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Pulmonary hypertension (PH) includes multiple diseases that share as common
characteristic an elevated pulmonary artery pressure and right ventricular involvement.
Sex differences are observed in practically all causes of PH. The most studied type is
pulmonary arterial hypertension (PAH) which presents a gender bias regarding its
prevalence, prognosis, and response to treatment. Although this disease is more
frequent in women, once affected they present a better prognosis compared to men.
Even if estrogens seem to be the key to understand these differences, animal models have
shown contradictory results leading to the birth of the estrogen paradox. In this review we
will summarize the evidence regarding sex differences in experimental animal models and,
very specially, in patients suffering from PAH or PH from other etiologies.
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INTRODUCTION

Sex constitutes a non-modifiable risk marker for several diseases (Khamis et al., 2016; Mattiuzzi and
Lippi, 2019) but in few of them its consequences represent such a challenge as in pulmonary
hypertension (PH). Differences related to sex in PH are not only present in its prevalence but also in
its severity, response to treatment and survival.

PH defines a heterogeneous group of diseases characterized by elevated pulmonary artery
pressure (PAP). Current guidelines and the recent 6th World Symposium on PH defines five
groups of this entity based on differences in pathological findings, hemodynamic characteristics,
clinical presentation and treatment approach (Simonneau et al., 2019).

Complex mechanisms involving a dysregulation of nitric oxide, endothelin-1 production and
the intervention of multiple cell types like pulmonary artery smooth muscle cells (PASMCs),
pulmonary artery endothelial cells (PAEs) and fibroblasts constitute the hallmarks of pulmonary
arterial hypertension (PAH), although they are involved to a lesser or greater degree in all cases of
PH (Humbert et al., 2019). Other specific changes are observed depending on the etiology.
Thereby, in the case of PH due to left heart disease, a backward pressure transmission from the left
side of the heart is the main pathological mechanism, which is associated with chronic changes in
the pulmonary vasculature in a substantial percentage of patients who develop combined pre and
postcapillary PH (Vachiéry et al., 2013). Conversely, in PH associated with lung disease a
muscularization of pulmonary arteries and arterioles due to chronic hypoxia and
inflammation seems to be the main cause (Smith et al., 1992). On the other hand, chronic
thromboembolic pulmonary hypertension (CTEPH) is typically associated with incomplete
resolution of prior venous thromboembolism episodes. This chronic obstruction leads to a
histological adaptation of the microvascular arterioles and a progressive rise in pulmonary
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vascular resistance (PVR) (Delcroix et al., 2016). Globally, in
the long-term, remodeling of the lung vasculature is the main
cause of a rise in PAP and final right ventricle (RV)
disfunction. In the first stages of the disease, the RV adapts
to the increased afterload developing myocardial hypertrophy
and augmented contractility due to changes in myosin isoform
expression (Ryan and Archer, 2014). Despite these changes, if
afterload is not reduced, a maladaptive adaptation of the RV
leads to its failure (Ryan and Archer, 2014). RV disfunction
constitutes a major determinant of survival in PH (Jacobs et al.,
2014).

Incidence and prevalence are clearly dependent on the
group of PH, from 6 to 25 cases per million in the case of PAH
(Badesch et al., 2010; Ling et al., 2012) to a prevalence as high
as 70% of all patients with heart failure (HF) in the case of PH
secondary to left heart disease (Miller et al., 2013; Shah et al.,
2014). However, a bias towards a higher prevalence in women
is clear, especially in PAH (Badesch et al., 2010; Hoeper et al.,
2013).

In this review we aim to recapitulate the evidence regarding
the complex relationship between hormones and sex bias in
both animal models and patients suffering PAH, or other causes
of PH.

OVERVIEW OF SEX HORMONES
SYNTHESIS AND METABOLISM

A detailed description of sex hormone metabolism and signaling,
published elsewhere (Austin et al., 2013; Lahm et al., 2014; Lahm
and Kawut, 2017; Tofovic and Jackson, 2019; Tofovic and
Jackson, 2020), is beyond the scope of this review. Briefly, the
three main estrogenic steroids are 17-β estradiol (estradiol or E2),
the primary active sex hormone in the female, estrone (E1) and
estriol (E3). Cholesterol is the main precursor of these hormones
after several enzymatic processes as the aromatization of the
androstenedione and testosterone hormones (Nelson and Bulun,
2001). Dehydroepiandrosterone (DHEA) is a an intermediate
hormone and precursor for both male and female hormones.
Conversion of testosterone to E2 and of androstenedione to E1 is
catalyzed by aromatase (CYP19A1). Figure 1 summarizes the
complexity of sex hormones synthesis and metabolism as well as
their main effects in humans and animal models. Other than
ovaries, especially in men and postmenopausal women, estrogens
production depends on peripheric tissues through the action of
the aromatase enzyme (Nelson and Bulun, 2001). Thereby, E2
synthesis is possible in endothelia, vascular smooth muscle cells
and myocytes (Harada et al., 1999; Simpson et al., 2002).

FIGURE 1 | Overview of sex hormones synthesis, metabolism and main effects in humans and animal models. Rectangles refer to main functions. Coloured
exagonal forms refer to hormones and metabolites, and non-coloured exagonal forms to enzymes. * Opposite results have been observed in the model of SERT and
S100A4/Mts1. +/- referes to upregulation and downregulations of the molecule activity descrived, respectively. 2OHE2, 2 hidroxyestradiol; 2ME2, 2-methoxyestradiol;
4OHE2, 4 hidroxyestradiol; 4ME2, 4-methoxyestradiol; 16αOHE1, 16 α-hydroxyestrone; BMPR2, Bone Morphogenetic Protein Receptor Type 2; COMT,
Catechol-O-methyltransferase; CYPs, cytochrome enzymes; DHEA, dehydroepiandrosterone; E2, estradiol; ER, estrogen receptor; GPR, G protein-couple receptor;
OH, hydroxy; PAH, pulmonary arterial hypertension; PASMCs, pulmonary artery smooth muscle cells; PV, pulmonary vascular; RV, right ventricular.
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Estrogens levels vary among individuals, change with age, and
in premenopausal women their concentration and type oscillate
in a 28-days cyclical fashion (Draper et al., 2018). Estrogens exerts
most of their biological effects through estrogen receptors (ER)
ERα and ERβ, which are members of the nuclear receptor
superfamily and are encoded by genes physically located in
separate chromosomes (Heldring et al., 2007). In addition, a G
protein-coupled receptor (GPR30) located in the cell membrane
can also act as a binding receptor for estrogens (Pupo et al., 2016).
In this setting two main signaling pathways are important,
descripted in detail in previous dedicated reviews (Heldring
et al., 2007; Murphy, 2012). A genomic pathway in which E2
dimerizes with ERα or ERβ and posteriorly acts as a transcription
factor (Marino et al., 2006), and a non-genomic pathway through
kinase activation and second messengers, such as activation of
endothelial nitric oxide synthase (Lahm et al., 2008) or
prostacyclin synthase (Frump et al., 2021) which effects take
places in seconds or minutes (Shaul, 1999). ER are expressed not
only in the reproductive system but also in the lung and
cardiovascular tissues, in PAECs, PASMCs and fibroblasts
(Dougherty et al., 2006; Hamidi et al., 2011). Due to this wide
receptor expression, estrogens effects are not reserved to sexual
processes and they are involved in the correct vascular and
cardiac function as well as bone metabolism (Xing et al., 2009;
Murphy, 2011; Streicher et al., 2017). Both, ERα and ERβ
activation has been shown to attenuate injury-induced vascular
remodeling through anti-inflammatory effects reducing the
expression of TNFα (Xing et al., 2007), C reactive protein, and
neutrophil chemotaxis (Miller et al., 2004); inhibition of
neointima formation by inhibiting mitogenic effects of a
number of growth factors such as FGF-2 on PASMCs (Suzuki
et al., 1996); and modulating nitric oxide synthase (McNeill et al.,
2002). However, the effects of ERs activation are cell specific and
not completely understood. Moreover, their expression and
activity are modified by multiple factors, such as sex, age, diet,
variations in endogenous hormone levels (menstruation cycle,
menopause or pregnancy) or disease states (Xing et al., 2009;
Murphy, 2011). Indeed, opposite effects of E2 in aged versus
young female animals have been found regarding inflammation
and neointima formation (Miller et al., 2007; Suzuki et al., 2007;
Laczy et al., 2009). A differential O-GlcNAcylation of critical
proteins has been postulated (Laczy et al., 2009). Also DHEA
levels declines with age (Kushnir et al., 2010). In addition to their
effects on vascular remodeling and function, E2 has been
described to have pro-contractile, anti-inflammatory and
antiapoptotic effects in the RV (Frump et al., 2015; Lahm
et al., 2016). Downstream mechanisms include ERα-mediated
increased BMPR2 and apelin upregulation (known to be
decreased in maladaptive RV remodeling) (Frump et al., 2021)
and downregulation of proteins of the endothelin system
(Nuedling et al., 2003).

Moreover, accumulating evidence indicates that the vascular
effects of E2 are mediated largely by its downstream metabolites.
Two seem particularly relevant in PH: 2-methoxyestradiol (2
ME), and the 16 α-hydroxyestrone (16αOHE1). 2ME is
characterized by ER-independent antiproliferative,
proapoptotic, anti-angiogenic and anti-inflammatory effects

whereas 16αOHE1 promotes proliferative and
proinflammatory processes (Dubey et al., 2004). In addition,
CYP1B1 leads to the production of 4-hydroxyestradiol through
oxidation of E2 at C4, which as reactive oxygen species
carcinogenic effects. Growing body of evidence proposes that
dysregulated E2 metabolism influences the development of PH
and suggests a major pathogenic role for 16αOHE1 and CYP1B1,
and 2MEmediating some of the beneficial biological effects of E2
(Tofovic and Jackson, 2020). In this sense, CYP1B1 has been
implicated in the increase in intracellular serotonin via increased
serotonin receptor 5HT1B (SERT) expression associated to
PASMC proliferation (Johansen et al., 2016), and also in the
metabolism of arachidonic acids into hydroxyeicosatetraenoic
acids and epoxyeicosatrienoic acids, hereby stimulating PASMC
growth, inflammation, hypoxic vasoconstriction and vascular
remodeling (Jiang et al., 2011; Zhu and Ran, 2012). However,
as detailed in depth in the review by Tofovic and Jackson (2020),
there is no specific studies linking CYP1B1 and 16αOHE1 and
there are still gaps of knowledge regarding the exact pathogenic
role of both molecules in PAH in humans.

In the case of testosterone, its main production depends on the
gonads and their levels decline with age (Araujo et al., 2004).
Similar to estrogens, their function is not limited to sexual
characteristics. Testosterone receptors are also expressed in the
cardiovascular system and are related to the development of
atherogenic plaques (Hanke et al., 2001) conferring a higher
cardiovascular risk (Kloner et al., 2016).

THE SEX PARADOX IN PULMONARY
ARTERIAL HYPERTENSION

PAH patient registries constantly demonstrate a female
susceptibility with a higher female to male ratio, ranging from
1.4:1 in the UK/Ireland registry (10) to 4.1:1 in the REVEAL
registry (11). The European COMPERA registry demonstrated a
1.6:1 female/male ratio globally however, a much greater
difference was observed among younger patients (18–65 year-
old) with a female to male ratio of 2.3:1 as compared to just 1.2:1
in those older than 65 (Hoeper et al., 2013). This equalization of
female tomale ratio is thought to have a relationship with changes
in hormone levels related to menopause (Ventetuolo et al., 2014).
On the other hand, registries demonstrate as well that female
PAH patients consistently show better survival than men (Benza
et al., 2010; Humbert et al., 2010; Olsson et al., 2014).

Sex differences in PAH have been expressed as a concept called
the “estrogen paradox” summarized in two main points. First,
even if a female susceptibility has been observed, once affected,
women have a better response to treatment and survival than
men. Secondly, animal models show both, deleterious and
protective effects of estrogens over the lung vascular bed. The
attempt to elucidate this concept has aroused great interest in the
scientific community, leading to excellent reviews of the role of
estrogens in experimental models of PH and in patients with
PAH (Lahm et al., 2014; Docherty et al., 2018; Tofovic and
Jackson, 2020). Given the rapid advance of knowledge, our
objective is to review current evidence at an experimental and
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clinical level, as well as the results of clinical trials aiming to
modify the estrogen axis carried out or in progress in PAH
patients.

Evidence From Experimental Animal
Models of Pulmonary Arterial Hypertension
First animal models of PH were based on chronic hypoxia and
monocrotaline (MCT) induced PH. Chronic hypoxia causes PH
in rats andmice meanly through twomechanisms: erythrocytosis,
leading to a higher blood viscosity (Vanderpool and Naeije,
2018), persistent hypoxic vasoconstriction and a variable
degree muscularization of small arteries (Stenmark et al.,
2009). In such model, females mice present a lower hematocrit
level compared to male counterparts (Vanderpool and Naeije,
2018) and higher levels of pro-angiogenic factors at RV
myocardium which might contribute to an improved RV
adaptation (Bohuslavová et al., 2010). Similarly, female adult
rats present better adaptation with lower PAP than males
(Rabinovitch et al., 1981), that worsens after ovariectomy
which may be attenuated through estrogens administration
(Earley and Resta, 2002). In addition, very recently it has been
shown that 2 ME abolishes hypoxia-induced PH in rats associated
with a reduced protein expression of hypoxia-inducible factor 1α
protein expression, a pro-proliferative mediator (Docherty et al.,
2019), reversion of the downregulation of miR-223 (Hao et al.,
2019), inhibition of endothelin gene expression (Earley and Resta,
2002) and reducing hematocrit (Tofovic et al., 2021), all
suggesting that in female rodents female sex hormones are
protective against PH. However, this model translates poorly
to human PAH as it lacks some of the main human characteristics
of PAH as plexiform lesions and severe RV failure, and PH is
almost reversible if the animal is re-exposed to normal room air
(Stenmark et al., 2006). Female favorable adaptation to hypoxia
condition with better hemodynamic profile and decrease RV
hypertrophy, has also been observed in large animals, as in
swine (McMurtry et al., 1973) and chicken (Burton et al., 1968).

In the MCTmodel, an inflammatory insult producing damage
to the PAECs seems to be the primary trigger of PH (Rosenberg
and Rabinovitch, 1988). As in the previous hypoxia model, female
sex is protective in the rat model of MCT-PH and ovariectomy
aggravates PH while exogenous administration of estrogens, in
both males and females, improves RV function (Tofovic et al.,
2006; Umar et al., 2011). Estradiol metabolites such as 2 ME or 2-
hydroxyestradiol are able to prevent and retard the progression of
MCT-induced PH in rats by attenuating pulmonary vascular
remodeling and RV hypertrophy, and reducing proliferative and
inflammatory responses in the lungs (Tofovic et al., 2005; Tofovic
et al., 2010). The use of an ERα agonist rescued MCT-PH and
protected RV myocardium by restoring RV apelin and bone
morphogenetic protein receptor type 2 (BMPR2) (Frump et al.,
2021). In the same direction, the administration of an ERβ
antagonist abolished the beneficial effect of estrogen whereas
the ERβ agonist was as effective as estrogen in rescuing PH (Umar
et al., 2011). Also apelin treatment has been shown to significantly
attenuate RV hypertrophy and diastolic disfunction in this model
(Falcão-Pires et al., 2009).

The hypoxia-sugen model (SuHx) replicates more closely the
characteristics of human PAH. In rats, this model presents similar
histological lesions as that observed in final stages of the disease in
humans (Abe et al., 2010). The vascular endothelial growth factor
2 inhibitor sugen affects the pulmonary vasculature and also
interacts with other enzymes like CYP1B1, leading to the
production of promitogenic metabolites that contribute to the
development of PH (Taraseviciene-stewart et al., 2001).
Interestingly, under this model female rats present, despite a
more pronounced increase in medial thickness in the small
pulmonary arteries, lower inflammatory infiltration of
pulmonary arteries and RV fibrosis, and better survival than
male rats (Rafikova et al., 2015). This improved RV performance
in SuHx females as compared with males, has been shown to be
associated with a more favorable antioxidant, anti-inflammatory,
antifibrotic and pro-angiogenic profile (Lahm et al., 2016).
Moreover, E2 administration has been shown to prevent RV
dysfunction and improve pulmonary arterial compliance
(Nuedling et al., 2003) through upregulation of matrix-
degrading enzymes ADAM15, ADAM17 and osteopontin
(Eghbali et al., 2012), and apelin (Frump et al., 2015; Frump
et al., 2021). On contrast, in the study by Mair KM et al., the
inhibition of ERα had a therapeutic effect on hypoxia-induced PH
in female mice and SuHx female rats (Mair et al., 2014) and the
use of anastrozole, an inhibitor of the aromatase enzyme,
attenuated PH (Mair et al., 2014).

In the bleomycin-induced PH, a model that exhibits some
features of interstitial pulmonary fibrosis and PAH, ovariectomy
exacerbated the disease and increased mortality in rats, whereas
2 ME tended to reduce mortality and in surviving animals
reduced RV systolic pressure and hypertrophy, and attenuated
pulmonary inflammation and fibrosis (Tofovic et al., 2009).

In the mouse model of pulmonary artery banding, which is a
model of RV pressure overload without concomitant pulmonary
vascular disease (nor PH), survival in male mice is improved with
reduction of testosterone by castration (Hemnes et al., 2012).
Using the same model, very recently, Cheng et al. compared male
and female rats with a loss-of-function mutation in ERα finding
that female ERαmutants, but not male, developed RV-pulmonary
artery uncoupling, RV diastolic dysfunction and fibrosis, thus
suggesting that ERα is protective in females (Cheng et al., 2020).

Several mutant and transgenic rodent models of PH have been
described. In the model generated by deletion of endothelial nitric
oxide synthase, both male and female develop signs of PH during
the fetal stage but pathological changes only persist in male mice
(Miller et al., 2005). Similar poorer outcomes for males are
observed in the lacking vasoactive intestinal peptide model
where only males present PH with increased RV hypertrophy
and mortality (Said et al., 2007). However, not all the animal
models favor female sex. Female mice presenting overexpression
of the serotonin transporter SERT, implicated in PASMC
proliferation and vasoconstriction (Araujo et al., 2004), exhibit
a higher penetrance of PH and its development an severity
decreases after ovariectomy (White et al., 2011). In addition,
in this model the administration of ERα antagonist attenuates the
development of PH in female mice associated with an increase in
BMPR2 in the lung (Wright et al., 2015). Similarly, in the PH
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model induced by S100A4/Mts1 (overexpression of the calcium
binding protein) PVR increases and the development of
plexiform-like lesions occurs exclusively in female mice
(Dempsie et al., 2011).

In summary, animal models reveal that sex significantly
modify the expression of experimental PH. However, the
results obtained from the different experimental animal
models are heterogeneous and occasionally contradictory.
Thus, whereas in the classic models of hypoxia, MCT and Su-
Hx female sex and estrogens supply are protective, and the same
occurs in some transgenic mice models, the opposite happens in
other transgenic models such as SERT and S100A4/Mts1.
Consequently, the effect of antagonists and agonists of the
different ERs varies. Likewise, the effect of sex and estrogens
varies at the level of the pulmonary vasculature and cardiac
performance. This evidence highlights first, the complexity of
PH as an entity and the relevance of evaluating not only
pulmonary hemodynamics but also the cardiac function, since
the degree of RV adaptation is the main prognostic factor; second,
the difficulty understanding the hormonal system and the
implication that age, menstrual and reproductive cycle, as well
as diet and other extrinsic factors may have; and third, the
opposite results that may be obtained from different
experimental models, and therefore, the relevance of
generating models that reproduce the human physiology as
closely as possible, and ideally in large animals.

Evidence From Human Pulmonary Arterial
Hypertension
In patients, estrogens have been typically associated with a higher risk
for the development of PAH. There are several studies demonstrating
that systemic levels of E2 are higher in patients with PAH as
compared to age and body mass-matched controls (Ventetuolo
et al., 2016); local estrogen concentration and aromatase enzyme
levels in PASMCs fromwomen are higher compared tomen (Wright
et al., 2015); and absence of hemodynamic differences and RV indices
between male and female PAH patients who are older than 45 years-
old (Ventetuolo et al., 2011).

Based on this evidence, there are some pilot clinical trials and
others ongoing aiming to assess the effect of antiestrogenic drugs in
PAH. The third-generation aromatase inhibitor anastrozole reduces
E2 and E1 levels. Based on encouraging results in experimental
models of PH (Mair et al., 2014; Chen et al., 2017) Kawut et al.
randomized 18 patients to anastrozole vs. placebo finding an
improvement in the 6-min walking distance (6MWD) test in the
anastrozole arm, although no effects were observed in RV function,
functional class or health-related quality of life. There are currently a
larger ongoing trial (NCT03229499) aiming to evaluate the effects of
anastrozole in 6MWD in a larger cohort of patients (N � 84). These
are undoubtedly very expected results, but we must be cautious since
it is unknown whether long-term inhibition of E2 synthesis might
have a detrimental effect, mainly at the RV level. In fact, in the pilot
randomized clinical trial (Kawut et al., 2017), some patients receiving
anastrozole had a worsening of RV function, although globally
differences in RV function did not significantly differ as compared
with placebo. Another trial (NCT03528902) is evaluating the use of

tamoxifen, an antiestrogenic molecule currently used for the
treatment of breast cancer, in 24 patients suffering from PAH.
The main purpose of the trial is to evaluate the tolerability and
impact on functional condition and selected biomarkers of tamoxifen
in this population, being the primary outcome the tricuspid annular
plane systolic excursion (TAPSE) by echocardiogram, a measure of
RV function. Finally, another approach being evaluated is the use of
fulvestrant, an ERα inhibitor used in the metastatic breast cancer. It
reduces ERα expression, blocks dimerization of this receptor and
limits nuclear translocation of transcriptional activating factors
(Howell et al., 2000). Recently it has been used for the first time
in humans in a small open label proof-of-concept clinical trial in five
postmenopausal women with PAH (NCT02911844) (Kawut et al.,
2019) showing an improvement in the 6MWD and higher stroke
volume without changes in the functional status nor TAPSE or RV
systolic pressure. Interestingly a decrease in 16OHE2 was observed.

On the other hand, there is great controversy regarding the effect
of hormone replacement therapy (HRT) in PAH. Some observational
studies have shown a high prevalence of exposure to HRT in women
with PAH suggesting a potential role in the pathogenesis of the
disease. Thus, in a questionnaire performed to 88 PAH patients
attending a Pulmonary Hypertension Association conference, a high
percentage were taking HRT (Lori Sweeney, 2009). Also there is at
least one case report in which HRT initiation was associated with PH
development in inherited PAH carriers (Morse et al., 1999). On the
contrary, in healthy postmenopausal women using HRT, higher
levels of E2 were associated with better RV systolic function
(Ventetuolo et al., 2011). In a small retrospective study of patients
suffering systemic sclerosis (N � 61), the use of HRT was associated
with a lower incidence of PH (Beretta et al., 2006). Based on this
conflicting data, nowadays, international guidelines recommend
HRT use only if the patient presents severe menopausal
symptoms (Galiè et al., 2015) and, to our knowledge, there are no
ongoing trials aiming to evaluate the efficacy ofHRT in PAHpatients.

The effect of sex, sex hormones, or modifying therapies on PAH
cannot be examined without considering the impact they may have
on RV, since this is the main prognostic factor. In humans, as occurs
in the Su-Hx model, the effect of estrogens can be dimorphic. In this
sense, some studies have shown a positive correlation between
estrogens levels and RV ejection fraction in women (Ventetuolo
et al., 2011).Men present lower RV ejection fraction and highermean
PAP, PVR and right atrial pressure compared to women (Ventetuolo
et al., 2011; Shapiro et al., 2012; Ventetuolo et al., 2014) and worse
adaptation of the RV to increased pressure overload (Jacobs et al.,
2014). These differences may be related to a 5–8% higher mortality
rate (Shapiro et al., 2012). Even if testosterone produces a vasodilatory
response in isolated pulmonary arteries (Rowell et al., 2009) and
higher estrogen/testosterone ratio has been associated to the
development of PAH (Wu et al., 2018), it promotes myocardial
hypertrophy and in the long-term myocardial fibrosis leading to a
maladaptive RV response (Hemnes et al., 2012). All this effects could
explainwhy PAH incidence is lower inmen compared towomen, but
once the disease is stablished RV adaptation and prognosis is worse.
A concept called three-tier concept, proposed by Tofovic and Jackson
(2020), offers an explanation for the contradictory effects of estrogens
observed in experimental animal models and PAH patients. Thereby,
estrogens could act as instigators and perpetuators of vascular injury
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in pulmonary circulation, leading to PAHbut also as protectors of RV
function, and therefore explaining the greater survival seen inwomen.
The same authors suggest, based on accumulating evidence, that 2
ME acts as a biological antagonist of E2 providing vascular and RV
protection.

Besides higher levels of E2, lower levels of DHEA-S have been
associated with PAH in men (Ventetuolo et al., 2016) and women
(Baird et al., 2018). Declined DHEA levels with age (Kushnir
et al., 2010) could partially explain the observed equalization in
the ratio men to women of PAH in patients older than 65 years
(Hoeper et al., 2013). Apelin expression has been found also
reduced in RV homogenates from patients with RV failure
(Frump et al., 2021). Based on previous encouraging results
from preclinical investigations (Falcão-Pires et al., 2009), a
short-term study with the use of apelin in PAH patients was
carried out by Brash et al. (NCT01457170) (Brash et al., 2018).
Apelin infusion through right heart catheterization reduced PVR
and increased cardiac output without changes in mean PAP,
pulmonary artery wedge pressure or heart rate. Surprisingly, a
post-hoc analysis showed a higher increase in cardiac output and
greater reduction in RVP in patients under concomitant
treatment with phosphodiesterase-5 inhibitors. A possible
action of apelin through the nitric oxide pathway (Salcedo
et al., 2007) may be related to a synergic effect with
phosphodiesterase-5 inhibitors. No serious adverse events were
recorded in this small pilot trial.

Specific subtypes of PAH present similar distribution
regarding sex. Mutations in BMPR2 are the most common
genetic cause of PAH, occurring in 75–80% of heritable PAH
cases but also in 20–25% of idiopathic cases (Machado et al.,
2009). PAH related to BMPR2 is inherited in an autosomal
dominant manner and it has been reported to present a
genetic anticipation trait, that is, disease develops at younger
ages in subsequent generations (Loyd et al., 1995). In men, extra
regulation by Y chromosome can contribute to a better
performance of BMPR2 and lower expression of heritable
PAH (Yan et al., 2018). Female patients with connective tissue
diseases has been describe to present a higher risk (multiplied by
9) of developing PH thanmen (Humbert et al., 2006; Chung et al.,
2010). In the particular case of systemic sclerosis (SSc) around
12% of patients will develop PAH (Mukerjee et al., 2003), being
the incidence higher in women (Mukerjee et al., 2003) but the
survival rate lower in males (Chung et al., 2014). However,
contrary to other types of PAH, aging seems to be a risk
factor for the development of SSc-PAH. Thus, Scorza et al.
reported that postmenopausal women suffering from SSc
presented a higher risk of developing PAH than the younger
ones (Scorza et al., 2002) and HRT could prevent it (Beretta et al.,
2006). Single nucleotide polymorphisms of the aromatase
enzyme, estrogen receptor 1, and angiopoietin 1 (Roberts
et al., 2009) are linked to the development of portopulmonary
hypertension. In congenital heart disease, several registries
showed a higher prevalence of PH in women, reaching 73.6%
of the patients in the Reveal registry (Badesch et al., 2010) and
67.1% in the French registry (Humbert et al., 2006). In
Schistosomiasis infection, probably the most common cause of
PAH in the world, no gender bias has been observed (Graham

et al., 2014). Although the pathobiological mechanisms of the
disease are not completely understood, hormonal
physiopathology seems not to be involved. Other subtypes of
PAH present balanced distribution, with a subtle higher men
prevalence in amphetamine-induced (Zamanian et al., 2018) and
HIV infection PH (Sitbon et al., 2008). Finally, dysregulations in
the immune system (Tamosiuniene et al., 2018) and iron
deficiency (118), both problems more prevalent in women, are
also associated with the development and progression of PH
(Ruiter et al., 2011; Tamosiuniene et al., 2018).

Sex Differences in Response to Pulmonary
Arterial Hypertension Specific Therapies
Part of the estrogen paradox refers to the fact that female patients
present better response to PAH treatment and longer survival
than men (Shapiro et al., 2012). An extraordinary progress in the
discovery on new therapeutic targets for PAH has been made in
the last decades. Thereby, besides diuretics, anticoagulation,
oxygen, and general measures like physical activity, pregnancy
avoidance, psychosocial support and the use of calcium channel
blockers in patients with positive vasoreactivity test (Galiè et al.,
2015), treatment for PAH has developed on three main pathways:
endothelin (endothelin receptors antagonists, ERAs), nitric oxide
(phosphodiesterase-5 inhibitors and guanylate cyclase
stimulators) and prostacyclin (prostacyclin analogues and
prostacyclin receptor agonist).

A pooled analysis of six randomized clinical trials including
1130 PAH patients randomized to ERAs or placebo, showed a
significantly greater placebo-adjusted response to ERAs in
women in terms of change in 6MWD than men (Gabler et al.,
2012). The authors hypothesized that this difference in response
could be related to basal disparities in circulating endothelin-1
levels and/or in pulmonary vasoconstriction. No relevant
differences in drug pharmacokinetics have been demonstrated
(Bruderer et al., 2013). On the contrary, a sub-analysis from The
Pulmonary arterial Hypertension and Response to Tadalafil
(PHIRST)-I trial (Mathai et al., 2015) showed a better
outcome in quality of life and a longer 6MWD in men
compared to women. In this case, the authors hypothesized
that it could be related to underlying differences in nitric
oxide metabolism between men and women. By the use of
riociguat, no differences regarding sex was observed in the
Pulmonary arterial hyperTENsion sGC-stimulator Trial
(PATENT)-1 (Ghofrani et al., 2013). Finally, in patients
requiring the use of epoprostenol, male presented a higher
hospitalization time and lower survival (Frantz et al., 2015).
Interestingly, Jacobs et al. (2014) reported that 1 year after
initiation of PAH-specific therapy, although male and female
patients showed a similar reduction in PVR, RV ejection fraction
improved in female patients whereas it deteriorated in male
patients, thereby suggesting that differences in RV ejection
fraction response after initiation of medical therapy could
explained a significant portion of the worse survival seen in
men. The small sample size limited the ability to perform sex-
specific analysis for the different therapeutic groups. The
identification of treatment-response heterogeneity can help to
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take individual treatment decisions and highlights the relevance
of stratifying by sex in future randomized clinical trials.

SEX DIFFERENCES IN OTHER
PULMONARY HYPERTENSION GROUPS

Evidence regarding sex differences in other groups of PH is scarce
despite significantly more prevalent than PAH.

Pulmonary Hypertension Group 2
PH secondary to left heart disease or PH group 2 is the most
common type of PH. Its prevalence can reach 73% in patients
suffering HF with reduced ejection fraction (Miller et al., 2013),
and 83% of those with preserved ejection fraction (Shah et al.,
2014). Even if the latter is a disease with a clear female
predominance (Dewan et al., 2019), a more severe PH and RV
dysfunction has been observed in male suffering this disease
(Melenovsky et al., 2014; Duca et al., 2018). Consequently, cardiac
related mortality has been strongly associated with male sex in
this scenario but not all-cause mortality, which is similar between
sexes (Duca et al., 2018) or even greater in females (Sotomi et al.,
2021). Once again, worse adaptation of the RV to pressure and/or
volume overload seems to be the key to explain worse outcomes
in males. In this sense, data from the Veterans Affairs Clinical
Assessment Reporting and Tracking (CART) study described a
better RV adaptation and survival in women compared to men in
the group of patients with PH group 2 (Ventetuolo et al., 2017). In
the case of HF with reduced ejection fraction, women also showed
less RV dysfunction despite similar hemodynamic parameters
and left ventricular ejection fraction (Martínez-Sellés et al., 2006).
Better RV compliance and ability of women to manage volume
overload better, particularly in women with previous pregnancies,
has been speculated to contribute (Martínez-Sellés et al., 2006).

Pulmonary Hypertension Group 3
Estimated prevalence of PH secondary to chronic lung disease
varies from 50 to 70% of patients with moderate to severe chronic
obstructive pulmonary disease (COPD) and emphysema (Scharf
et al., 2002; Chaouat et al., 2008). COPD prevalence is higher in
men, but there may be a bias due to differences in smoking habits
in the past (Yin et al., 2017). PH in COPD develops in patients
with severe airflow limitation due to chronic hypoxemia and it
confers a worse prognosis (Cuttica et al., 2010). In idiopathic
pulmonary fibrosis, the incidence of PH increases with the
severity of the disease, from 8 to 15% at diagnosis to 30–50%
in advanced stages, and men are more prone to be affected than
women (Kimura et al., 2013). Again, in this group of PH, male sex
is a risk factor for RV dysfunction, even after adjusting by RV
pressure afterload (Prins et al., 2019).

Pulmonary Hypertension Group 4
In an observational study aimed to estimate the incidence of risk
factors of CTEPH in a cohort with first venous thromboembolism
(N � 23,329 patients), female sex was significantly associated with
the development of the disease (Martinez et al., 2018). However,

studies carried out in Spanish and Chinese cohorts have showed a
better survival in women as compared with their male
counterparts (Escribano-Subias et al., 2012; Chen et al., 2018).
This improved survival could be related to better cardiac
performance, with lower atrial pressure and higher cardiac
index to similar PVR compared to men (Shigeta et al., 2008).
However, during follow-up female have been shown to present
greater hemodynamic deterioration than men (Yang et al., 2020).
This fact, however, could be related to different factors. Women
are less likely to receive a surgical treatment or to be classified as
operable than men, especially at low-volume centers for this
pathology (Barco et al., 2020), although these differences could be
also related to a longer diagnostic delay and a more advanced
stage of the disease at the time of diagnosis (Barco et al., 2020).

CONCLUSION

PH includes a variety of diseases currently classified according to
its etiology and hemodynamic profile. Sex differences are
observed in practically all groups of PH. The estrogen paradox
in PAH refers to the fact that women present a higher risk of
disease development but once affected, they present a better
response to treatment and longer survival as compared to
men. Evidence regarding estrogens effects in PH animal
models shows contradictory results, both protective and
deleterious. The dimorphic effect of estrogens over the
pulmonary vasculature and RV performance may explain the
paradox, particularly the impact on RV function of sex,
hormones, and response to specific treatment seems to be the
key to understand the better prognosis of PH in women
compared to men. Finally, even if the main reason for this sex
bias may correspond to sex hormones, other factors can play an
important role in the disease development, such as comorbidities
burden or differences in the clinical and pharmacological
management. Further studies, both in PAH and other PH
groups should be encouraged to better understand the
influence of sex in this disease.
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