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Abstract: Background: Vascular calcification is known to be a strong risk factor for cardiovascu-
lar adverse events and mortality. Atherosclerosis, diabetes, aging, abnormal bone mineral homeo-
stasis and high uremic milieu such as chronic kidney disease are major factors that contribute to the 
progression of vascular calcification. Several mechanisms such as the osteoblastic transition of vas-
cular smooth muscle cells in response to oxidative stress have shed light on the active nature of 
vascular calcification, which was once thought to be a passive process. The fine interplay of regula-
tory factors such as PTH, vitamin D3, FGF 23 and klotho reflect the delicate balance between vas-
cular calcification and bone mineralization. Any disturbance affecting this equilibrium of the bone-
mineral-vascular axis results in accelerated vascular calcification.  

Bisphosphonates share similar mechanism of action as statins, and hence several studies were un-
dertaken in humans to verify if the benefits proven to be obtained in animal models extended to 
human models too. This yielded conflicting outcomes which are outlined in this review. This was 
attributed mainly to inadequate sample size and flaws in the study design. Therefore, this benefit 
can only be ascertained if studies addressing this are undertaken.  

Conclusion: This review seeks to highlight the pathophysiologic phenomena implicated in vascular 
and valvular calcification and summarize the literature available regarding the use of bisphospho-
nates in animal and human models. We also discuss novel treatment approaches for vascular calci-
fication, with emphasis on chronic kidney disease and calciphylaxis. 
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1. INTRODUCTION 

 Vascular Calcification (VC) has traditionally been con-
sidered to be a passive and degenerative process with in-
creasing age-related burden [1]. It has multiple phenotypes 
including intimal artery calcification, medial artery 
calcification, cardiac valve calcification, calciphylaxis and 
tumor calcinosis [2] (Table 1). Atherosclerosis, diabetes, 
Chronic Kidney Disease (CKD) and aging are major 
determinants of VC [2]. There is a higher risk for adverse 
Cardiovascular (CV) events and mortality in patients with 
VC [2]. Recent data highlight the analogy of vascular 
calcification to bone remodeling, which is actively 
regulated, and is controlled by factors which aid in both, its 
induction and suppression [3].  
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 Bisphosphonates have a major impact on preserving 
Bone Mineral Density (BMD), but there is scarcity of litera-
ture on its role in modulating vascular and valvular calcifica-
tion. It is postulated that bisphosphonates have similar plei-
otropic effects as statins [4] and there have been extensive 
studies with them in animal models of VC with encouraging 
results [5].  
 This review seeks to highlight the pathophysiology of 
vascular calcification and the close interlink with the process 
of bone mineralization. It will summarize data on bisphos-
phonates in vascular and valvular calcification with empha-
sis on high calcification risk milieus, such as CKD. 

2. PATHOPHYSIOLOGY OF VASCULAR CALCIFI-
CATION 

 VC is a systemic process involving vasculature across 
anatomic sites such as coronary arteries, aorta, dermal arteri-
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oles and peripheral arteries [6-9]. The interaction of tradi-
tional risk factors such as hypertension, smoking, diabetes, 
obesity with non-traditional risk factors such as osteoporosis, 
anemia, malnutrition and uremic states such as CKD result in 
accelerated VC and cardiovascular disease [10]. 
 Chronic Kidney Disease (CKD) is a risk factor for medial 
calcification which is an independent marker for all-cause 
mortality and CV mortality [11]. In one study, by Chowd-
hury, U.K., et al. [12], the prevalence of radial artery calcifi-
cation in CKD patients was found to be 45 times that of pa-
tients without CKD. In another study by Raggi, P., et al. 
[13], coronary artery calcification scores in ESRD patients 
were found to be about thrice that of the general population. 
These findings reflect the systemic nature of VC in high 
uremic states as CKD with an equal predisposition across the 
spectrum of small, medium and large sized arteries as well as 
native cardiac valves emphasizing the accelerated progres-
sion of VC in the milieu of CKD. 
 Systemic mineral composition and bone density is altered 
early in CKD and is referred to as Chronic Kidney Disease- 
Mineral Bone Disease (CKD- MBD), which raises the con-
cept of the bone-mineral- vascular axis. Renal function is 
inversely related to bone mineral disease and resultant calci-
fication. CKD-MBD involves serum calcium and phosphate 
balance, which is hormonally regulated via Parathyroid 
Hormone (PTH) and calcitriol, any alteration of which can 
affect bone mineral homeostasis [14]. Calcific Uremic Arte-
riolopathy (CUA) or calciphylaxis is an extreme complica-
tion of VC in CKD, where dermal arterioles calcify, leading 
to necrosis and ulceration and is associated with very high 
morbidity and mortality [15]. 
 The phenomenon of vascular calcification, which was 
once thought a passive process as a result of an increased 
calcium-phosphate product, is now considered an active 
complex process. The initial step appears to be Vascular 
Smooth Muscle Cells (VSMC) or other mesenchymal ele-
ments (such as pericytes) [16] of the vasculature undergoing 
a phenotypic shift, such that their pattern of gene expression 
and behavior resembles that of osteoblasts [17]. 
 Exposure of cultured VSMCs to adequate levels of oxi-
dative free radicals from hydrogen peroxide induces Runt-
related transcription factor 2 (RUNX2; also called core-
binding factor alpha-1) and promotes the osteoblastic transi-
tion, suggesting that induction of oxidative stress in smooth 
muscle is instrumental in driving this transition [18, 19]. 
RUNX2 plays a key role in VC, in boosting expression (di-
rectly or indirectly) of a number of other proteins found in 

osteoblasts—including the transcription factors osterix and 
msh homeobox-2, Bone Morphogenetic Protein-2 and -4 
(BMP-2 and BMP-4), alkaline phosphatase, osteopontin 
(OPN), osteocalcin, and matrix gamma-carboxyglutamate 
(Gla) protein (MGP)—that enable or regulate extracellular 
deposition of hydroxyapatite [18, 20-24]. The differentiation 
of VSMC’s under the influence of transcription factors men-
tioned above are depicted in Fig. (1). 

3. LINK BETWEEN VASCULAR CALCIFICATION 
AND BONE MINERAL AXIS: ROLE OF BIOMARK-
ERS: 
 Elevated serum phosphate is believed to play a major role 
in driving VC seen in chronic kidney disease, but is also 
linked to increased risk for VC in subjects with normal renal 
function [25-31]. Concentrations of phosphate comparable to 
those typically seen in renal failure patients drive this os-
teoblastic transition of VSMCs in vitro [25, 26]. A recent 
study confirms that elevated phosphate exposure promotes 
oxidative damage of mitochondria resulting in decrease of its 
trans-membrane potential causing upregulation of markers of 
apoptosis [32]. Indeed, apoptosis of VSMCs is a typical fea-
ture of VC, and is suspected to expedite it by promoting nu-
cleation of hydroxyapatite [17, 33]. 
 The differentiation of VSMC’s is regulated by oxidative 
free radicals and other such metabolic derangements of 
which osteogenic modulating proteins are primarily impli-
cated. Osteogenic modulating proteins such as Bone 
Morphogenetic Proteins (BMP’s) and Receptor Activator of 
Nuclear Factor Kappa-B Ligand (RANKL) are known to 
promote vascular calcification whereas some others such as 
Osteoprotegerin (OPG) and Osteopontin (OPN) can be used 
as reliable markers of VC [34]. VSMCs also express recep-
tors responsive to PTH and estrogenic compounds when cul-
tivated with them in vitro [35]. 
 Fibroblast Growth Factor 23 (FGF23) is a hormone de-
rived from bone and controls mineral homeostasis by regula-
tion of serum phosphate [36, 37], Parathyroid Hormone 
(PTH), and 1,25-(OH)2-vitamin D3 [38]. Klotho is a trans-
membrane protein encoded by the klotho gene and serves as 
an obligate co-receptor for FGF 23 [39] that regulates phos-
phate elimination and vitamin D synthesis by the kidney 
[40]. Fibroblast Growth Factor 23 (FGF23) and Klotho have 
been recently known to play a role in ectopic calcification 
including native cardiac valves and large blood vessels [41-
43]. Both Klotho and FGF23 participate in bone mineral 
homeostasis and regulate ectopic calcification via a fine in-

Table 1. Summary of types of VC. 

Type Risk Factors Treatment Strategies so Far 

Intimal calcification Metabolic syndrome, smoking Statins 

Medial calcification Osteoporosis, CKD Anti resorptive agents, Dialysis, calcimimetics, maintenance of adequate bone turnover  

Cardiac valve calcification Aging, HLD, DM, HTN, CKD Surgery  

Calcific uremic arteriolopathy Obesity, ESRD  BP’s, cinacalcet, sodium thiosulfate 

Table-1: Summary outlining risk factors and treatment strategies for different types of vascular and valve calcification. Abbreviations: CKD – Chronic Kidney Disease; HLD – 
Hyperlipidemia; DM – Diabetes Mellitus, HTN – Hypertension, ESRD – End Stage Renal Disease, BP’s – Bisphosphonates. 
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teraction [44-48]. In Chronic Kidney Disease (CKD) and 
End-stage Renal Disease (ESRD) the levels of soluble 
Klotho is dramatically decreased and FGF23 increased. 
Hence, they have been used as sensitive biomarkers to indi-
cate the state of renal dysfunction and subsequent extra renal 
manifestations in this group of patients [48, 49]. The balance 
between VC and bone mineral homeostasis is described in 
Fig. (2). 
 Atherosclerotic calcification is a well-coordinated proc-
ess, similar to bone formation. Osteopontin, an important 
factor implicated in bone remodeling, has also been identi-
fied in atherosclerotic plaques [50]. Calcified atherosclerotic 
lesions were also found to contain bone morphogenetic pro-
tein-2a, a potent inhibitory factor of vascular calcification 
and osteoblastic differentiation [51]. Inhibitory factors such 
as Gla containing proteins (osteocalcin) are suspected to play 
a key role in mediating calcification of coronary arteries 
[50].  

4. BONE TURN OVER AND VASCULAR CALCIFI-
CATION: THERAPEUTIC TARGETS 

 Various modalities have been tried for treatment of vas-
cular calcification with different results and success rates. 
Management strategies in abnormal bone turnover states 
such as osteoporosis include antiresorptive therapy such as 
bisphosphonates, novel therapies with monoclonal antibodies 
directed at RANKL ligand and human parathyroid hormone 

recombinant protein such as Teriparatide [52]. In CKD pa-
tients, a strategy of maintaining adequate bone turnover by 
ensuring optimum calcium and phosphate balance via phos-
phate binders such as lanthanum, sevelamer [2] and calci-
mimetics [53] has been proven effective. Other modalities 
such as ultrapure dialysate, Vitamin- D receptor agonists, 
and Vitamin K have also been used in CKD along with 
antiresorptive strategy of bisphosphonates with good effect 
in prevention of VC [2, 52]. 
 Statins by far have been shown to reduce vascular thick-
ness most significantly from its effects on prevention of 
neointimal atherosclerosis [54, 55]. This outcome was seen 
not only in high risk patients but also in patients with low 
risk profiles as elicited by the Measuring Effects on Intima-
Media Thickness: an Evaluation of Rosuvastatin (METEOR) 
trial [54]. In a meta-analysis by Bedi U.S., et al., statins have 
been shown to slow progression of Carotid Intimal-medial 
Thickness (CIMT) and also proved effective in causing re-
gression of atherosclerosis as measured by CIMT [55]. This 
was a significant finding as CIMT was later established as an 
independent risk factor for adverse cardiovascular events 
[56]. It is thought that the anti-atherogenic effect of statins in 
attenuating oxidized LDL contributes to this in part [57] 
along with its effect on lowering LDL cholesterol. This 
beneficial effect of statins was seen incrementally in a dose 
dependent manner as evidenced by the results of effect of 
aggressive versus conventional lipid lowering on atheroscle-
rosis progression in familial hypercholesterolemia (ASAP) 

 
Fig. (1). Factors responsible for induction of oxidative stress and promotion of osteoblastic transition of VSMC’s. Abbreviations: VSMC - 
vascular smooth muscle cells; CKD – Chronic Kidney Disease; Pi – Inorganic Phosphate; OP- Osteopontin; msx 2 - msh homeobox-2; Ca – 
Calcium; MGP - Matrix Gla Protein; PPi – Pyrophosphate; RUNX2 - Runt-related transcription factor 2. 
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[58] and Arterial Biology for the Investigation of the Treat-
ment Effects of Reducing Cholesterol 6-HDL and LDL 
Treatment Strategies in Atherosclerosis (ARBITER) trials 
[59]. 
 Bisphosphonates which are postulated to have similar 
effects as statins at a cellular level through their inhibition of 
Farnesyl Pyrophosphate (FPP) and protein prenylation [4] 
have also been studied in terms of reduction of intimal and 
medial calcification with mixed results which are outlined 
below. 

5. BISPHOSPHONATES 

 Bisphosphonates are pyrophosphate analogues resistant 
to enzymatic hydrolysis that are widely used as an antire-

sorptive drugs to preserve bone mineral density [5]. They 
have two side-chains (R1 and R2) as demonstrated in Fig. 
(3). R1 determines its affinity to bone, whereas R2 deter-
mines its potency. The presence of nitrogen increases the 
potency of BPs several folds. Risedronate, pamidronate, 
ibandronate, alendronate and zoledronate are nitrogen con-
taining BP’s and have been found to be several times more 
potent than the non-nitrogen containing BPs such as clodro-
nate, etidronate and tiludronate [60, 61]. 

5.1. Pharmacokinetics of BPs 

 The intestinal absorption of bisphosphonates is less than 
10 % in most instances [62, 63]. This absorption is further 
limited by food and some other medications, particularly 

 
Fig. (2). Factors affecting equilibrium between VC and bone mineral axis. Abbreviations: VC – Vascular Calcification; PTH – Parathyroid 
Hormone; FGF23 - Fibroblast Growth Factor 23; Pi – Inorganic Phosphate; OPG – Osteoprotegerin; MGP - Matrix Gla Protein; Ca – Cal-
cium; Mg – Magnesium; PPi – Pyrophosphate; Pi – Inorganic Phosphate.  
 

 
Fig. (3). Chemical structure of pyrophosphate (A) and bisphosphonates (B).  
P – Phosphorus; O – Oxygen; H – Hydrogen; C – Carbon; R – Side Chain. In bisphosphonates, the central oxygen atom is replaced with a 
carbon. All bisphosphonates share a common phosphorus-carbon-phosphorus with two side chains (R1 and R2). 
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calcium supplements. Hence consumption of oral BP’s on an 
empty stomach is advised as it enhances its bioavailability. 
About half of the absorbed BP’s gain access to bone; the rest 
is excreted almost unchanged, renally [64]. Bisphosphonates 
accumulate in bone, with a half-life of about 10 years [65] 
after which it is redistributed.  

5.2. Mechanism of Action of BPs 

 Non-nitrogen containing BP’s act slightly differently 
from nitrogen containing BP’s. They bind with osteoclasts 
when they enter bone and limit ATP dependent enzymes and 
thereby induce osteoclast apoptosis [66]. Nitrogen contain-
ing BP’s on the other hand are engulfed by osteoclasts, and 
other phagocytic cells [67] though their ruffled cell mem-
brane after which they are released, secondary to the low 
intracellular pH [68]. Here they cause inhibition of osteoclast 
activity through disruption of the cytoskeleton [69]. At cellu-
lar level BPs inhibit the rate limiting enzyme of mevalonate 
pathway: farnesyl pyrophosphate synthase, an enzyme which 
is necessary for both the prenylation of proteins and osteo-
clast ruffled border formation [67]. 
 Bisphosphonates are well known to preserve BMD 
through its osteoclast inhibitory effects and were used exten-
sively in osteoporosis and in high turnover bone resorption 
states such as Paget’s disease, Multiple Myeloma and bony 
metastasis. They were first shown to reduce vascular calcifi-
cation in animal models [70] and thereafter several studies 
(mostly observational) were undertaken in humans to inves-
tigate if this reduction in vascular calcification translates into 
reduced mortality which yielded contrasting results. 

5.3. Clinical Studies in Animal Models 

 Price, P.A., et al. conducted one of the first experimental 
studies in animal models to assess the role of bisphospho-
nates in VC. They demonstrated that chronic renal failure 
induced by a combination of low protein diet and a high 
adenine state resulted in medial VC [71]. This was one of the 
first animal models with a reliable way of demonstrating 
uremia induced VC. This group also showed the inhibition 
of VC with warfarin and toxic doses of Vitamin D in rats 
with normal renal function with the use of bisphosphonates 
which was crucial in suggesting a link between VC and 
BMD. Tamura, K., et al. used the bisphosphonate etidronate 
in five- sixth’s nephrectomized rats to study the inhibition of 
VC with encouraging results [72]. 

5.4. Clinical Trials in Humans 

 The Multi-Ethnic Study of Atherosclerosis (MESA) trial 
was one of the first landmark prospective studies regarding 
the use of bisphosphonates in preventing VC [73]. This trial 
was unique in that the participants were women and was 
conducted in ethnically diverse populations and across a 
wide range of age groups, the mean age being 63 years. The 
patients included also had a diffuse array of baseline comor-
bidities. The results were age stratified, the primary end 
point being cardiovascular calcification. This study demon-
strated that bisphosphonates reduced cardiovascular calcifi-
cation (CV) in patients age > 65 years whereas an increase in 
CV calcification was noted in the age group < 65 years when 

compared to the control group of non-bisphosphonate users. 
This might be in part because the indication for BP use in 
younger patients is unclear and was thought to be due to 
more severe forms of secondary osteoporosis. Also, whether 
the effect on CV calcification can be interpreted as a mortal-
ity benefit is unclear as mortality was not the primary end 
point of this study.  
 Kranenburg, G., et al. conducted one of the largest 
meta-analyses to date to ascertain the benefit of bisphos-
phonates in reducing VC and if it translates into a mortality 
benefit. A total of 61 articles of RCT’s were used in this 
study each having a different population and a different 
research question [74]. Also, different classes of bisphos-
phonates, dosages, route and duration of treatment were 
studied. Majority of the studies had placebo administered 
as control whereas the rest used standard of care. There was 
significant reduction in aortic wall calcification [75, 76] 
and all-cause mortality with the largest benefit in patients 
with osteoporosis and breast cancer. These results were 
consistent with both nitrogen containing and non-nitrogen 
containing bisphosphonates. Although this study reflected 
good outcomes in terms of all-cause mortality, the reduc-
tion in vascular calcification did not translate into a reduc-
tion in arterial stiffness, CV events and CV mortality. This 
was partly due to inadequate sample size, duration of 
treatment and follow up. Also, adverse effects might have 
reduced the protective effect of bisphosphonates on CV 
events and mortality. This is evident from a sensitive 
analysis of pooled data of patients with osteoporosis who 
had longer follow up which favored bisphosphonates. 
Hence further studies are required to establish this likely 
beneficial effect of bisphosphonates on CV mortality. 
 Bisphosphonates were hypothesized to reduce valvular 
calcification through similar mechanism of action as its 
effect on vascular calcification. Several studies have been 
performed to confirm this hypothesis with varying results. 
One retrospective observational study by including a small 
patient population of 76 patients aged > 70 years demon-
strated a beneficial effect of reducing aortic stenosis sig-
nificantly in the 8 patients receiving bisphosphonates for > 
1 year with an improvement of AVA of 0.1 cm on TTE 
compared to the 68 who did not [77]. This study was en-
couraging as it implied the protective effect of bisphospho-
nates on vascular calcification extended to native cardiac 
valves as well. But it was limited by its small sample size 
and its retrospective design. To further elucidate this bene-
ficial relationship of bisphosphonates on valvular calcifica-
tion, Aksoy, O., et al. undertook a larger retrospective 
study with a population of 801 female patients [78]. The 
mean age of the study was 76 years and included 488 
bisphosphonate users. The study showed no significant 
difference in the rate of aortic valve calcification after a 
median follow up of 1.5 years and there was also no sig-
nificant improvement in hemodynamics with regards to 
peak and mean AV gradients.  
 The results of this study are in contrast with the previous 
study but it was better powered and had longer follow up. 
This study was also limited by its retrospective design, and 
patient compliance. These contrasting results have to be fur-
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ther validated by more extensive studies with an adequate 
sample size and follow up.  

5.5. Role of bisphosphonates in Calciphylaxis 

 Treatment strategies for calciphylaxis include mainte-
nance of low target values of calcium, phosphate such that a 
calcium-phosphate product of less than 55 mg2/dL2 is 
achieved [79]. Medical therapy includes sodium thiosul-
phate, cinacalcet and bisphosphonates although there is in-
adequate clinical studies to confirm this, given the rare inci-
dence of this disease entity. Pamidronate was the first 
bisphosphonate used to successfully treat calciphylaxis, 
which resulted in resolution of symptoms in about 6 weeks 
[80]. Other bisphosphonates such as Ibadronate and etidro-
nate have also been used with good results but there are no 
clinical trials to support this and hence further research is 
warranted to establish this benefit. 

CONCLUSION 
 Though bisphosphonates have showed promising results 
in animal models, clinical studies in humans have yielded 
contrasting results. This is mainly because most of the stud-
ies have been observational, the studies that are prospective 
invariably have inadequate follow up and non-uniform dos-
ing, apart from variable compliance. Randomized controlled 
trials addressing the question of the role of BP’s in reducing 
VC are necessary to draw definitive conclusions about their 
benefits in this condition. 

LIST OF ABBREVIATIONS 

VC = Vascular Calcification 
CKD = Chronic Kidney Disease 
HLD = Hyperlipidemia 
DM = Diabetes Mellitus 
HTN = Hypertension 
ESRD = End Stage Renal Disease 
BP’s = Bisphosphonates 
BMP = Bone Morphogenetic Protein 
FGF23 = Fibroblast Growth Factor 23 
Pi = Inorganic Phosphate 
OPG = Osteoprotegerin 
OPN = Osteopontin 
msh = Muscle Segment Homeobox 
msx 2 =  msh Homeobox-2 
PTH = Parathyroid Hormone 
Ca = Calcium 
Mg = Magnesium 
MGP = Matrix Gla Protein 
PPi = Pyrophosphate 
RUNX2 = Runt-related Transcription Factor 2 
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