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Using whole‑exome sequencing 
and protein interaction networks 
to prioritize candidate genes 
for germline cutaneous melanoma 
susceptibility
Sally Yepes1*, Margaret A. Tucker1, Hela Koka1, Yanzi Xiao1, Kristine Jones1,2, Aurelie Vogt1,2, 
Laurie Burdette1,2, Wen Luo1,2, Bin Zhu1,2, Amy Hutchinson1,2, Meredith Yeager1,2, 
Belynda Hicks1,2, Neal D. Freedman1, Stephen J. Chanock1, Alisa M. Goldstein1,3 & 
Xiaohong R. Yang1,3*

Although next‑generation sequencing has demonstrated great potential for novel gene discovery, 
confirming disease‑causing genes after initial discovery remains challenging. Here, we applied a 
network analysis approach to prioritize candidate genes identified from whole‑exome sequencing 
analysis of 98 cutaneous melanoma patients from 27 families. Using a network propagation method, 
we ranked candidate genes by their similarity to known disease genes in protein–protein interaction 
networks and identified gene clusters with functional connectivity. Using this approach, we identified 
several new candidate susceptibility genes that warrant future investigations such as NGLY1, IL1RN, 
FABP2, PRKDC, and PROSER2. The propagated network analysis also allowed us to link families that 
did not have common underlying genes but that carried variants in genes that interact on protein–
protein interaction networks. In conclusion, our study provided an analysis perspective for gene 
prioritization in the context of genetic heterogeneity across families and prioritized top potential 
candidate susceptibility genes in our dataset.

CDKN2A and CDK4 are the two well-established high-risk genes for familial cutaneous malignant melanoma 
(CMM). In the last several years, BAP1, POT1, ACD, TERF2IP, and TERT were also identified as high-risk 
melanoma susceptibility  genes1. Separately, intermediate-risk and low-risk genes have been identified, primarily 
from genome-wide association studies (GWAS). However, overall, mutations in known genes account for mela-
noma risk in less than 40% of melanoma-prone families, suggesting the existence of additional high-risk genes 
or perhaps a polygenic mechanism involving multiple genetic  contributions2. Identifying additional high-risk 
melanoma susceptibility genes has been challenging because of the presence of extensive genetic heterogeneity, 
the rarity of recurrent mutations, and the complexity of the underlying genetic  susceptibility3.

Although the application of Whole Exome Sequencing (WES) has been helpful in identifying potential 
disease-causing genes, confirming disease-causing variants after the initial discovery remains challenging. Even 
after all the filtering steps to remove common, low-impact, and non-cosegregating variants, there are usually 
multiple variants within a single family that are potentially related to the disease. In addition, variants in the 
same genes are rarely seen in multiple families (“private mutations”), requiring the development and adaptation 
of new analytical methods to address these issues. Here, we leverage a framework of the network analysis to 
identify candidate CMM genes that are connected at the functional level. Many genes exert their functions as 
components of protein complexes that represent molecular machineries, signaling pathways or cellular struc-
tures. Complicated molecular assemblies, however, do not necessarily fit the definition of conventional signaling 
pathways. Protein–protein interaction (PPI) networks, which represent the cellular network of all protein–protein 
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interactions (interactome), may provide a powerful resource complementing genetic data to reveal complex 
interactions affected in disease states.

Gene prioritization methods leveraging interaction networks are based on the observation that genes related 
to similar diseases tend to lie close to one another in PPI  networks4. Recently, a group of methods accounting 
for the global structure of networks have emerged to assess the proximity and connectivity between known 
disease genes (seeds) and candidate  genes5–7. Central to network global methods is the common paradigm of 
network propagation, which is a powerful transformation method that can be applied to gene prioritization, 
gene function prediction, module discovery, disease characterization, and drug target  prediction8. In recent 
years, computational approaches based on PPI networks have been successfully applied to interpret genomic 
data from WES and GWAS, and to identify molecular interactions affected by somatic mutations and germline 
variations in multiple  diseases9–14.

In this study, we applied an analytic approach to integrate germline WES data with knowledge of the human 
PPI network architecture. Specifically, we applied network analyses based on the propagation principle, which 
incorporates previous knowledge of CMM susceptibility or driver genes (seed genes) to prioritize candidate 
genes identified from WES of CMM families (Fig. 1).

Figure 1.  Methodological workflow. After Whole Exome Sequencing analysis of 27 CMM families, the 
resulting variants were filtered, and methods based on the network propagation principle were applied to 
prioritize candidate genes in the vicinity of genes previously related to CMM. Seed genes are known CMM 
genes (including susceptibility genes and somatic drivers) and candidate genes are those identified from 
the whole-exome sequencing analysis. The network propagation amplifies a biological signal based on the 
assumption that genes underlying similar phenotypes tend to interact with one another. Each gene was scored 
by its similarity to every other gene in protein interaction networks (interactomes). These scores or probabilities 
were then used to rank candidate genes and reveal gene clusters, respectively. Degree aware algorithm (DADA) 
was applied for gene ranking, and Hierarchical HotNet and GeneMANIA tools were used to identify modules. 
The variant filtering plan excluded variants based on population frequency in databases and internal controls, 
predicted pathogenicity, cosegregation in families, and quality control measures (see “Methods” section for 
filtering details).
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Using this approach, we nominated top candidate genes for further follow-up and identified gene networks 
that may relate to CMM susceptibility. Further, our study provides an analysis perspective on gene prioritization 
in the context of genetic heterogeneity across families.

Methods
All family members who were willing to participate in the study provided written informed consent under a 
National Cancer Institute (NCI) Institutional Review Board (IRB) approved protocol (NCT00040352; 02-C-
0211). All methods were performed in accordance with the relevant guidelines and regulations.

Study population. All diagnoses of melanoma were confirmed by reviewing pathologic materials/reports, 
medical records, or death certificates. All study participants were of European ancestry from the United States. 
Originally the exome sequencing analysis included 144 melanoma cases from 76  families2. For this analysis, we 
selected 27 families (n = 98 CMM patients) with at least three sequenced CMM cases/obligate carriers within a 
family to enrich for genetic cases. The selected families in our analysis did not carry mutations in known high-
risk CMM genes.

Whole‑exome sequencing and bioinformatics analysis. WES was performed at the Cancer Genom-
ics Research Laboratory, National Cancer Institute (CGR, NCI). Details of the exome capture, WES, and bioin-
formatics pipeline used have been previously  described2,15,16. Briefly, SeqCAP EZ Human Exome Library v3.0 
(Roche NimbleGen, Madison, WI) was utilized for exome sequence capture. Exome sequencing was performed 
to a sufficient depth to achieve a minimum coverage of 15 reads in at least 80% of the coding sequence from 
the UCSC hg19 transcripts database. Variant discovery and genotype calling were performed globally using 
three variant callers (UnifiedGenotyper and HaplotypeCaller modules from GATK and FreeBayes [v9.9.2]). We 
included all target regions, as well as a 250-bp flanking region on each side. An Ensemble variant calling pipeline 
(v0.2.2) was then implemented to integrate the analysis results from the above mentioned three callers. Subse-
quently, the Ensemble variant calling pipeline that applies a Support Vector Machine (SVM) learning algorithm 
was used to identify an optimal decision boundary based on the variant calling results out of the multiple variant 
callers to produce a more balanced decision between false positives and true positives.

Gene and variant filtering. Variants were included in the network analysis if they met the following 
criteria: (1) had a minor allele frequency (MAF) of < 0.001 in the 1000 Genomes Project, Exome Sequencing 
Project (ESP6500), and Exome Aggregation Consortium (ExAC); (2) were observed in ≤ 2 families from an in-
house database (CGR, NCI) of ∼ 2000 exomes in ∼ 1000 cancer-prone families (excluding melanoma-prone or 
pancreatic cancer families); (3) were present in at least 3 sequenced CMM cases/obligate carriers within a family; 
(4) were classified as non-synonymous including frameshift, stop-gain, inframe deletion or insertion, missense, 
and splicing site variants; (5) were not located in highly variable genes; and (6) were likely to be deleterious for 
missense variants based on at least 2 of the 3 in silico predictions (Meta Likelihood ratio: D, METASVM: D, 
and CADD: ≥ 20). The first two algorithms are ensemble prediction scores that incorporate results from nine 
algorithms (SIFT, PolyPhen-2, GERP ++, Mutation Taster, Mutation Assessor, FATHMM, LRT, SiPhy, and Phy-
loP) and allele  frequency17. Variants flagged with our pipeline quality control metric (CScorefilter), had a read 
depth < 10, ABHet < 0.2 or > 0.8, or were called by only one of the three callers used were excluded. Resulting 
variants were then aggregated into genes for the subsequent network analysis.

Network‑based candidate disease gene prioritization. We started with known genes with roles in 
CMM as the seeds and then applied the network propagation principle to prioritize/rank the group of candidate 
genes observed and selected from our exome analysis. Although the methods varied by how the propagation 
or diffusion was applied, the same propagation principle was common to all methods. The seed genes served as 
starting points for a random walk from node to node along the links of the network. At every step of the iterative 
algorithm, the current position moves to a randomly selected neighbor. After every move, the position is reset to 
a randomly chosen seed gene with a given probability (the restart value). After sufficient iterations, the frequency 
with which the nodes in the network are visited converges and is then used to rank the corresponding genes. 
Genes that are visited more often are considered to be closer to the seed genes and therefore are more relevant to 
the disease than those visited less  often18.

We chose seed proteins that included known high-, intermediate- and low-risk genes for CMM, that had 
been identified primarily by family studies, linkage and  GWAS2 (Table 1). Most of these loci involve genes and 
pathways that are known to play important roles in melanoma, such as telomere biology, cell cycle, pigmenta-
tion and nevi density. Our seed list also included genes considered to be somatic drivers for CMM, which were 
primarily compiled from The Cancer Genome Atlas (TCGA)  analysis19,20 (see Table 1).

Gene ranking. To rank genes, we applied the classic Random Walk with Restart (RWR) algorithm devel-
oped by Li and  Patra18, and an improved version of it called  DADA21. DADA, which fundamentally uses RWR, 
also provides statistical adjustment models to correct for ascertainment bias by accounting for the degree of 
connection among target genes since highly connected genes may be sensitive to the skewed distribution of 
PPI networks. To test our pipeline and strategy to identify relevant CMM genes, we included two families that 
carry variants in two well-known high-risk genes for CMM (POT1 and CDKN2A). We used the same filtering 
strategies and seed genes (with the exception of POT1 and CDKN2A) for the network analysis in these two 
positive-control families.
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Permutation test was performed based on the outcome of the RWR algorithm applied to the interactomes 
using known CMM genes (Table 1) as seed nodes. According to genes yielded by the RWR algorithm, each node 
(gene) in the networks received a score representing its probability of being a potential risk gene. Genes with 
high probabilities are highly likely to be CMM risk genes. However, due to the topological structure of networks, 

Table 1.  Cutaneous malignant melanoma (CMM) related genes used as seeds by network propagation 
algorithms. a Disease-related genes included known high, intermediate, and low-risk genes for CMM identified 
by family studies, linkage, and  GWAS2. Somatic drivers for CMM were also  included19,20.

Genes Riska Associated pathway/driver

ACD High Telomere

TPP1 High Telomere

BAP1 High Cell cycle

CDKN2A High and low Cell cycle

CDK4 High Cell cycle

POT1 High Telomere

TERF2IP High Telomere

IRF4 Intermediate Pigmentation

MC1R Intermediate Pigmentation

MITF Intermediate Melanocyte differentiation

SLC45A2 Intermediate Pigmentation

AGR3 Low Unknown

ARNT Low Xenobiotic metabolism

ASIP Low Pigmentation

ATM Low DNA repair

CASP8 Low Apoptosis

CCND1 Low Cell cycle

CDKAL1 low Unknown

CDKN2B Low Cell cycle

FTO Low DNA repair

HERC2 Low Pigmentation

KITLG Low Pigmentation

MTAP Low 9p21.3 locus

MX2 Low Unknown

OBFC1 Low Telomere

OCA2 Low Pigmentation

PARP1 Low DNA repair

PLA2G6 Low Nevi

SLC24A5 Low Pigmentation

TERT Low & high Telomere, Nevi

CLPTM1L Low & high Telomere, Nevi

RAD23B Low DNA repair

TMEM38B Low DNA repair

TYR Low Pigmentation

TYRP1 Low Pigmentation

BRAF Unknown Driver

NRAS Unknown Driver

HRAS Unknown Driver

NF1 Unknown Driver

RAC1 Unknown Driver

MAP2K1 Unknown Driver

TP53 Unknown Driver

ARID2 Unknown Driver

DDX3X Unknown Driver

PPP6C Unknown Driver

PTEN Unknown Driver

RB1 Unknown Driver
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some of the RWR resulting genes are not functionally related to CMM and are likely false-positive genes. Thus, to 
correct for the occurrence of false positive findings, a permutation test was performed to evaluate the probability 
of each candidate gene produced by RWR to be a significant CMM gene with several random gene sets used as 
seeds in comparison to actual ones. 1000 Ensembl ID sets with 47 genes (the number of total seeds originally 
applied) were randomly produced and each set was used as seed nodes. Then, each candidate gene received a 
probability value. After all 1000 sets were tested, each gene received one actual probability based on which a 
P-value was calculated as follows:

where θ is the number of randomly produced sets in which the gene probability is larger than the probability 
computed by RWR using the original seed set from Table 1. We selected the value of 0.05 as the P-value threshold 
for controlling false-positive findings.

Interactome sources. To evaluate the impact of different sources of interaction data, we used three 
interaction databases for the analysis of gene ranking and cluster detection algorithms: InWeb_IM  network22, 
 Reactome23, and HINT +  HI24,25. The selected networks have differences in terms of protein interaction sources, 
validation methods and completeness, but all are considered high-quality interactomes and together represent a 
good representation of protein interaction in human cells

Gene module detection. For module/subnetwork detection, we applied the Hierarchical  HotNet26 and 
GeneMANIA  algorithms27,28. Hierarchical HotNet identifies altered subnetworks or clusters containing genes 
that are both highly altered in a dataset and are topologically close on an interaction network. Hierarchical Hot-
Net controls for ascertainment bias in the network by penalizing high degree nodes and also provides statistical 
significance testing. Hierarchical HotNet (i) combines network topology and vertex scores, (ii) defines a similar-
ity matrix using a random walk-based approach, (iii) constructs a hierarchy of clusters consisting of strongly 
connected components, (iv) assesses the statistical significance of clusters in the hierarchy, (v) identifies altered 
clusters from statistically significant regions of the hierarchy and (vi) combines these clusters from multiple net-
works and sets of vertex scores. For the mutation score required by this method, each gene was assigned a score 
incorporating the percentage of patients who carry the mutation in our dataset. We also included the seed genes 
in our candidate list to increase the chances of finding interacting genes.

GeneMANIA was used as a plugin in  Cytoscape29 with the candidate genes and seeds as input genes to map 
interactions and build a PPI network based on physical interactions. The GeneMANIA algorithm uses its own 
sources of interactions to places interacting genes into clusters and predicts new disease-related genes with their 
categorized functional association implied by multiple interaction datasets. The method consists of two parts: 
a linear regression-based algorithm that calculates a single composite functional association network based on 
multiple data sources (sources by default) and a label propagation algorithm that was used to predict gene func-
tion given the composite functional association network.

Graphical layouts and analysis. Visualizations were performed with the layout algorithms in  Gephi30 
and Cytoscape  software31.

Enrichment analysis. For gene ontology enrichment, we used the functional enrichment component of 
GeneMANIA using the nodes that belong to the connected components, as these nodes may carry greater func-
tional significance.

Pedigree variant annotation, analysis, and search tool (pVAAST). pVAAST was applied to obtain 
statistical evidence of disease-gene association. The software was used to perform gene/variant-based link-
age analysis combined with functional prediction and rare variant case–control analysis in a family by family 
approach to evaluate the combined statistical evidence of disease-gene  association32. We used WES data from 
598 cancer-free controls from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) and 
Cancer Prevention Study (CPS) as reference/controls for the rare-variant association test. These controls, who 
were also of European ancestry, were sequenced and analyzed using the same sequencing platform and Ensem-
ble variant calling pipeline as used for the familial CMM patients.

Results
WES was conducted on 98 patients/obligate gene carriers in 27 CMM families without known mutations. After 
excluding variants based on quality of variant calls, population frequency, predicted pathogenicity, cosegrega-
tion in families (see “Methods” section for details of these filtering steps), a total of 364 variants in 360 genes 
(defined as candidate genes) were included in subsequent analyses. Only 10 of these genes had variants in two 
families, and none were observed in more than two families, highlighting the need for alternative approaches to 
prioritize candidate genes. Then, we applied the network propagation principle to rank candidate genes identi-
fied from our germline exome analysis using a group of genes previously associated with the disease designated 
as seeds genes (Table 1).

We used DADA to rank genes and three different interactome sources were used to evaluate the impact of 
different sources of network data on gene ranking. Table 2 shows genes consistently ranked high by DADA across 
the three networks with permutation P-values < 0.05 (probabilities from RWR are shown in S3 Table).

P = θ/1000;
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Rankings of candidate genes were consistent across the three networks. Top genes identified included both 
known CMM genes (ATM, CDKN2B, TYR, and CDKAL1) and genes that were previously unknown in CMM 
susceptibility, such as PRKDC, MLLT4, PLCE1, MAP2K2, IL1RN, and ATR. As a proof of principle analysis for 
the utility of DADA in gene prioritization, we applied the same ranking strategy in two additional CMM families 
with mutations in known CMM genes (POT1 and CDKN2A). Using the same filtering and seed-gene selection 
scheme (excluding POT1 and CDKN2A as seeds) as for the main analysis, we identified POT1 and CDKN2A as 
the top ranked gene in each of these two families, respectively (S1 Fig).

We then used the GeneMANIA tool to identify modules of interconnected proteins that have direct pro-
tein–protein interactions with seeds. We found 315 protein–protein interactions between 34 seeds (driver and 
susceptibility genes) and the 360 candidates from our WES analysis. 72% of all seed genes from Table 1 were 
mapped to an interconnected cluster demonstrating that CMM driver/susceptibility genes are highly intercon-
nected. About half of our candidate genes were also mapped to this highly interconnected cluster (Fig. 2). We 
focused on genes in the interconnected module in further prioritization steps since these genes may have stronger 
functional relevance compared to genes not found in network clusters.

Almost all top genes ranked by DADA were also mapped to the interconnected cluster (squared in Fig. 2), 
demonstrating a high consistency of results across different network approaches. In addition to ranking, the 
interconnected module also allows a visualization of the complex relationships between seed and candidate 
genes at the functional level. Importantly, some candidate genes in the module showed direct interactions with 
the most relevant seeds (known high-risk CMM genes), such as ATR  and EIF3A (with CDKN2A), and PRKDC, 
PROSER2, and IL1RN (with POT1). We identified 13 direct interactions between candidate genes and high-risk 
CMM susceptibility genes (Table 3). In addition, we also identified some direct interactions between candidate 
genes and CMM driver genes, such as PLCE1, and MLLT4 (with NRAS/HRAS), MAP2K2 (with BRAF) (S1 Table).

Table 2.  Gene prioritization by the DADA algorithm. Genes ranked by two or more interactomes are 
highlighted in bold. a InWeb_IM network consists of high-quality and scored protein interactions aggregated 
from 8 source  databases22. b HINT + HI corresponds to binary and co-complex interactions in  HINT24 with 
high-throughput derived interactions from the HI  network25. c Reactome integrates several large-scale 
experimental data sets to build and train a machine-learning system that identifies potential functional 
interactions among pairs of human  proteins23. d Permutation P-values after applying RWR.

Ranking InWeb_IMa P-valued HIND +  HIb P-valued Reactomec P-valued

1 ATM 0.002 ATM 0.001 TYR 0.001

2 CDKN2B 0.003 CDKN2B 0.001 ATM 0.001

3 TYR 0.005 CDKAL1 0.001 CDKN2B 0.001

4 CDKAL1 0.001 MAP2K2 0.001 PRKCB 0.006

5 PRKDC 0.007 PLCE1 0.002 MAP2K2 0.005

6 MLLT4 0.037 PRKDC 0.008 ATR 0.034

7 CD14 0.034 CD14 0.041 ERBB2 0.024

8 PLCE1 0.011 MLLT4 0.03 FGFR3 0.043

9 EIF3A 0.017 IL1RN 0.008 IKZF3 0.005

10 MAP2K2 0.015 PKM 0.04 ERCC3 0.04

11 PHKB 0.006 FABP2 0.007 RNF4 0.006

12 ATR 0.024 CUL7 0.039 MLLT4 0.049

13 BIRC6 0.026 ECI1 0.024 FLT3 0.008

14 DAG1 0.027 PROSER2 0.02 TIMP1 0.009

15 IL1RN 0.007 CYP4F11 0.007 ARAP2 0.023

16 ERCC3 0.022 CUL9 0.012 MYT1 0.009

17 ARHGAP8 0.039 NGLY1 0.015 NGLY1 0.02

18 FABP2 0.019 CASZ1 0.029 TNFRSF10D 0.033

19 DCAF11 0.05 NR4A2 0.031 DDI2 0.009

20 CDC42BPG 0.015 VPS13D 0.043 MAP3K6 0.031

21 PROSER2 0.013 SALL4 0.038 PRAM1 0.016

22 ANKS1A 0.047 GOLGA6B 0.037 PTPRO 0.001

23 ECI1 0.011 IL22 0.037 PTPN5 0.039

24 NGLY1 0.023 PRR5 0.027 CYP3A7 0.042

25 CYP4F11 0.008 PRDM9 0.002 BTN2A1 0.046

26 CD93 0.037 CYP7A1 0.004 OMA1 0.021

27 SPTLC2 0.035 KCNU1 0.002 KLK12 0.045

28 UTP20 0.039 GRM8 0.002 SPTLC2 0.038

29 WDR5B 0.035 CALCA 0.009 ESYT1 0.019

30 CUL9 0.03 ACOT4 0.003 DUOX2 0.013
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S2 Figure depicts the Degree Score, reflected by the number of interactions between one gene and other genes 
in the network. TP53 and CUL7 showed the highest centrality scores indicating the importance of these genes for 
the network structure from the topological analysis. We also performed a Gene Ontology (GO) enrichment analy-
sis including all genes in the network identified by GeneMANIA and found significant enrichment for categories 
that are related to protein serine/threonine kinase activity, telomere complex, cell aging, and cell cycle (S2 Table).

We also used a different module analysis approach, the hierarchical HotNet consensus algorithm, to identify 
significantly altered subnetworks/modules containing genes that are both altered and topologically close on 
interaction networks. In total, hierarchical HotNet analysis recovered 25 known CMM genes (Fig. 3, green circles) 
and 20 interacting partners as novel potential CMM genes (red circles) across three integrated interactomes, 
forming three groups of conglomerates corresponding to functions associated with telomere biology, cell cycle, 
and somatic drivers. Telomere genes showed a clear separation from the other groups, consisting of four known 
CMM genes (POT1, ACD, TPP1, TERF2IP) and several potential candidate genes such as PROSER2, ECI1, IL1RN, 
CYP4F11 and FABP2, which were also ranked high by DADA. Overall, hierarchical HotNet analysis detected a 
smaller number of interacting genes compared to GeneMANIA. Several genes/interactions were identified by 
both analyses, including the telomere related genes. Most of these new candidate genes were also ranked high 
by DADA, suggesting a high confidence in functional connectivity across these genes.

We applied a Pedigree Variant Annotation, Analysis, and Search Tool (pVAAST), a unified test of linkage, 
functional prediction, and rare-variant association, to further prioritize genes with statistical evidence. Table 4 
summarizes variants in genes ranked high by DADA and/or genes that showed high interactions with seed genes 
by GeneMANIA or HotNet. In particular, several of these genes also showed strong evidence for disease associa-
tion using pVAAST (IL1RN, NGLY1, FABP2, PROSER2, and CDC42BPG). These genes are therefore considered 
to be some of the most plausible CMM candidate genes in our dataset.

We present an example to illustrate how network analyses could be helpful in gene identification when each 
studied family has a distinct set of top candidate genes. The analysis was performed with reconstructed interac-
tions by GeneMANIA. In a pedigree (Family T) with four sequenced CMM patients, we identified a stop-gain 
variant in NGLY1 that was carried by all four cases as well as an obligate gene carrier (subject 1008, Fig. 4). In 
contrast, only one unaffected family member carried the variant. The stop-gain variant (c.1201A > T; p.R401X) 
was determined as the top variant in this family by pVAAST (p = 8.00E−06) (Table 4). While this gene would be 
considered a strong candidate, no variants in NGLY1 were seen in any other families examined. Through network 
propagation, we found that NGLY1 interacts directly with RAD23B (seed), a low-risk CMM gene. Following 

Figure 2.  Interconnected genes module. Figure shows the cluster of interacting proteins identified by 
GeneMANIA. Genes/proteins are prioritized based on their interactions with proteins previously associated 
with the disease. Seeds: green; Candidate genes from exome sequencing analysis of familial melanoma data: red. 
The top genes prioritized by DADA are shown in squares.
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the flow of interactions, RAD23B is directly connected to PKM and indirectly connected to PRKDC (through 
PARP1) and PROSER2 (through POT1). Missense variants in PKM and PRKDC were carried by all sequenced 
cases in Family A4 and three cases in FF2, respectively, while a variant in the splicing region of PROSER2 was 
seen in all three sequenced cases in family D2 (Fig. 4). These results suggest that network propagation may link 
families that do not share variants in the same affected gene but involve genes that interact with each other in a 
PPI network. In summary, our results allowed for gene prioritization from an extensive list of gene candidates, 
detection of novel genes associated with modules with functional relevance, and clustering of families carrying 
affected genes in close proximity.

Table 3.  Known high-risk cutaneous malignant melanoma (CMM) genes and their first interacting neighbors 
identified in the interconnected gene cluster by GeneMANIA. Genes in bold are found in our candidate gene 
list from WES analysis.

Melanoma high risk gene Interacting partner

ACD

TERT

OBFC1

POT1

TERF1

TERF2IP

TPP1
POT1

TERT

BAP1 PTEN

CDKN2A

GGA3

ATR 

CCND1

CDK4

CDK6

EIF3A

HRAS

MAP2K1

TP53

CDK4

CDKN2A

CCND1

CDKN2B

PKM

RB1

CDK6

POT1

ACD

DDX3X

PROSER2

IL1RN

PRKDC

TERF2IP

ECI1

CYP4F11

OBFC1

TPP1

TERT

TERF1

TERF2IP

DDX24

FABP2

IL1RN

ACD

OBFC1

PARP1

TERF1
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Figure 3.  Hierarchical HotNet consensus subnetwork. Green circles indicate known melanoma genes and red 
circles indicate candidate genes from our candidate genes list, many of these genes were also ranked high by 
DADA and found by GeneMANIA. Genes that are part of biological processes such as telomere biology, cell 
cycle, or mutated in tumors are circled.

Table 4.  Gene variants identified by network analysis. Chr chromosome, REF reference allele, VAR variant 
allele, Freq frequency, CMM cutaneous malignant melanoma, MAF minor allele frequency, T tolerant, D 
deleterious, RWR  random walk with restart. a Number of cases with the variant/number of cases sequenced 
in this family. b Internal family controls: ~ 2000 exomes from ~ 1000 cancer families (excluding melanoma or 
pancreatic cancer families). c Pathogenicity prediction for missense variants based on in silico algorithms, 
METALR and METASVM, which are ensemble prediction scores that incorporate results from nine 
algorithms and allele frequency. d pVAAST Pedigree Variant Annotation, Analysis, and Search Tool. Gene/
variant-based linkage analysis combined with functional prediction and rare variant case–control analysis 
to evaluate the combined statistical evidence of disease-gene association in each family; ns non-statistically 
significant. e pVAAST rank: Candidate genes were ranked based on P-values from the combined pVAAST 
test. f Prioritization method: GM GeneMANIA, HH Hierarchical HotNet; DADA Degree-Aware Disease Gene 
Prioritization Algorithm; Sprotein interacting with susceptibility seed; Dprotein interacting with driver seed. 
g Permutation P-values after RWR algorithm and InWeb_IM network.

Gene Chr Location SNP ID REF VAR
Variant 
type

Freq in 
 familya Family ID

Outgroup 
 countb

MAF in control dataset
Variant 
impact

Pathogenecity  predictionc pVAAST pVAAST
Prioritization 
 methodf P-valuegEXAC ESP 1 KG METASVM METALR CADD P-valued Ranke

IL1RN 2 113890242 rs757992723 A C Missense 3/5 FF2 0 4.50E−05 Moderate T T 24.6 3.03E−04 2
DADA/GMS/
HHS 0.007

ERCC3 2 128046437 rs200443230 T A Missense 3/5 A2 0 l.50E−05 Moderate T T 21 ns DADA/GMD 0.022

ATR 3 142232392 rs200070057 T C Missense 3/5 A2 0 2.55E−04 3.49E−04 Moderate T T 25.5 ns
DADA/GMSD/
HHD 0.024

NGLY1 3 25775422 rs201337954 T A Stop_gained 3/4 T 0 2.70E−04 2.33E−04 High 8.00E−06 1 DADA/GMS 0023

FABP2 4 120241839 Rs367603528 C T Missense 3/3 A6 0 l.51E−05 Moderate T T 30 2.74E−04 1
DADA/GMS/
HHS 0.019

CD14 5 140012379 rs151227107 G C Missense 3/5 B22 1 3.78E−04 9.30E−04 Moderate T D 12.74 ns DADA/GMD 0.034

MLLT4 6 168312131 rs769690450 G A Missense 3/3 A6 0 4.50E−05 Moderate T T 21.9 6.03E−03 98
DADA/GMD/
HHD 0.037

MLLT4 6 168348545 rs773338292 G C Missense 3/5 A2 0 1.50E−05 Moderate T T 25.2 ns
DADA/GMD/
HHD 0.037

ANKS1A 6 34985418 rs748921780 C T Missense 4/5 A2 0 Moderate T T 24.4 3.03E−04 13 GMD/HHD 0.047

PRKDC 8 48840360 rs35938758 C T Missense 3/5 FF2 0 2.48E−04 1.19E−04 Moderate T T 25.8 ns DADA/GMSD 0.007

EIF3A 10 120796765 rs367880512 G A Missense 4/4 F10 0 4.50E−05 1.16E−04 Moderate T T 21.6 4.50E-04 13 GMSD 0.017

PLCE1 10 95931182 T G Missense 3/3 X 0 Moderate T T 26.3 ns DADA/GMD 0.011

PROSER2 10 11908784 rs779142603 T C Splicing 3/3 D2 0 3.17E−05 High 12.08 4.11E−04 7
DADA/GMS/
HHS 0.013

CDC42BPG 11 64597710 rs150779995 A G Missense 3/3 D2 0 Moderate T T 28.4 3.52E−04 2 GMD/HHD 0.015

ECI1 16 2294529 rs375300423 C T Missense 4/5 FF2 1 2.53E−04 1.16E−04 Moderate D D 17.19 5.09E−04 14
DADA/GMS/
HHS 0.011

CYP4F11 19 16025439 rs200031770 G C Stop_gained 3/4 F10 0 8.99E−05 1.16E−04 High 13.01 ns
DADA/GMS/
HHS 0.008

MAP2K2 19 4101254 G A Stop_gained 3/5 FF2 0 High 17.68 ns DADA/GMD 0.015
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Discussion
It remains challenging to identify novel disease genes with WES because of the large number of candidate muta-
tions, the small number of available patients/families for variant intersection, and the complexity of susceptibility 
itself. Our study, applying a network analysis approach in combination with a family-based statistical test for 
linkage/association, may provide a methodological framework to investigate genetic heterogeneity and propose 
a focused candidate gene list for functional characterization. Using this approach, we identified NGLY1, IL1RN, 
FABP2, PRKDC, and PROSER2 as the strongest candidate genes in our familial CMM dataset. Specifically, we 
were able to link families with “private” gene mutations based on interconnectivity of these variants in PPI 
networks.

Network propagation from seed genes allowed us to prioritize potential new susceptibility genes previously 
obscured within the large list of variants/genes identified from WES evaluation. In our WES analysis, 360 genes 
remained on the candidate gene list after all filtering steps, which would pose a serious challenge to subsequent 
functional evaluation work. Using DADA, we ranked genes based on their interactions with known melanoma 
genes and identified several top genes that were previously unknown in CMM susceptibility. The top ranked 
genes were confirmed to interact in gene modules with important seeds. Most of these top candidate genes 
have important biological functions that are relevant in cancer development or related processes. For example, 
PRKDC encodes a serine/threonine DNA-PKc that is a molecular sensor of DNA damage and is involved in the 
ligation step of the non-homologous end joining (NHEJ) pathway of DNA double strand break (DSB)  repair33. 
PRKDC also interacts with telomeres influencing chromosome end integrity,  dynamics34 and the risk of CMM 
in melanoma‐prone  families35. The observation that CMM susceptibility genes encode highly interconnected 
modules may at least partially explain the observed genetic heterogeneity of CMM, i.e., variants in any member 
of the molecular module may lead to similar functional alterations that subsequently contribute to risk.

The module detection analysis strategy resulted in inclusion of genes, for which no direct evidence of involve-
ment was previously available, that have close interactions with known CMM genes in the same clusters (e.g.; 
PROSER2, IL1RN, and FABP2 in the telomere biology cluster). PROSER2 is also known as C10orf47, for which 
the function is largely unknown. FABP2 encodes a fatty acid-binding protein that regulates liposynthesis and 
global  metabolism36. In addition, proteins in the FABP family are thought to play a role in gene regulation, cell 
signaling, cell growth and  differentiation37, and alterations in this gene have been reported in different types 
of cancers. For example, FABP7 expression was found to be associated with tumor progression in  melanoma38. 
IL1RN, which was also found interacting with telomere proteins in our network analysis, encodes a member 
of the interleukin 1 cytokine family and modulates a variety of immune and inflammatory responses. IL1RN 

Figure 4.  Dissection of protein–protein interactions. Families are connected by genes that show interactions on 
PPI networks. Only prioritized genes and their direct connections with seeds are shown, recovered through a 
manual examination of the GeneMANIA module. Green circles indicate known melanoma genes and red circles 
indicate candidate genes. Solid squares and circles: CMM cases; Circles: females; Squares: males.
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polymorphisms have been associated with cancer  susceptibility39 and clinical prognosis in melanoma patients 
with aggressive  disease40. The role of these genes in telomere biology has not been previously reported. Here, 
we found immediate interactions between these genes and known high-risk CMM genes (POT1 and TERF2IP) 
involved in telomere maintenance, using the information from a high-resolution map of the telomere interactome 
in living human cells, a method that is capable of detecting even low- affinity or transient  interactions41. Most 
of the interactions represented by the interactomes come from large-scale screening studies that offer a reliable 
source of information, including tandem affinity purification and yeast two-hybrid experiments. Notably, these 
genes also showed strong statistical evidence for association/linkage and were ranked high by pVAAST, further 
highlighting the need for investigating their functions in relation to CMM susceptibility.

The underlying principle of propagation addressed the evident genetic heterogeneity by detecting genes 
that are not necessarily present in multiple families but co-occur in close proximity to the propagated network. 
Using this principle, we identified families that did not share variants/genes in common but were connected 
through a similar molecular landscape. For example, NGLY1 is the strongest candidate gene in one of our most 
informative families. The stop-gain variant (c.1201A > T; p.R401X) is a reported pathogenic variant (ClinVar 
accession: VCV000050962); compound heterozygous or homozygous genotype of this allele caused NGLY1 
deficiency autosomal recessive disorder of the Endoplasmic Reticulum-Associated Degradation (ERAD) path-
way (PMID: 24651605). In family T, this mutant allele, which was present in the heterozygous state, showed 
complete co-segregation with disease with suggestive high penetrance (only one examined unaffected family 
member harbored the allele) and was ranked as the top gene by pVAAST. However, rare non-synonymous vari-
ants in NGLY1 were not observed in any other families sequenced. Through network analysis, however, we were 
able to connect the NGLY1 family with several other families that carried variants in genes interacting with each 
other in PPI networks. Among them, PROSER2 and FABP2 are connected through telomere genes as previously 
mentioned. PRKDC was ranked as top genes by DADA and showed direct interactions with both known CMM 
susceptibility genes and melanoma driver genes. Given the important functions of these genes and the intercon-
nectivity among them, these genes should be considered potential candidates and followed up in further genetic 
and functional evaluations.

The analytical approach used in this study may also help examine the relationships between germline and 
somatic variants since we included germline susceptibility and somatic driver genes as seeds. For example, it is 
worth exploring the role of DDX3X (driver gene), which appeared connecting a group of drivers with a cluster 
of high-risk genes (Fig. 3). We also evaluated somatic nonsynonymous mutations in genes prioritized by our 
network analyses in melanoma samples included in The Cancer Genomic Atlas (TCGA). Somatic mutations in 
genes prioritized in our study were common in TCGA, which were seen in ~ 43% of all tumors (S3 Fig), suggest-
ing potential biological relevance. These mutations did not vary significantly across different genomic  subtypes20.

Despite the increasing and successful applications of interaction networks in scientific discoveries, some 
limitations need to be considered. First, incompleteness (false negatives) and noise (false positives), which are 
the two inherent problems of the available network sources, may affect the gene prioritization work. To address 
this issue, we used three different interactomes and focused on genes that were ranked high in multiple analyses. 
Second, the current network algorithms do not provide formal statistical testing to evaluate the significance of 
a given propagation score. Further, rankings should be used for gene prioritization rather than for determining 
causality. To address this limitation, we also used a family-based association/linkage analysis approach, pVAAST 
and a permutation test after RWR to provide statistical evidence for candidate genes identified by the network 
algorithms. Third, current interaction networks are static in that they were not created across multiple time points 
or under a particular cellular context. Furthermore, the network approach may not be applicable in diseases for 
which the causal or susceptibility genes do not interact with previously known proteins or when there is little 
information on known disease genes as seeds. Another limitation not restricted to network strategies is that 
candidate variants may be regulatory or structural and would not be identified by WES analysis and therefore 
would not be found using interaction network approaches.

In summary, we applied a network analysis perspective to prioritize candidate genes by integrating variant 
analysis with the protein–protein interaction network architecture. Using this approach, we identified plausible 
genes that may be associated with CMM susceptibility in our high-risk CMM-prone families. The results dem-
onstrate the value of a network propagation principle through seed proteins in gene prioritization. Further evalu-
ation of the top identified candidate genes is needed to determine their importance in melanoma susceptibility.

Data availability
The dataset generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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