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Simple Summary: Prostate cancer is a disease responsible for a large proportion of all male cancer
deaths but there is a high chance that a patient will die with the disease rather than from. Therefore,
there is a desperate need for improvements in diagnosing and predicting outcomes for prostate
cancer patients to minimise overdiagnosis and overtreatment whilst appropriately treating men with
aggressive disease, especially if this can be done without taking an invasive biopsy. In this work we
develop a test that predicts whether a patient has prostate cancer and how aggressive the disease is
from a urine sample. This model combines the measurement of a protein-marker called EN2 and
the levels of 10 genes measured in urine and proves that integration of information from multiple,
non-invasive biomarker sources has the potential to greatly improve how patients with a clinical
suspicion of prostate cancer are risk-assessed prior to an invasive biopsy.

Abstract: The objective is to develop a multivariable risk model for the non-invasive detection
of prostate cancer prior to biopsy by integrating information from clinically available parameters,
Engrailed-2 (EN2) whole-urine protein levels and data from urinary cell-free RNA. Post-digital-rectal
examination urine samples collected as part of the Movember Global Action Plan 1 study which
has been analysed for both cell-free-RNA and EN2 protein levels were chosen to be integrated
with clinical parameters (n = 207). A previously described robust feature selection framework
incorporating bootstrap resampling and permutation was applied to the data to generate an optimal
feature set for use in Random Forest models for prediction. The fully integrated model was named
ExoGrail, and the out-of-bag predictions were used to evaluate the diagnostic potential of the
risk model. ExoGrail risk (range 0–1) was able to determine the outcome of an initial trans-rectal
ultrasound guided (TRUS) biopsy more accurately than clinical standards of care, predicting the
presence of any cancer with an area under the receiver operator curve (AUC) = 0.89 (95% confidence
interval(CI): 0.85–0.94), and discriminating more aggressive Gleason ≥ 3 + 4 disease returning an
AUC = 0.84 (95% CI: 0.78–0.89). The likelihood of more aggressive disease being detected significantly
increased as ExoGrail risk score increased (Odds Ratio (OR) = 2.21 per 0.1 ExoGrail increase, 95% CI:
1.91–2.59). Decision curve analysis of the net benefit of ExoGrail showed the potential to reduce the
numbers of unnecessary biopsies by 35% when compared to current standards of care. Integration of
information from multiple, non-invasive biomarker sources has the potential to greatly improve how
patients with a clinical suspicion of prostate cancer are risk-assessed prior to an invasive biopsy.
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1. Introduction

Prostate cancer is responsible for 13% of all male cancer deaths in the UK, yet this is
contrasted by 10-year survival rates approaching 84% [1]. This dichotomy has led to uncer-
tainty for clinicians in how best to diagnose and predict the outcome for prostate cancer
patients to minimise overdiagnosis and overtreatment whilst appropriately treating men
with aggressive disease [2]. More accurate discrimination of disease state in biopsy naïve
men would mark a significant development compared to current standards and impact
large numbers of patients suspected of harbouring prostate cancer. The development of
such a pre-biopsy screening test would provide a convenient checkpoint along the clinical
pathway for patients to exit without the need for further invasive and stressful follow-up.

Under current guidelines patients are selected for further clinical investigations for
prostate cancer if they have an elevated prostate specific antigen (PSA) (≥4 ng/mL) and/or
an adverse finding on digital rectal examination (DRE) or lower urinary tract symptoms,
whilst other factors such as age and ethnicity are also considered alongside patient pref-
erence [3–5]. More recently multiparametric MRI (mpMRI) has been used as a triage
tool to reduce negative biopsy rates since its validation in the PROMIS clinical trial [6].
However, as it has gained more widespread adoption, mpMRI has shown a higher rate of
inter-operator and inter-machine variability than reported in controlled clinical trials; up to
28% of clinically significant disease is missed in practice [5,7–9]. Coupled with the relative
expense, time and expertise required to undertake an mpMRI meeting the current clinical
guidelines, there is a need to improve on current clinical practices.

Biomarkers utilising tissue samples taken at the time of diagnosis for the detection of
aggressive or significant prostate cancer requiring clinical attention are relatively plenti-
ful [10–13]. Many of these markers are good tests, whether that be for discerning the most
aggressive disease [11,14], or for predicting disease-free survival following radical prostate-
ctomy [15]. However, requiring tissue means a biopsy must already have been performed,
making these tests incompatible with reducing the rates of unnecessary biopsy that come at
considerable economic, psychological and societal cost to patients and healthcare systems
alike [2,16,17].

As a secretory organ directly interacting with the male urinary tract, the prostate is
well-placed as a candidate for non-invasive liquid biopsy from urine samples [18]. Single- or
few-biomarker panels such as Engrailed-2 (EN2) protein expression [19], the SelectMDx [20]
and ExoDx Prostate (IntelliScore) [21] tests have published promising results for the non-
invasive detection of significant disease (Gleason score (Gs) ≥ 7). However, they are
in various stages of clinical validation and none are currently implemented in the UK
healthcare system [5]. Most urinary biomarkers developed to date for the prediction of
biopsy outcome are unimodal; considering a singular fraction of urine (such as the cell-
pellet or cell-free fractions) or biological aspect of cancer to appraise disease status. Whilst
these tests have shown promising clinical use and accuracy, for the majority it has not yet
been explored whether extra predictive value could be derived by integrating multiple
streams of information from other sources.

Since initial development, the SelectMDx model has been updated to include clinically
available parameters of serum PSA, patient age and DRE alongside urinary HOXC6 and
DLX1 mRNA, adding significant predictive ability for patients with a PSA < 10 ng/mL [22].
We have also recently shown the benefit of such a holistic approach, presenting the devel-
opment of the multivariable ExoMeth risk prediction model integrating clinical parameters,
hypermethylation within the urinary cell pellet and urinary cell-free RNA expression data
that displayed improved clinical utility over any single mode [23].

EN2 is a homeodomain-containing transcription factor that has an essential function in
early development, which in mammals includes the delineation of the midbrain/hindbrain
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border [24]. For a transcription factor it has a number of unusual properties, including
the ability to be secreted from cells and taken up by others [25]. Indeed, a recent study
indicated that prostate cancer cells can secrete EN2 protein through vesicles which are then
taken up by other non-EN2 expressing cells, where it can directly influence the transcription
of target genes [25].

This secretory behaviour of EN2 makes it a potential biomarker for prostate cancer,
and indeed EN2 protein can be detected in the urine of men with prostate tumours [19]. The
original and subsequent studies have generally supported a diagnostic role for urinary EN2,
including a relationship between urinary EN2 concentration and tumour volume [19,26].
More recently, a lateral flow-based test for EN2 has been described that could potentially
allow point-of-care testing [27].

In this study, we report the utility of a predictive model produced by the integration
of clinically available parameters, urinary EN2 protein levels and targeted cell-free RNA
transcriptomics. The data were collected within the Movember Global Action Plan 1
(GAP1) study that explored a range of biomarkers in urine for PCa diagnosis and prognosis.
The clinical utility of this model is determined by the ability to predict the presence of
Gs ≥ 7 and Gs ≥ 4 + 3 disease on biopsy, both critical distinctions in clinical settings, where
patients with Gs ≥ 7 are recommended radical therapy [5], whilst patients with Gs 4 + 3
have significantly worse outcomes than Gs 3 + 4 patients [28]. Aware that most cancer
biomarkers and predictive models fail to reach clinical adoption, we have adhered to the
guidelines for the transparent reporting of a multivariable prediction model for individual
prognosis or diagnosis (TRIPOD) whilst developing the models and results presented
here [29].

2. Materials and Methods
2.1. Patient Population and Characteristics

The full Movember GAP1 urine cohort comprises 1257 first-catch post-DRE urine
samples collected between 2009 and 2015 from urology clinics at multiple sites, as described
in Connell et al. (2019). As a diverse range of techniques was applied to samples from
this cohort and restricted amounts of urine, the number of experiments that could be
performed on any one sample was limited. Samples within the Movember cohort that
were quantified for both EN2 levels by ELISA and cell-free-RNA (cf-RNA) expression by
NanoString (Seattle, WA, USA) were eligible for selection for model development in the
current study (n = 218).

Exclusion criteria for model development included a recent prostate biopsy or trans-
urethral resection of the prostate (<6 weeks) and metastatic disease (confirmed by a positive
bone-scan or PSA > 100 ng/mL), resulting in a cohort of 207 samples, deemed the ExoGrail
cohort (Table 1). All samples analysed in the ExoGrail cohort were collected from the
Norfolk and Norwich University Hospital (NNUH, Norwich, UK). Sample collections and
processing were ethically approved by the East of England REC.

2.2. Sample Processing and Analysis

Urine samples were processed according to the Movember GAP1 standard operating
procedure (Supplementary Methods). In brief, within 30 min of collection, urine was
centrifuged (1200× g 10 min, 6 ◦C) to remove cellular material. Supernatant extracellular
vesicles were harvested by microfiltration and cell-free mRNA extracted (RNeasy micro kit,
#74004, Qiagen, Hilden, Germany) on the same day that they were provided by the patient.
RNA was amplified as cDNA with an Ovation PicoSL WTA system V2 (Nugen, Redwood
City, CA, USA, #3312-48). Urinary EN2 protein concentration was quantified by ELISA
from whole urine using a monoclonal anti-mouse EN2 antibody, as described by Morgan
et al. (2011) [19]. Cell-free mRNA was quantified from urinary extracellular vesicles
using NanoString technology, with 167 gene-probes (Table S1), as described in Connell
et al. (2019), with the modification that NanoString data were normalised according to
NanoString guidelines using NanoString internal positive controls, and log2 transformed.
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Clinical variables serum PSA, age at sample collection, DRE finding, and urine volume
collected were considered.

Table 1. Characteristics of the ExoGrail development cohort, stratified according to a record of cancer
or not, either on an initial biopsy or for a no cancer finding if a biopsy was not performed.

No Cancer Finding: Biopsy Positive Cancer Finding

Collection Centre:
NNUH, n (%) 77 (100) 130 (100)

Age:
minimum 45.00 53.00

median (IQR) 65.00 (59.00, 71.00) 68.50 (65.00, 76.00)
mean (sd) 65.22 ± 8.10 69.71 ± 7.67
maximum 82.00 91.00

PSA:
minimum 0.30 4.10

median (IQR) 6.10 (3.70, 8.80) 10.35 (6.82, 16.48)
mean (sd) 7.89 ± 8.72 17.08 ± 18.33
maximum 63.80 95.90

Prostate Size (DRE Estimate):
Small, n (%) 13 (17) 13 (10)

Medium, n (%) 34 (44) 64 (49)
Large, n (%) 21 (27) 38 (29)

Unknown, n (%) 9 (12) 15 (12)
Gleason Score:

0, n (%) 77 (100) 0 (0)
6, n (%) 0 (0) 30 (23)

3 + 4, n (%) 0 (0) 48 (37)
4 + 3, n (%) 0 (0) 24 (18)
≥8, n (%) 0 (0) 28 (22)

Biopsy Outcome:
No Biopsy, n (%) 25 (32) 0 (0)

Biopsy Negative, n (%) 52 (68) 0 (0)
Biopsy Positive, n (%) 0 (0) 130 (100)

2.3. Statistical Analysis

All analyses, model construction and data preparation were undertaken in R ver-
sion 3.5.3 [30], and unless otherwise stated, utilised base R and default parameters. All data
and code required to reproduce these analyses can be found at the UEA Cancer Genetic
GitHub repository [31].

2.4. Feature Selection

In total, 172 variables were available for prediction (cf-RNA (n = 167), clinical variables
(n = 4) and urinary EN2 (n = 1); for full list see Table S1), making feature selection a key task
for minimising model overfitting and increasing the robustness of trained models. To avoid
dataset-specific features being positively selected [32], we implemented a robust feature
selection workflow utilising the Boruta algorithm [33] and bootstrap resampling. Boruta
is a random forest-based algorithm that iteratively compares feature importance against
random predictors, deemed “shadow features.” Features that perform significantly worse
compared to the maximally performing shadow feature at each permutation, (p ≤ 0.01,
calculated by Z-score difference in mean accuracy decrease) are consecutively dropped
until only confirmed, stable features remain.

Boruta was applied on 1000 datasets generated by resampling with replacement.
Features were only positively selected for model construction when confirmed as stable
features in ≥90% of resampled Boruta runs.
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2.5. Comparator Models

To evaluate potential clinical utility, additional models were trained as comparators
using subsets of the available variables across the patient population: a clinical standard
of care (SoC) model was trained by incorporating age, PSA, T-staging and clinician DRE
impression; a model using only the values from the EN2 ELISA (EN2, n = 1); and a model
only using NanoString gene-probe information (NanoString, n = 167). The fully integrated
ExoGrail model was trained by incorporating information from all of the above variables
(n = 177). Each set of variables for comparator models were independently selected via the
bootstrapped Boruta feature selection process described above to select the most optimal
subset of variables possible for each predictive model.

2.6. Model Construction

All models were trained via the random forest algorithm [34], using the randomForest
package [35] with default parameters except for resampling without replacement and
401 trees being grown per model. Risk scores from trained models are presented as the
out-of-bag predictions; the aggregated outputs from decision trees within the forest where
the sample in question has not been included within the resampled dataset [34]. Bootstrap
resamples were identical for feature selection and model training for all models and used
the same seed for random number generator.

Models were trained on a modified continuous label, based on biopsy outcome and
constructed as follows: samples were scored on a continuous scale (range: 0–1) according
to the dominant Gleason pattern: where 0 represented no evidence of cancer, Gleason
scores 6 & 3 + 4 were assigned to 0.5 and Gleason scores ≥ 4 + 3 are set to 1. Following
this categorisation, the score is treated as a continuous variable by the Random Forest
algorithm described above. This process was designed to recognise that two patients with
the same TRUS-biopsy Gleason score will not share the exact same proportions of tumour
pattern, or overall disease burden. This scale was solely used for model training and was
not represented in any endpoint measurements, or for determining the predictive ability
and clinical utility.

2.7. Statistical Evaluation of Models

Area Under the Receiver-Operator Characteristic curve (AUC) metrics were produced
using the pROC package [36], with confidence intervals calculated via 1000 stratified
bootstrap resamples. Density plots of model risk scores, and all other plots were created
using the ggplot2 package [37]. Partial dependency plots were calculated using the pdp
package [38]. Cumming estimation plots and calculations were produced using the dabe-
str package [39] and 1000 bootstrap resamples were used to visualise robust effect size
estimates of model predictions.

Decision curve analysis (DCA) [40] examined the potential net benefit of using PUR-
signatures in the clinic. Standardised net benefit (sNB) was calculated with the rmda
package [41] and presented throughout our decision curve analyses as it is a more directly
interpretable metric compared to net benefit [42]. In order to ensure DCA was representa-
tive of a more general population, the prevalence of Gleason scores within the ExoGrail
cohort were adjusted via bootstrap resampling to match those observed in a population of
219,439 men that were in the control arm of the Cluster Randomised Trial of PSA Testing
for Prostate Cancer (CAP) Trial [43], as described in Connell et al. (2019). Briefly, of the
biopsied men within this CAP cohort, 23.6% were Gs 6, 8.7% Gs 7 and 7.1% Gs ≥ 8, with
60.6% of biopsies showing no evidence of cancer. These ratios were used to perform
stratified bootstrap sampling with a replacement of the Movember cohort to produce a
“new” dataset of 197 samples with risk scores from each comparator model. sNB was then
calculated for this resampled dataset, and the process repeated for a total of 1000 resamples
with replacement. The mean sNB for each risk score and the “treat-all” options over all
of the iterations were used to produce the presented figures to account for variance in
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resampling. Net reduction in biopsies, based on the adoption of models versus the default
treatment option of undertaking biopsy in all men with PSA ≥ 4 ng/mL was calculated as:

BiopsyNetReduction = (NBModel − NBAll)×
1 − Threshold

Threshold
(1)

where the decision threshold (Threshold) is determined by accepted patient/clinician
risk [40]. For example, a clinician may accept up to a 25% perceived risk of cancer before
recommending biopsy to a patient, equating to a decision threshold of 0.25.

3. Results
3.1. The ExoGrail Development Cohort

Urinary EN2 protein and cf-RNA data were available for 207 patients within the
Movember GAP1 cohort, with all samples originating from the NNUH to form the ExoGrail
development cohort (Table 1). The proportion of Gleason ≥ 7 disease in the ExoGrail
cohort was 48%, whilst 25 patients were deemed to have no evidence of cancer (NEC,
PSA < 4 ng/mL), and did not receive a biopsy.

3.2. Feature Selection and Model Development

Using the robust feature selection framework, four models were produced in total: a
standard of care (SoC) model incorporating only clinically available parameters (age and
PSA), a model using urinary EN2 protein levels as the sole predictor variable (Engrailed),
a model using only cf-RNA information (ExoRNA, 11 gene-probes) and the integrated
model, named ExoGrail that incorporated variables from all three sources (12 variables)
(Table 2). The ExoGrail model is a multivariable risk prediction model incorporating clinical
parameters, urinary EN2 protein levels and cf-RNA expression information. When the
resampling strategy was applied for feature reduction using Boruta, 12 variables were
selected for the ExoGrail model. Each of the retained variables were positively selected in
every resample and notably included information from clinical and cf-RNA variables, as
well as urinary EN2 (Figure 1; full resample-derived Boruta variable importance for the SoC,
Engrailed and ExoRNA comparator models can be seen in Figures S1–S3, respectively).

Table 2. Features positively selected for each model by bootstrap resampling and the Boruta algo-
rithm. Features are selected for each model by being confirmed as important for predicting biopsy
outcome, categorised as a modified ordinal variable (see Methods) by Boruta in ≥90% of bootstrap
resamples.

SoC Engrailed ExoRNA ExoGrail

Clinical
Parameters

Serum PSA - - Serum PSA
Age - - -

ELISA Targets EN2 (ELISA) - EN2 (ELISA)

NanoString
cf-RNA targets

ERG exons 4-5 ERG exons 4-5
ERG exons 6-7 ERG exons 6-7

GJB1 GJB1
HOXC6 HOXC6

HPN HPN
NKAIN1 -

PCA3 PCA3
PPFIA2 PPFIA2
RPLP2 -

- SLC12A1
TMEM45B TMEM45B

TMPRSS2/ERG fusion TMPRSS2/ERG fusion
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Figure 1. Analysis of variables available for the training of the ExoGrail model through the appli-
cation of the Boruta algorithm via bootstrap resampling. 1000 resamples with replacement of the 
available data were made, with the normalised permutation importance of each variable recorded 
at each iteration, along with the decision of Boruta within that resample. Fill colour shows the pro-
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≥90% of resamples were selected for fitting predictive models. Variables rejected in all of the 1000 
resamples are not shown here but are fully detailed in Table S1. 

Figure 1. Analysis of variables available for the training of the ExoGrail model through the application of the Boruta
algorithm via bootstrap resampling. 1000 resamples with replacement of the available data were made, with the normalised
permutation importance of each variable recorded at each iteration, along with the decision of Boruta within that resample.
Fill colour shows the proportion of resamples that a feature was positively retained by Boruta. Those features selected in
≥90% of resamples were selected for fitting predictive models. Variables rejected in all of the 1000 resamples are not shown
here but are fully detailed in Table S1.

In the SoC comparator model, only PSA and age were selected as important predictors.
Urinary EN2 levels were confirmed as important in the independent Engrailed model as
the sole variable, and also within the ExoGrail model (Table 2). For the cf-RNA model,
ExoRNA, 11 transcripts were selected, notably including both variants of the ERG gene-
probe and TMPRSS2/ERG fusion gene-probe. ExoGrail incorporated an additional cf-RNA
transctript, SLC12A1, which was not previously selected in the ExoRNA comparator model.
When this was examined by partial dependency plots, an additive interaction effect was
observed between quantified levels of urinary EN2 and counts of SLC12A1 on the predicted
ExoGrail risk signature output (Figure S4).
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3.3. ExoGrail Predictive Ability

As ExoGrail Risk Score (range 0–1) increased, the likelihood of high-grade disease
detection on TRUS-biopsy was significantly greater (Proportional odds ratio = 2.21 per
0.1 ExoGrail increase, 95% CI: 1.91–2.59; ordinal logistic regression, Figure 2). The median
ExoGrail risk score for metastatic patients was 0.76 (n = 11). These patients were excluded
from model training and can be considered as a positive control for model calibration.
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Figure 2. Representation of the ExoGrail risk score for each patient within a waterfall plot, where each coloured bar
represents an individual’s biopsy outcome (fill colour) and predicted ExoGrail risk score (bar height). Green—No evidence
of cancer, Blue—Gs 6, Orange—Gs 3 + 4, Red—Gs ≥ 4 + 3.

ExoGrail was superior to all other models for the detection of Gleason ≥ 3 + 4
(AUC = 0.90 (95% CI: 0.86–0.94), p < 0.001, bootstrap test with 1000 resamples) and for
any cancer (AUC = 0.89 (95% CI: 0.85–0.94), p < 0.001, bootstrap test with 1000 resamples)
(Table 3). When Gleason ≥ 4 + 3 was considered, ExoGrail returned an AUC = 0.84 (95% CI:
0.78–0.89), outperforming the SoC and cf-RNA models (p < 0.001, bootstrap test with 1000
resamples), whilst the Engrailed model displayed similar performance by AUC metrics
(Table 3). A model consisting of the combination of EN2 and PSA showed a similar ability
in the detection of Gleason ≥ 4 + 3 compared to ExoGrail (AUCs of 0.85 compared to 0.84),
whilst ExoGrail showed a small improvement in the detection of Gleason ≥ 3 + 4 disease
and any cancer (Table S2).

Table 3. Area under the receiver operator curve (AUC) of all trained models for detecting outcomes
of an initial biopsy for varying clinically significant thresholds. Numbers within brackets detail 95%
confidence intervals of the AUC, calculated from 1000 stratified bootstrap resamples. Input variables
for each model are detailed in Table 1.

Initial Biopsy
Outcome: SoC Engrailed ExoRNA ExoGrail

Gleason ≥ 4 + 3: 0.77 (0.69–0.84) 0.81 (0.74–0.88) 0.67 (0.59–0.75) 0.84 (0.78–0.89)
Gleason ≥ 3 + 4: 0.72 (0.65–0.79) 0.83 (0.77–0.88) 0.77 (0.70–0.83) 0.90 (0.86–0.94)

Any Cancer 0.75 (0.68–0.82) 0.81 (0.74–0.86) 0.81 (0.74–0.87) 0.89 (0.85–0.94)
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As revealed by the distributions of risk scores and AUC, ExoGrail achieved clearer
discrimination of disease status Gleason ≥ 3 + 4 disease from other biopsy outcomes when
compared to any of the other models (ExoGrail all comparisons p < 0.01 bootstrap test,
1000 resamples, Figure 3).
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Figure 3. Risk score distributions of the four trained models, calculated as the out-of-bag predictions and represented as
density plots. Area under the receiver operator curves (AUCs) for each model’s predictive ability for clinically relevant
outcomes are detailed underneath each panel. Each random forest model was fit using different input variables; (A) SoC
clinical risk model, including Age and serum prostate specific antigen (PSA), (B) Engrailed model, (C) ExoRNA model
and (D) ExoGrail model, combining predictors from all three modes of analysis. The full list of variables in each model is
available in Table 1. Fill colour shows the risk score distribution of patients with respect to biopsy outcome: No evidence of
cancer (Green), Gleason 6 (Blue), Gleason 3 + 4 (Orange), Gleason ≥ 4 + 3 (Red).

Investigation of risk score distributions found that whilst the SoC model returned
respectable AUCs and detection of the higher grade disease (Gleason ≥ 3 + 4), it displayed
a relative inability to clearly stratify intermediate disease states. This uncertainty would
cause large numbers of patients to be inappropriately selected for further investigation
(Figure 3A). For example, to classify 90% of patients with Gleason 7 disease correctly, an SoC
risk score of 0.251 would misclassify 64.5% of men with less significant, or no disease. The
Engrailed model detailed clearer discrimination, though featured a bimodal distribution
of patients without prostate cancer (Figure 3B, green density plot), misidentifying 51.4%
of patients with low-grade disease as similar to those with more clinically significant
disease (Figure 3B). A similar bimodal distribution was seen for the EN2 plus PSA model
(Figure S5). Whilst the AUCs returned for the ExoRNA model were lower, the distribution
of risk scores shows that ExoRNA could more accurately discriminate cancer from non-
cancer than either the SoC or EN2 models, a key clinical step in the triage of patients prior
to biopsy (Figure 3C).
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Examination of ExoGrail scores displayed similar distributions for NEC patients
as the ExoRNA model whilst also being able to more accurately separate different can-
cer outcomes from biopsy, resulting in fewer misclassifications of patients without can-
cer if binary detection of 95% of Gleason ≥ 3 + 4 were considered (28% of NEC pa-
tients misclassified). The greater discriminatory ability of the ExoGrail model when
biopsy outcomes are considered as a binary Gleason ≥ 3 + 4 threshold can also be seen
in Figure S6.

Comparisons of mean ExoGrail scores between groups were performed with re-
sampling and Cumming estimation plots (1000 bias-corrected and accelerated bootstrap
resamples, Figure 4). The mean ExoGrail differences between patients with no evidence of
cancer on biopsy were: Gleason 6 = 0.3 (95% CI: 0.22–0.37), Gleason 3 + 4 = 0.48 (95% CI:
0.41–0.53) and Gleason ≥ 4 + 3 = 0.56 (95% CI: 0.51–0.61). Of note, patients with no evidence
of cancer had a lower ExoGrail risk score (mean difference = 0.17 (95% CI: 0.11–0.24)) than
those with a raised PSA but no findings of cancer on biopsy (Figure 4).
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Figure 4. Mean ExoGrail risk score differences between biopsy outcomes, as represented by Cumming
estimation plots. Individual patient risk scores (y-axis) are presented as points in the top panel,
separated according to Gleason score (x-axis) with gapped vertical lines detailing the mean and
standard deviation of each clinical group’s ExoGrail risk score. Mean ExoGrail risk score differences
relative to the no evidence of cancer (NEC) group are shown in the bottom panel. Mean difference
and 95% confidence intervals are shown as a point estimate and vertical bar, respectively, with density
plots generated from 1000 bias-corrected and accelerated bootstrap resamples.

Decision curve analyses examined the net benefit of ExoGrail adoption in a population
of patients with a clinical suspicion of prostate cancer and a PSA level suitable to trigger
biopsy (≥4 ng/mL). The biopsy of men based upon their ExoGrail risk score provided a
net benefit over current standards of care across all decision thresholds examined and was
the most consistent amongst all comparator models across a range of clinically relevant
endpoints for biopsy (Figure 5).
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Figure 5. Exploration of the standardised net benefit (sNB) by decision curve analysis (DCA) for adopting risk models
to aid the decision to undertake an initial biopsy for patients presenting with a serum PSA ≥ 4 ng/mL, where current
clinical practice is to biopsy all patients. The accepted patient/clinician risk threshold for accepting biopsy is detailed on the
x-axis. Different biopsy outcomes are shown in each of the three panels; (A) detection of Gleason ≥ 4 + 3, (B) detection of
Gleason ≥ 3 + 4, (C) any cancer; Blue—biopsy all patients with a PSA >4 ng/mL, Orange—biopsy patients according to the
SoC model, Green—biopsy patients based on the Engrailed model, Purple—biopsy patients based on the exoRNA model,
Red—biopsy patients based on a the ExoGrail model. To assess the benefit of adopting these risk models in a clinically
relevant population, we used data available from the control arm of the The Cluster Randomized Trial of PSA Testing for
Prostate Cancer (CAP) study [42] for proportionally resampling the ExoGrail cohort. DCA curves were calculated from
1000 bootstrap resamples of the available data to match the distribution of disease reported in the CAP trial population.
Mean sNB from these resampled DCA results are plotted here. See Methods for full details.

Using the SoC model as the baseline with which to compare the potential for biopsy
reduction of each model, we found that ExoGrail could reduce unnecessary biopsy rates by
upwards of 40%, depending on accepted patient-clinician risk. For example, if a decision
threshold of 0.1 were accepted, representing a perceived risk of 1 in 10 for Gleason ≥ 3 + 4
on biopsy, ExoGrail could result in up to a 35% reduction in unnecessary biopsies of men
presenting with a suspicion of prostate cancer, whilst also correctly identifying patients
with more aggressive disease. If Gleason ≥ 4 + 3 were considered the threshold of clinical
significance, a more conservative decision threshold of 0.05 could save 32% of men from
receiving an unnecessary biopsy (Figure 6).
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Figure 6. Estimation of biopsy reduction, as calculated by comparing the DCA-calculated net benefit of each risk model to
the net benefit of the standard of care (SoC) model. The accepted patient/clinician risk threshold for accepting biopsy is
detailed on the x-axis. Different biopsy outcomes are shown in each of the three panels: (A) detection of Gleason ≥ 4 + 3,
(B) detection of Gleason ≥ 3 + 4 and (C) any cancer. Coloured lines show differing comparator models; Orange—biopsy
patients according to the SoC model, Green—biopsy patients based on the Engrailed model, Purple—biopsy patients
based on the ExoRNA model, Red—biopsy patients based on the ExoGrail model. To assess the benefit of adopting these
risk models in a clinically relevant population we used data available from the control arm of the CAP study [42] for
proportionally resampling the ExoGrail cohort. DCA curves were calculated from 1000 bootstrap resamples of the available
data to match the distribution of disease reported in the CAP trial population. Net benefit averaged over all resamples was
used to calculate the potential reductions in biopsy rates here. See Methods for full details.

4. Discussion

Discriminating disease status in patients before a diagnostic biopsy with higher accu-
racy than current standards could bring about a sizeable change in treatment pathways
and reduce the number of men sent forward for ultimately unnecessary biopsy. Given
that up to 75% of patients are negative for prostate cancer when presenting with serum
PSA levels ≥ 4 ng/mL [5,43,44], a concentration of research efforts has been made to
address this problem. To date, several biomarker panels have been successfully developed
to non-invasively detect prostate cancer using urine samples, Gleason ≥ 3 + 4 disease
with superior accuracy to current clinically implemented methods, including the PUR
model developed by ourselves [20,21,45,46]. However, as only a single aspect of urine,
assay method or biological process are assessed by these examples, the heterogeneity of
prostate cancer may not be entirely accounted for [47], requiring an approach to be taken
that provides a more holistic insight into disease status.

Recent analyses, including those presented here, have demonstrated the added value
of integrating multiple prognostic biomarkers within the process of fitting risk models for
determining patient risk upon an initial biopsy [23,48]. Urine clearly contains a wealth of
useful information concerning the disease status of the prostate through the quantification
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of cf-RNA transcripts, circulating and cell-free DNA, hypermethylation of DNA, and
protein biomarker levels [19,46,49–52].

Our results show that an improved multivariable risk prediction model can be devel-
oped from the careful consideration of information from multiple different urine fractions
in men suspected to have prostate cancer. Urinary levels of EN2 protein were quanti-
fied by ELISA, whilst the transcript levels of 167 cell-free mRNAs were quantified using
NanoString technology. The final model integrating information from those assays with
serum PSA levels was deemed ExoGrail. Markers selected for the model include well-
known genes associated with prostate cancer and proven in other diagnostic tests, such as
PCA3 [45], HOXC6 [20], and the TMPRSS2/ERG gene fusion [53]. An interaction between
urinary EN2 protein levels and quantified transcripts of SLC12A1 was observed, further
demonstrating the benefit of considering information from multiple biological sources
(Figure S4).

ExoGrail was able to accurately predict the presence of significant (Gs ≥ 7) prostate
cancer on biopsy with an AUC of 0.89, comparing favourably to other published tests
(AUCs for Gs ≥ 7: PUR = 0.77 [46], ExoMeth = 0.89 [23], ExoDX Prostate IntelliScore =
0.77 [21], SelectMDX = 0.78 [20], epiCaPture Gs ≥ 4 + 3 AUC = 0.73 [49]). Furthermore,
ExoGrail resulted in accurate predictions even when serum PSA levels alone proved
inaccurate; patients with a raised PSA but negative biopsy result possessed ExoGrail
scores significantly different from both clinically benign patients and those with low-grade
Gleason 6 disease, whilst still able to discriminate between more clinically significant
Gleason ≥ 7 cancers (Figure 4). The adoption of ExoGrail into current clinical pathways
for reducing unnecessary biopsies was considered, showing the potential for up to 32% of
patients to safely forgo an invasive biopsy without incurring excessive risk (Figure 6).

ExoGrail was developed with the explicit goal of being robust to potential overfitting
and bias, using strong internal validation methods in bootstrap resampling and out-of-bag
predictions. Nonetheless, ExoGrail was developed in a relatively small dataset and so
requires external validation in an independent cohort before it can be considered for use as
a clinical risk model. To this end, we are currently collecting samples from multiple sites in
the UK, EU and Canada using an updated ‘At-Home’ Collection system [54]. The At-Home
collection system enables biomarker analysis to be performed on urine samples provided by
patients at home, which they send in the post to a centralised laboratory. This collection and
analysis system will sidestep the need for a visit to the clinic and lead to a postal screening
system for prostate cancer diagnosis and prognosis. In this study, we will also assess the
potential utility of supplementing MP-MRI with ExoGrail, as MP-MRI can misrepresent
disease status, even with rigorous controls in place [6]. The NanoString expression analysis
system used in the ExoGrail signature is a rapid and cost-effective analysis system that is
also used in the FDA-approved Prosigna Pam50 test for breast cancer aggressiveness [55],
making ExoGrail well-positioned for implementation for patient benefit.

5. Conclusions

ExoGrail was able to accurately predict the presence of significant (Gs ≥ 7) prostate
cancer on biopsy and showed the potential for an important number of patients to safely
forgo an invasive biopsy. If validated in future studies, ExoGrail has the potential to
positively impact the clinical experience of patients being investigated for prostate cancer
that ultimately have no disease or indolent prostate cancer.

6. Patents

A patent application has been filed by the authors for the present work and work
related to this.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13092102/s1, Figure S1: Boruta analysis of variables available for the training of the
SoC model, Figure S2: Boruta analysis of variables available for the training of the Engrailed model,
Figure S3: Boruta analysis of variables available for the training of the ExoRNA model, Figure S4:

https://www.mdpi.com/article/10.3390/cancers13092102/s1
https://www.mdpi.com/article/10.3390/cancers13092102/s1
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Partial dependency plots detailing the marginal effects and interactions of SLC12A1 and urinary EN2
on predicted ExoGrail Risk Score, Figure S5: Risk score distributions of the trained models including
the EN2 and PSA model, Figure S6: Density plots detailing risk score distributions generated from
four trained models. Table S1: List of all features available for selection as input variables for each
model prior to bootstrapped Boruta feature selection, Table S2: AUC of all trained models, including
a combination of EN2 and PSA, for detecting outcomes of an initial biopsy for varying clinically
significant thresholds. Supplementary Methods.
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