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Dynamical Quantum phase 
transition and Quasi particle 
excitation
R. Jafari1,2,3

Dynamical phase transitions (Dpts) are signaled by the non-analytical time evolution of the dynamical 
free energy after quenching some global parameters in quantum systems. the dynamical free energy is 
calculated from the overlap between the initial and the time evolved states (Loschmidt amplitude). In 
a recent study it was suggested that DPTs are related to the equilibrium phase transitions (EPTs) (Heyl, 
M. et al. Phys. Rev. Lett. 110, 135704 (2013)). We here study an exactly solvable model, the extended 
XY model, the Loschmidt amplitude of which provides a counterexample. We show analytically that the 
connection between the Dpts and the epts does not hold generally. Analysing also the general compass 
model as a second example, assists us to propound the physical condition under which the DPT occurs 
without crossing the equilibrium critical point, and also no DPT by crossing the equilibrium critical point.

Recently, the study of non-equilibrium properties of quantum systems have been attracting a lot of attention1–5. 
One of the ongoing interest is to understand the notion of universality for a system away from equilibrium. 
Recent progress in the studies of ultra-cold atoms trapped in optical lattices provide a new framework for inves-
tigation of nonequilibrium dynamics of quantum critical phenomena6–9. Specifically, by considering a quantum 
quench, where a system is prepared in a well defined initial state and then suddenly changing the external param-
eters in the Hamiltonian controls the unitary evolution of the system10–12. The nonequilibrium dynamics of the 
quenched quantum system can be described in many different ways, borrowing ideas from equilibrium statistical 
mechanics. In a recent work the notion of dynamical phase transitions (DPTs) has been introduced probing the 
non-analyticities in the dynamical free energy in the complex time plane13. The idea originates from the resem-
blance between the canonical partition function of an equilibrium system β = β−Z Tre( )  and that of the quan-
tum boundary partition function ψ ψ= 〈 | | 〉−Z z e( ) z

0 0
  14,15 which corresponds to the Loschmidt amplitude (LA) 

for z = it. The LA ( ψ ψ= 〈 | | 〉−L t h e h( ) ( ) ( )i h t
0

(1) ( )
0

(1)(2) ) is the overlap amplitude of the initial quantum state 
|ψ(h(1))〉 with its time evolved state under the post-quenched Hamiltonian  h( )(2) . In the complex time (z) plane, 
the dynamical free energy density is defined as f(z) = −limN→∞ ln Z(z)/N where N is the number of degrees of 
freedom13,16–18. In a spirit similar to the classical case, one then looks for the non-analyticities of f(z) or zeros of 
the Z(z), known as Fisher zeros where interpreted as a dynamical phase transition13,16,17,19. Additionally, these 
DPTs are presented in sharp nonanalyticities in the rate function of the return probability (Loschmidt echo) 
defined as l(t) = −limN→∞ ln |L(t)|2/N13,17,20–26.

A similar observation was first made by M. E. Fisher22, who pointed out that the phase transition in a thermo-
dynamic system is signaled by the non-analyticities in the free-energy density of an equilibrium system whose 
information can be acquired by analyzing the zeros of the partition function in a complex temperature plane. 
These zeros of the partition function cutting the real axis in the thermodynamic limit and integrate into a line 
in complex temperature plane23. These crossings mark the non-analyticities in the free-energy density. A similar 
observation was reported earlier for a complex magnetic plane by Lee-Yang24.

An initial analytical result for the dynamical phase transition in the one-dimensional transverse Ising model13 
was verified in several subsequent studies for both integrable19,25 and non-integrable models16,17,19,21,25–29 which 
established that the DPTs occur only if the sudden quench crosses the equilibrium quantum critical point. These 
works have been extended to the higher dimensional systems30,31, the dynamical topological order parameter32, 
the role of topology30, and slow quench scopes18,33. Further studies, however, reveal that DPTs can occur following 
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a sudden quench even within the same phase (i.e., not crossing the QCP) for both non-integrable17,19,21 as well 
as integrable models16. This distinct property can be emanated from a kinetic constraint. The kinetic constraint 
is a U(1) symmetry due to magnetization (particle) conservation which does not allow to dynamically enter the 
magnetization sectors (particle number) where the system adopts in the equilibrium case17,19.

To the best of our knowledge, there has been no general principle to connect the DPTs to the QPTs. The pur-
pose of this paper is to highlights the physical conditions under which the quantum system may show DPT. To 
this aim, we serve two models as examples, the extended XY chain in a staggered magnetic field and the general 
compass model, to show that generally DPTs can occur in quenches crossing the point where the quasiparticles 
are massless. Such quasiparticles may indeed be expected to appear at the quantum phase transition point, but 
as our case studies of the extended XY model and extended quantum compass chain (EQCC) reveal, this is not 
necessarily so.

the extended XY Model
The extended XY model dictated by the following Hamiltonian

 ∑ σ σ σ σ σ σ σ σ σ σ= −
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where, N is the system size, hs represents the staggered transverse field, J and J3 are exchange couplings between 
the spins on the nearest-neighbor and the next-nearest-neighbor sites respectively. Performing the Jordan-Wigner 
fermionization and introducing the Nambu spinor Γ =† † †c c( , )k

q
k
p , the Fourier transformed Hamiltonian can be 

expressed in Bogoliubov-de Gennes (BdG) form34,35, = −∑ Γ Γ≥
†H H k( )k 0 , with
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where k = 4πn/N with −N/4 < n < N/4 for periodic boundary conditions35. Using the standard Bogoliubov 
transformation
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θ = −h J k htan( ( )) cos( /2)/ , (3)k s s

we finally can write the Hamiltonian in the diagonalized form as  ε α α ε β β= ∑ +α β† †h h[ ( ) ( ) ]k k s k k k s k k , where 
ε = − +α h J k h J k( ) ( /2) cos( ) ( ) cos ( /2)k s s3
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where | 〉0 k is vacuum states of fermions.
This model reveals three phases, long-range ordered anti-ferromagnetic phase, in addition to two different spin 

liquid phases, spin liquid (I) and spin liquid (II). The phase transition between anti-ferromagnetic phase and spin 
liquid (I) is the gapped to gapless phase transition which occurs at = ±h J /2s

c1
3  (for simplicity we take J = 1). The 

system is the antiferromagnet for | | ≥h J /2s 3  where ε ≤α h( ) 0k s  and ε >β h( ) 0k s  for all k mode, and therefore the 
ground state for each mode is α | 〉† 0k k with the total ground state energy ε= ∑ αE h( )g k k s . For − < | | <J h J/4 1 /2s3

2
3  

system enters into the spin liquid (I) phase where ε ≤α h( ) 0k s  for all modes in addition to ε β h( )k s  which is negative for 
some of the k mode. So, for a given mode where both ε α h( )k s  and ε β h( )k s  are negative the ground state is given by 
α β | 〉† † 0k k k whereas for a mode where only ε α h( )k s  is negative, α | 〉† Vk k is the ground state of the system. The 
gapless-gapless phase transition takes place between spin liquid (I) and spin liquid (II) at = ± −h J /4 1s

c2
3
2  where 

the topology of the Fermi surface changes35. In the spin liquid (II) phase (| | ≤ −h J /4 1s 3
2 ) both ε α(0)k  and ε β h( )k s  

have both positive and negative branches resulting to four Fermi points, two from each branch. Consequently, there 
are three possible ground states for a given k mode depending on the sign of the energies ε α β h( )k s

,  given by | 〉0 k, 
α | 〉† 0k k, and α β | 〉† † 0k k k and the ground state energy is the sum over all the modes with negative energies of each 
branch. In what follows we will assume the system is prepared in the ground state of Hamiltonian Eq. 1 correspond-
ing to hs

(1). At time t = 0, we quench the staggered field strength →h hs s
(1) (2) and we evolve the initial state according 

to the new Hamiltonian  h( )s
(2) .

It is straightforward to show that the Loschmidt amplitude (LA) and the return probability (RP) of the 
extended XY model are given by
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respectively, where, η θ θ= −h h2 ( ) ( )k k s k s
(1) (2) , η=A sin (2 )k k

2 , and ε ε ε∆ = −β αh h( ) ( )k k s k s
(2) (2) . In the thermody-

namic limit the zeroes of the Loschmidt amplitude in the complex plane coalesce to a family of lines labeled by a 
number ∈n

ε
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∆
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The sketches of lines of Fisher zeros are shown in Fig. 1(a,b) for quenching the system across the equilibrium 
quantum critical point (hs = 2) and the non-critical line (hs = 0), respectively. As seen in Fig. 1(a), the lines of 
Fisher zeroes do not cut the imaginary axis for a quench crossing the quantum critical point. While the imaginary 
axis is crossed by Fisher zeros lines if the system quenched through the non-critical line (hs = 0) in Fig. 1(b).

The main quantity that controls the dynamical free energy is ηtan ( )k
2 , which depends on the parameters of 

pre-quenched and post-quenched Hamiltonian. The Fisher zeroes lines in the complex plane cross the imaginary axis 
only when there is a mode k* that satisfies η =⁎tan ( ) 1k

2  (η π=⁎ /4k ). Using the expression η θ θ= −h h2 ( ) ( )k k s k s
(1) (2)  

and Eq. (3) this condition can be solved for k* analytically







 = −

⁎k h hcos
2

,
(8)s s

2 (1) (2)

It is easily seen that, the above equation can only be fulfilled provided h hs s
(2) (1) becomes negative. In other 

words, the non-analyticities in the Loschmidt amplitude can only exist when the system is suddenly quenched 
through the the non-critical line hs = 0 and | | ≤h h 1s s

(2) (1) . As a consequence of this analytical analysis the 
Loschmidt amplitude shows a periodic sequence of real-time non-analyticities in the case of quenching across the 
non-critical line hs = 0 at times

π
ε

=


 +



 =

∆
⁎ ⁎

⁎
t t n t1

2
, 2 ,

(9)n
k

which numerically verified as shown in Fig. 2(a). We should mention that, the momentum k changes from −π to 
π, and for both the quenched cases = ±∞π→± Re z klim [ ( )]k n , so each line of Fisher zeros consists of two overlap-
ping half lines. Then, the Fisher zeros lines in Fig. 1(b) cross the imaginary axis twice which means there are two 
timescales in the dynamical free energy. Due to symmetric spectrum around k = 0, i.e., ε ε=α β α β

−k k
, ,  two times-

cales are equal.
To find out why the LA shows nontrivial behaviour for the quench crossing the phase boundary and also 

crossing the non-critical line let us to take a detailed look at the LE in Eq. (6). First note that, the real time 
instances at which the LA is zero is exactly equivalent to the time instances at which the return probability (RP) is 
zero. It requires that one factor becomes zero in Eq. (6), i.e., =⁎ t( ) 0k  provided that the oscillating part of a k* 
mode becomes one.

Figure 1. (a) Lines of Fisher zeros in the complex plane (z) for a quench across the gapped to gapless quantum 
phase transition point at =h 2s

c , ( = .h 2 5s
(1) , = .h 1 5s

(2) ). (b) Lines of Fisher zeroes for a quench within the same 
phase (Spin Liquid) crossing the non-critical point hc = 0 ( = .h 0 25s

(1) , = − .h 0 25s
(2) ).
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An analysis shows that the oscillation amplitude Ak is small for a quench across the critical point while it takes 
its maximum possible value (Ak = 1) when quench performed across the line hs = 0 at ±k* (inset Fig. 2(a)). It results 
that the corresponding modes can contribute destructively to the RP only at k* mode at time instances at which its 
oscillation term is one i.e., ε∆ =⁎ ⁎A tsin ( /2) 1k k

2 . Then, the equation results π ε= + ∆ = +⁎
⁎t n t n(2 1) / ( 1/2)n k  

which is exactly equivalent to Eq. (9).
In other words, if the maximum possible value of the oscillation amplitude is less than 1, no DPT can appear 

even when the system is quenched across the QCPs. It is instructive to show that the amplitude of oscillation is 
connected to the occupation of the excited state. Defining excited state occupancy11 ψ ψ= − |〈 | 〉|n h h1 ( ) ( )k 0

(1)
0

(2) 2, 
where nk is the expectation value of the quasiparticle occupation number in the post-quench Hamiltonian and is 
conserved under the time evolution, results η = −n nsin (2 ) 4 (1 )k k k

2 . The maximum possible value of the oscilla-
tion amplitude and thus DPTs can occur whenever, nk = 1/2. The DPT cannot occur, even the quench is per-
formed through an equilibrium QCPs, if the value of nk is not equal to 1/2,. Since the oscillation amplitudes can 
be interpreted as measuring the probabilities of quasiparticle excitations, much larger amplitudes is expected at 
or near the gap-closing point. Therefore, small oscillation amplitude and consequently the absence of DPTs for a 
quench crossing the antiferromagnetic-spin liquid phase transition line hs = ±J3/2 can be attributed to the fact 
that the quasiparticles which control the LA remain fully gapped as the QPT points crossed during the quench 
(Fig. 2(b)). On the contrary, the occurrences of DPTs for a quench within the same phase (crossing the line hs = 0) 
are associated with large oscillation amplitude, which is yielded from massless quasiparticle (Fig. 2(c)).

the extended Compass Model
To confirm the condition we have obtained from the study of the extended XY model, under which the dynamical 
phase transition occurs, we investigate the extended quantum compass model (EQCM) as a second example. The 
Hamiltonian of the spin 1/2 extended quantum compass model (EQCM) is characterized by36,37
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In this representation, on dimensional (1d) EQCM is constructed by antiferromagnetic order of X and Y 
pseudo-spin components on odd and even bonds at which the pseudo-spin operators are constructed as linear 
combinations of the Pauli matrices (σα=x,y,z): σ σ θ θσ θσ= ± = ±±

 
( ) cos sinn n n

x
n
y

2
( ) . Here θ (−θ) is arbitrary angle 

relative to σx for even (odd) bounds. Je and Jo characterise the even and odd bound couplings respectively, and 
N = 2N′ is the number of spins. The 1d-EQCM is exactly solvable with the Jordan-Wigner transformation38, which 
in momentum space leads to  ε γ γ= ∑ ∑=

†
E m k k

m
k
m

k
m

1
4 , where γ γ†( )k

m
k
m  denote independent quasiparticle crea-

tion (annihilation) operators. For states with even fermions, ε ε= − = +a bk k
1 4  and ε ε= − = −a bk k

2 3 , 
with = | | + | | + | | + | |− −a J L J Lk k k k k

2 2 2 2 and = | | + − −− − − −
⁎ ⁎b L J J J J L J J L4[ ]k k k k k k k k k k

4 2 2 2 2 , where the parameters 
Lk and Jk are defined by = +L J J e( )k o e

k , and θ = −θ θ−J J e J e( ) ( )k o e
k( ) . We concentrate on an idiosyncratic case of 

θc = π/2 where the 1d-EQCC is critical for arbitrary Je/Jo
37,39. QPT takes place between two different disordered 

phases where the model exhibits highest possible frustration of interactions37,39.
The BdG quasiparticle spectrum of the EQCC is plotted in Fig. 3(a,b) at the isotropic point (IP) Je = Jo and at 

the anisotropic point Jo ≠ Je respectively. The many-particle groundstate of the EQCC is obtained by filling the two 

Figure 2. (a) The rate function of the return probability l(t), for a system with N = 120 sites. Sharp non-
analyticities in the rate function of RP appears periodically at times tn (Eq. 9) for a quench crossing the non-
critical line hs = 0 (solid line) and wiped out for a quench across the critical point h(c)s = 2 (dotted line). Inset: 
The amplitude of oscillation term Ak in (Eq. 6) plotted versus k for a quench crossing the non-critical line hs = 0 
(solid line) and across the critical point =h 2s

c  (dotted line). BdG quasiparticle spectrum (ε εα β,k k ) for the 
extended XY model at (b) critical point =h 2s

c  and (c) non-critical point hs = 0.
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lowest bands, εk
1 and εk

2. As seen, at the IP the energy gap between the εk
1 and ε ε= −k k

4 1 bands closes at θ = π/2, 
k = π (Fig. 3(a)) while it is nonzero away from the IP (Fig. 3(b)). In contrast, and as required for the existence of 
the quantum critical line θc = π/2, the energy gap between the εk

2 and ε ε= −k k
3 2 bands is closed for all k at θ = π/2 

for arbitrary values of Je/Jo. One verifies that the groundstate has a 2N/2-fold degeneracy at the critical line θ = π/2 
off the IP, with an enlarged degeneracy 2 × 2N/2 right at the IP.

By a rather lengthy calculation one can obtain the complete set of eigenstates ψ θ| 〉 = …m( ) , ( 0, , 7)m k,  of the 
model (for details, see the Appendix 0.1), yielding an exact expression for the LA and RP by sudden quench of θ 
(θ1 → θ2)40,41
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where, A B A B C, , , ,k k k k k0, 0, 1, 1, , and Dk are function of overlaps between k modes of the initial ground state and 
eigenstates of the postquenched Hamiltonian α ψ θ ψ θ= |〈 | 〉|( ) ( )m k m k k, , 2 0, 1

2 = …m( 0, , 7) (for details, see the 
Appendix 0.2). The rate function of the RP following the quench from θ1 = 0.49π to θ2 = 0.51π is shownin Fig. 4(a) 
for the IP and away from the IP for system size N = 120. Cusps in l(t) are clearly visible as an indicator of DPTs for 
the quench across the critical point θc = π/2 at the IP while nonanalyticities wiped out for the same quench away 
from the IP which reflects no DPT. As seen in Eq. (11), the LA is not a simple function of z variable and then we 
can not obtain the zeros of LA analytically. So, to obtain the real time nonanalyticities in the rate function of RP 
we have to investigate Eq. (12) directly. As discussed, the nonanalyticities in the rate function of the RP occur 
when the oscillation amplitude, in the mode decomposition of the RP in Eq. (12), takes its maximum possible 
value. The oscillation amplitudes have been plotted in Fig. 4(b) for a small size quench from θ1 = 0.49π to 
θ2 = 0.51π for both the IP (Jo = Je = 1) and away from the IP (Jo = 1, Je = 2). As seen, A0,k and B0,k is nonzero at the 
IP and A0,k takes its maximum possible value at k* mode ( =⁎A 1k0, ), while the oscillations amplitude are zero or 
very small away from the IP (inset, Fig. 4(b)). Therefore, there is no mode where its contribution becomes zero in 
the product in Eq. (12) for resulting nonanalyticities in the l(t) away from the IP. As oscillation amplitudes are 
function of the probability of quasiparticle excitation, the different behaviours of l(t), for a small size quench 
across the critical point, at the IP and away from the IP, originates from the difference between excited states 
occupancies at the IP and away from the IP.

As mentioned, the energy gap between the εk
2 and εk

3 bands, which control the phase transition, is closed for 
all k mode at θc = π/2 for arbitrary values of Je/Jo. While the energy gap between the εk

1 and ε ε= −k k
4 1 bands closes 

at k = π, θc = π/2 and it is nonzero away from the IP.
Since, a sudden quench generally leads to particle-hole type excitations, it is expected that a small quenches, 

which puts a small amount of energy into the system, yields a large oscillation amplitude at the IP due to disper-
sionless quasiparticle band at k = π, θc = π/2. However, we expect a small oscillation amplitude away from the IP 
due to gapped quasiparticle band at k = π, θc = π/2. The contribution of the k* mode in Eq. (12) becomes zero at 
time instances at which ε θ =⁎ ⁎A tsin [( ( )) ] 1k k0,

2 1
2 . Then, the real time nonanalyticities for a small quench across 

the critical line is given by = +⁎( )t t nn
1
2

, where π ε

⁎
⁎t / k

1 . It should be noted that, the oscillation function 
correspond to ⁎B k0,  ( ε θ⁎ tsin [( ( )) /2]k

2 1
2 ) is zero at time tn.

However, for a large size quench which imposes a large amount of energy into the system, and in turn increases 
the probability of quasiparticle excitation, we expect a large oscillation amplitudes and consequently nonanalytic-
ities in l(t) even away from the IP where the quasiparticle energy is gapfull. The oscillations amplitude have been 
plotted in Fig. 5(a) for a large size quench from θ1 = 0.4π to θ2 = 0.6π away from the IP (Jo = 1, Je = 2). As expected, 

Figure 3. Bogoliubov–de Gennes quasiparticle spectrum ε± k
1,2 for the extended quantum compass model at (a) 

the isotropic point (IP) Jo = Je = 1, and (b) at the anisotropic point Jo ≠ Je (Jo = 1, Je = 1.2).
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the oscillation amplitude A0,k reaches its maximum possible value at k* which results nonanalyticities in l(t) 
(Fig. 5(b)). The real time nonanalyticities for a large quench crossing the critical line is given by = +⁎( )t t nn

1
2

, 
where ⁎

⁎ ⁎π ε ε= +t /( )k k
1 2 .

We should stress that, the most pronounced revivals in the RP happen when the system satisfies two circum-
stances, large oscillation amplitude (maximum possible value is not necessary) and the zero energy mode40–42, 
while occurrence of the DPTs only needs large oscillation amplitude with maximum possible value 1.

summary and Conclusions
We have shown that the presence of quantum phase transition point is neither a sufficient nor a necessary con-
dition for observing a dynamical quantum phase transition after a global quantum quench. By examining how 
the eigenstates of the models imprint the return probability, we find that what does matter is the availability of 
propagating quasiparticles as signaled by their having an impact on the rate function of the return probability. 
Searching the dynamical phase transition in the extended XY model, provides an example that a stable massless 
phase can act as a source of dynamical phase transition. While a quantum phase transition generically supports 
massless excitations, our case study of the extended quantum compass model reveals that these excitations may 
not necessarily couple to the quantum phase transition.

We should point out that, in ref.17 it has been reported that in a transfer matrix approach, nonanalyticities in 
rate function of the return probability are a consequence of crossing of the leading eigenvalue with the next lead-
ing eigenvalue of the Hamiltonian for a quench within the same phase. However, it also shown that, for a quench 
across the quantum phase transition point, any quench starting in the ferromagnetic phase and any quench where 
only the uniform magnetic field is changed, leads to zero rate function of the return probability17. The zero values 
of rate function of the return probability in the former case originates from the fact that the ferromagnetic state is 

Figure 4. (a) The presence and the absence of DPTs following a small size sudden quenching of θ in the rate 
function of return probability. The solid line corresponds to the IP where there are periodic occurrences of 
DPTs while DPTs get rounded of away from the IP (dotted line). (b) The amplitudes of oscillation in Eq. 12, 
for a small size quench across the critical point, plotted versus k at the IP Jo = Je = 1. Inset: The amplitudes of 
oscillation away from the isotropic point Jo = 1, Je = 2.

Figure 5. (a) The amplitudes of oscillation in Eq. 12, for a large size quench crossing the critical point, plotted 
versus k away from the isotropic point Jo = 1, Je = 2. (b) The rate function of the return probability l(t), for a large 
size quench from θ1 = 0.4π to θ2 = 0.6π for system size N = 120, away from the IP Jo = 1, Je = 2. Cusps in l(t) are 
clearly visible indicating a dynamical phase transition.
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an eigenstate of both the pre-quenched and the post-quenched Hamiltonians17,19. In the latter case the conserva-
tion of the total magnetization results zero rate function of the return probability. In this paper the quench has not 
been done by changing the magnetic field and the initial state in both the extended XY model and the extended 
compass model is not the eigenstate of the post-quenched Hamiltonian17,19. So, our findings may call for a revisit 
of earlier studies on dynamical phase transition and quantum criticality, and can shed new light on the bridge 
between dynamical phase transition and quantum phase transitions43.
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