feature vector.

Table 1. Geometry Descriptors in CoRE-MOFs Database.

Name of the Descriptors Symbol

Sphere Di

Largest free sphere Df

Largest included sphere along free path Dif

Crystal density ρ

Volumetric surface area VSA

Gravimetric surface area GSA

Volumetric pore volume VPOV

Gravimetric pore volume GPOV
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In order to simplify the further analysis, we normalized the values of the numerical
columns in the dataset to a common scale. The most common method of data normalization
is Min-Max normalization, which values are transformed into decimals between 0 and 1,
using formula 1:

v′ =
v−minA

maxA −minA
(1)

where minA and maxA denote the minimum and maximum values of the corresponding
property A. In the following, the original and normalized values are denoted by v and v′,
respectively. As a consequence, all v′ adopt values from the intervall (0,1) [36].

2.2. Constructing MOFSocialNet

We define MOFSocialNet as a graph G = (V,E) [17], where V = {v1, v2, . . . , vn} is the
vertex set, and E = {eij = edge from vi to vj|1 ≤ i, j ≤ n, i 6= j} is an edge set.

For the construction of the graph, a metric must be introduced to measure the distance
between two vertices. In previous works, either direct (Euclidean or Manhattan metrics) or
more invoked methods like Pearson’s product-moment correlation coefficient (PPMCC) or
Cosine methods have been used.

In the current study, we have used the so-called cosine metrics. Given two vectors of
MOF descriptors, A and B, the cosine similarity, cos(θ), is computed as

Similarity = cos(θ) = ∑n
i=1 AiBi√

∑n
i=1 A2

i

√
∑n

i=1 B2
i

(2)
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where Ai and Bi are the components of the feature vectors A and B, respectively. The
resulting similarity ranges adopt values from the interval (0,1), with 0 signifying the
dissimilarity of the MOFs. A value of 1 reveals that the MOFs A and B are identical.

With this metric, now a graph representing all ~1000 elements of the database can be
constructed, consisting of 1000 vertices and 22,000 edges.

In this initial graph, the number of edges is too large for an efficient analysis and an
effective strategy to remove weak links must be introduced. Therefore, we removed all
edges with a length less than a threshold parameter d.

The representation of the sample network of MOFSocialNet after elimination of weak
links using a value for d = 0.9999 (reducing the number of nodes to 2214) is shown in
Figure 2. The presence of an edge between two MOFs thus indicates that the similarity is
above the threshold value.
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shown in Figure 3. The average degree based on the diagram is 46.

2.3. Centrality Measures in MOFSocialNet

For the next step of the analysis, we determined the centrality of nodes. Centrality
means the relative significance of nodes (or vertices) and links (or edges). In our context,
centrality measures how similar a MOF is to other MOFs within MOFSocialNet.

The simplest approach is degree centrality, which for a given node is obtained by count-
ing the number of links connecting to other nodes. In MOFSocialNet, a MOF with a high
degree centrality has very similar properties to many other MOFs. For the MOFSocialNet
graph (G), degree centrality (Cd) is defined as:

Cd =
ki

n− 1
(3)
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where ki is the degree (number of edges connected to a node) of node i and n is the total
number of nodes in the graph [35].
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Table 2 presents the 10 MOFs with highest degree and Figure 4 illustrates the MOFSo-
cialNet with these MOFs being highlighted.

Table 2. Ten MOFs with highest degree.

No. Name of the MOF Degree

1 LELRUR 112

2 LAZXOB 112

3 KOCWEF 112

4 KOZNIY 112

5 LEYRAK 112

6 j.ica.2016.05.002_2 109

7 JOGHEU 109

8 KEVWUF 109

9 KIJPUQ 109

10 KECRAL10 109

The closeness centrality (Cc) of a vertex is a measure of the closeness of the vertex to
the rest of the vertices in a graph. The Cc of a vertex is computed as the inverse of the sum
of the hop counts (farness) of the shortest paths from the vertex to the rest of the vertices
in the graph. If d(i, j) is the geodesic distance between two vertices vi and vj in a graph,
then the closeness centrality of a vertex vi could be computed as the sum of the geodesic
distances to the vertices vj that are in the same component as vi (a component is the largest
set of vertices that are reachable from each other) [37].

Closeness centrality (Cc) is defined as:

Cc =
n− 1

∑j d(i, j)
(4)
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where i is the starting node, j the target node, and d(i, j) is the distance between them. This
measures the distance from the starting node to other nodes in the graph [38].

The closeness centrality captures the accessibility of network components. In the
MOFSocialNet, being a network of MOF structures, closeness centrality can identify the
most representative MOFs of a given dataset. Table 3 and Figure 5 illustrate the network,
highlighting the ten MOFs with the highest closeness centrality.
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Table 3. Ten MOFs with highest closeness centrality.

No. Name of the MOF Closeness

1 KOSLIP 0.122975

2 KUFVIS 0.122958

3 LARPEC 0.122584

4 KOSLUB 0.122398

5 KOSLOV 0.122331

6 LOSYAV 0.122213

7 KAVTEI 0.122179

8 LEJRIC 0.122179

9 KUNRAO 0.122163

10 AWAKEQ 0.122028
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2.4. Community Detection in MOFSocialNet

At the most abstract level, given a Social network G = (V,E), a community can be
defined as a subgraph of the network including a set VC⊆ V of Social Network entities that
are associated with a common element of interest. This element can be a topic, a person of
the real world, a place, an event, an activity, or a material such as metal organic framework.

Community detection is a common method in the social graph to categorize a large
graph in sub-group with similar features or properties. Methods and algorithms exist for
community detection in social networks. In this paper, we used a Louvain community de-
tection algorithm to effectively extract communities. In the Louvain Method of community
detection, first small communities are found by optimizing modularity locally on all nodes,
then each small community is grouped into one node and the first step is repeated [39].
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In MOFSocialNet, 24 communities were identified through the Lovain method. In
Figure 6, we visualized the graphs of the 24 communities. To improve the readability of the
graph, we removed the MOFs node labels. It should be noted that using the Gephi software,
a further round of community detection was carried out on each of the 24 communities
using the Louvain algorithm. The colors of the graph indicate the different communities.
Thus, the nodes of the same color belong to the same community.

One metric to evaluate the extracted community is modularity. Modularity measures
how strongly a network can be divided into different communities. Networks with high
modularity have dense connections between the nodes within each community but sparse
connections between nodes in different communities [39]. The modularity value is in the
range of −0.5 to 1. A value of 1 indicates the highest modularity, the modularity of the
MOFSocialNet with 1000 MOFs is 0.748. Table 4 lists the different MOFs communities
depicted in Figure 6, indicates the number of MOF nodes in each community and the MOF
with highest centrality in each community.
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Figure 6. Visualization of MOFs communities in the MOFSocialNet. The node colors represent
the community nodes, which are derived from the Lovain method. Nodes of similar color form a
community. The graph is shown with the Fruchterman Reingold layout in the Gephi software.
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2.5. Application of MOFSocialNet to Predict the Crystal Density of Unknown MOFs

To evaluate whether properties of new MOFs can be predicted using MOFSocialNet,
we randomly chose three MOFs from the CoRE MOFs database. For these MOFs, we
excluded the crystal density as input during featurization and placed the MOFs within the
MOFSocialNet. We then predicted the crystal density of the new MOFs by simply averaging
the crystal density of the ten nearest neighbors. The results show an outstanding prediction
accuracy for the crystal density of 99.69% for MOF ABAYOU, 99.79% for ABIXOZ, and
99.96% for ACOLIP. Table 5 presents the density range of the MOFs in the communities.
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2.6. Use of MOFSocialNet to Predict Gas Adsorption in the Metal Organic Framework

In the final part of our investigation, we evaluated how well the communities extracted
from MOFSocialNet can be exploited for predicting gas adsorption properties of MOFs
for CO2 and CH4. To evaluate the performance, we compared the prediction performance
of MOFSocialNet with three common ML models, namely K Nearest Neighbour (KNN),
Gradient Boosting Regression, and Deep Learning. All ML predictions were performed
using Rapidminer Machine Learning tools. The efficiency of each ML algorithm was
assessed by computing with the mean absolute error (MAE) which is given in Equation (5).

MAE =
∑n

i=1|yi − xi|
n

(5)

where yi is the prediction value of gas adsorption and xi the true value of respected
gas adsorption.

The gas adsorption method by MOFSocialNet was performed by (a) creating the
MOFSocialNet, as explained in the previous section, (b) extracting communities from
MOFSocialNet, and (c) predicting gas adsorption in each individual community. The MAE
performance parameter for each individual community is presented using the prediction
of CO2 absorption. Moreover, the overall MAE results were compared to the three main
well-known algorithms. Similar to CO2 prediction, the prediction of gas adsorption for
CH4 is presented for each community, and the overall MAE results were compared to
the three main well-known algorithms. Using MOFSocialNet significantly improved the
prediction compared to the reference ML algorithms, as shown in the results in Figure 7.

Table 5. Density range of the MOFs in the communities.

Community Number Density (g/cm3) Range

8 0.380351 0.334035

14 0.43704 0.402001

18 0.462868 0.458126

21 0.514247 0.506406

10 0.554774 0.536397

4 0.674371 0.58881

15 0.918625 0.697914

1 1.01242 0.926612

9 1.08519 1.01371

0 1.13994 1.08774

5 1.23288 1.141

20 1.35327 1.34717

11 1.42464 1.22885

12 1.42645 1.41674

6 1.68807 1.43058

7 1.78668 1.76873

13 2.17773 2.16342

3 2.25323 1.58742

22 2.25449 2.20818

16 2.5731 2.30777

23 2.84923 2.83999
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Table 5. Cont.

Community Number Density (g/cm3) Range

17 3.02612 2.73182

19 3.58491 3.50049

2 3.8283 3.69928

The findings indicate a significant improvement in the prediction presented in Table 6.
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Figure 7. (a) Prediction of CH4 adsorption within each community in MOFSocialNet; (b) Average
prediction of CH4 uptake for all communities in MOFSocialNet compared with the prediction of
other machine learning algorithms; (c) Prediction of CO2 uptake @ 0.15 bar (mol·kg−1) within each
community in MOFSocialNet; and (d) Average prediction of CO2 uptake @ 0.15 bar (mol·kg−1) for all
communities in MOFSocialNet compared with the prediction of other machine learning algorithms.
Only communities with a reasonable number of MOFs to predict are depicted in this figure.

Table 6. Evaluation of predictive performance of CO2 and CH4 using MOFSocialNet and compared
reference machine learning algorithms.

Method Name MAE for CO2 Prediction MAE for CH4 Prediction

KNN 1.049 0.929

Gradient Boosted Trees 1.139 0.959

Deep Learning 1.397 0.905

MOFSocialNet 0.738 0.892
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3. Conclusions and Future Direction

In this paper, we demonstrated that social network analysis (SNA), a tool developed in
the social sciences, is well suited to analyse MOF structural databases. The MOFSocialNet
was constructed using geometrical descriptors provided in an existing MOF database,
CoRE-MOF, yielding an undirected, weighted, and heterogeneous social network. We then
used MOFSocialNet as a new tool to guide MOF researchers through the vast chemical
space of existing and hypothetical MOFs. For demonstration, we employed SNA to identify
the most representative MOFs in this set of research data and to detect MOFs communities,
i.e., families of MOFs with similar properties. Furthermore, within each community, the
SNA identifies the most representative MOFs structure. Our approach can help to rationally
select the most appropriate MOF structures for future studies, such as the most promising or
diversified MOF. To demonstrate the feasibility of property prediction via SNA we trained
communities extracted from MOFSocialNet, then predicted CO2 and CH4 adsorption and
evaluated the accuracy of the prediction. Interestingly, SNA outperformed three common
ML models, namely K Nearest Neighbour (KNN), Gradient Boosting Regression, and Deep
Learning. The proposed SNA approach can accelerate the analysis of MOFs structure, even
by increasing the amount of theoretical and experimental data on MOFs. MOFSocialNet as
a novel framework can be extended to processing and curating large MOFs databases.
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