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Abstract
Objective: The aim of the study was to construct and validate a robust prognostic 
model	based	on	liquid-	liquid	phase	separation	(LLPS)–	related	genes	in	lung	squamous	
cell	carcinoma	(LUSC).
Methods: The	Cancer	Genome	Atlas	dataset	was	used	as	the	discovery	set	to	identify	
the	 LLPS-	related	 differentially	 expressed	 genes	 (DEGs)	 between	 LUSC	 and	normal	
tissue.	These	DEGs	were	screened	by	the	LASSO	Cox	regression	analysis	to	identify	
the	genes	with	nonzero	coefficient,	which	were	next	included	in	the	multivariate	Cox	
regression	 analysis	 to	 construct	 the	 prediction	model.	 The	 dataset	GSE41271	was	
adopted as the validation set to verify the efficacy of the model. Enrichment analysis 
and	the	CIBERSORT	were	performed	to	illustrate	potential	immune	mechanisms	un-
derlying the prediction model.
Results: A	total	of	48	LLPS-	related	genes	were	aberrantly	expressed	in	LUSC.	Among	
them,	7	genes	were	selected	by	the	LASSO	Cox	regression	analysis	to	construct	the	
prediction	model.	Risk	index	(RI)	was	calculated	according	to	the	model	for	each	pa-
tient. The prognosis was significantly different between the patients with high and 
low	RI	in	the	discovery	set	and	the	validation	set	(p < 0.001 and p =	0.028,	respec-
tively).	The	multivariate	survival	analysis	confirmed	RI	as	an	independent	prognostic	
factor	in	LUSC	(in	the	discovery	set:	p <	0.001,	HR	=	2.643,	95%	CI	=	1.986–	3.518;	
in the validation set: p =	0.042,	HR	=	2.144,	95%	CI	=	1.026–	4.480).	A	series	of	path-
ways involving immune cells were found to be related to RI. The distribution pattern 
of	immune	cells	and	chemokines	varied	according	to	the	value	of	RI.
Conclusion: The	prediction	model	based	on	LLPS-	related	genes	was	constructed	and	
validated	as	a	 robust	prognostic	 tool	 for	LUSC	using	multiple	datasets.	LLPS	might	
have	an	impact	on	LUSC	through	immune	pathways.
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1  |  INTRODUC TION

Non–	small-	cell	 lung	 cancer	 (NSCLC),	 one	 of	 the	 most	 common	
malignancies	 worldwide,	 is	 characterized	 by	 high	morbidity	 and	
mortality.1	 Lung	 squamous	 cell	 carcinoma	 (LUSC)	 is	 known	 as	 a	
main	pathological	 subtype	of	NSCLC.2,3	Although	molecular	 tar-
geted	therapy	has	been	constantly	applied	in	clinical	practice,	its	
effect	against	LUSC	remained	limited.4,5	The	prognosis	of	LUSC	is	
still	 dismal,	 especially	 in	 patients	with	 advanced-	stage	 disease.6 
Recently,	the	promising	outcome	of	immune	checkpoint	inhibitors	
(ICIs)	 such	 as	 anti-	PD-	1	 agents	 has	 shed	 light	 on	 the	 anti-	LUSC	
strategies.7,8	Its	treatment	response	is	mainly	predicted	by	expres-
sion	 level	 of	 PD-	L1.9,10	However,	 only	 a	 small	 group	 of	 patients	
with	NSCLC	can	benefit	from	ICIs.11 More predictors for the effi-
cacy of immunotherapy and more profound understanding of the 
underlying	mechanisms	become	an	urgent	requirement	for	clinical	
practice.

The	 important	 roles	and	comprehensive	mechanisms	of	 liquid-	
liquid	phase	separation	(LLPS)	of	proteins	and	nucleic	acids	in	cellular	
activities have been continuously uncovered by recent studies.12–	14 
Its correlation with the development of some human diseases has 
been indicated by a growing number of studies and has become a 
new paradigm in relevant researches.15,16 Emerging evidence also 
revealed	the	correlation	of	LLPS-	related	activities	with	anti-	tumoral	
immune	 response,	 providing	 a	 new	perspective	 for	 understanding	
tumor immunology.17,18	 All	 these	 findings	 indicated	 the	 potential	
impact	 of	 LLPS	 on	 cancer	 development	 by	 its	 direct	 and	 indirect	
effects.

The aim of this study was to construct and validate a model 
based	on	LLPS-	related	genes	for	predicting	the	prognosis	of	LUSC,	
and	 to	 preliminarily	 uncover	 the	 relationship	 between	 LLPS-		 and	
tumor-	related	immune	activities	in	LUSC.

2  |  MATERIAL S AND METHODS

2.1  |  Study cohorts and LLPS- related genes

The	 list	of	LLPS-	related	genes	was	downloaded	 from	PhaSepDB19 
(a	database	provides	a	collection	of	manually	curated	phase	sepa-
ration	 proteins	 and	 membraneless	 organelles–	related	 proteins;	
http://db.phasep.pro/).	 The	 gene	 expression	 data	 of	 LUSC	 pa-
tients	 were	 downloaded	 from	 The	 Cancer	 Genome	 Atlas	 (TCGA;	
https://portal.gdc.cancer.gov/).	Among	them,	550	cases	with	suffi-
cient clinical and survival data were enrolled as the discovery set 
to	 identify	 the	 LLPS-	related	differentially	 expressed	genes	 (DEGs)	
between	LUSC	and	normal	 tissue,	and	 to	construct	 the	prediction	
model.	Another	dataset	(GSE41271)	obtained	from	Gene	Expression	
Omnibus	 (GEO;	 https://www.ncbi.nlm.nih.gov/geo/)	 was	 used	 to	
validate	the	prediction	model.	The	workflow	of	this	study	is	shown	
in Figure 1.

2.2  |  Construction of a LLPS- related 
prediction model

TCGA	 dataset	 was	 adopted	 to	 calculate	 the	 LLPS-	related	 DEGs	
between	LUSC	and	normal	 tissue	using	 “limma”	package	 in	R.	The	
genes with fold changes >1.5 and p value <0.05 were considered to 
be statistically significant.

All	the	LLPS-	related	DEGs	in	the	discovery	set	were	subjected	to	
least	absolute	shrinkage	and	selection	operator	(LASSO)	Cox	regres-
sion.	Then,	the	genes	with	nonzero	coefficients	found	in	the	LASSO	
Cox	analysis	by	using	the	“glmnet”	package	were	put	into	the	mul-
tivariate	Cox	regression	analysis	to	construct	the	prediction	model.	
The	model	was	expressed	as:

In	the	formula,	“Exp”	represented	the	expression	value	of	a	gene,	
and	“Coef”	represented	the	coefficient	of	the	gene.

2.3  |  Prognostic value of the prediction model

RI was calculated for each individual in the discovery set accord-
ing to our prediction model. The prognosis of 2 patient groups di-
vided by the level of RI was compared to illustrate the prognostic 
value	of	the	model.	Then,	RI	and	other	clinical	characteristics	were	
subjected	to	the	multivariate	Cox	regression	analysis	to	confirm	the	
independence	of	RI	(cases	with	missing	data	for	these	variables	were	
excluded).

All	the	aforementioned	analyses	were	additionally	performed	in	
the validation set to confirm the efficacy of the model.

2.4  |  Enrichment analysis and the 
CIBERSORT method

Enrichment analysis was conducted in order to identify the related 
biological	 pathways	 through	 the	 Gene	 Ontology	 (GO)	 database	
and	Kyoto	Encyclopedia	of	Genes	 and	Genomes	 (KEGG)	database	
by	 using	 “clusterProfiler”	 and	 “enrichplot”	 packages	 in	 R.	 The	 sig-
nificant cutoff threshold was defined as adjusted p value <0.05 and 
|NES|>1.5.

The	 CIBERSORT	 method,	 known	 as	 a	 useful	 tool	 to	 convert	
gene	expression	profile	to	relative	proportion	of	different	types	of	
immune	cells,20	was	performed	to	assess	the	distribution	of	tumor-	
infiltrating	immune	cells	(TICs)	in	LUSC	using	TCGA	data.

2.5  |  Statistical analysis

All	 the	 statistical	 analysis	 was	 performed	 using	 R	 (version	 4.1.1)	
(https://www.r-	proje	ct.org).	Statistical	significance	was	defined	as	a	

Risk index (RI) = Coef1 × exp1 + Coef2 × exp2 + Coef3 × exp3 +⋯

http://db.phasep.pro/
https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41271
https://www.ncbi.nlm.nih.gov/geo/
https://www.r-project.org
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two-	sided	p value <0.05	for	all	results	in	this	study,	unless	otherwise	
stated.

3  |  RESULTS

3.1  |  Construction of the prediction model based 
on LLPS- related genes

LLPS-	related	genes	were	derived	 from	PhaSepDB	and	matched	 in	
the	discovery	set.	A	total	of	43	LLPS-	related	genes	were	identified	
to	 be	 up-	regulated,	 and	 5	 of	 them	were	 down-	regulated	 in	 LUSC	
compared	with	normal	tissues	(Figure	2A).	Next,	all	the	LLPS-	related	
DEGs	 of	 493	 LUSC	 patients	were	 included	 in	 the	 LASSO	Cox	 re-
gression	model.	After	the	screening,	7	genes	remained	with	nonzero	
regression	coefficient,	including	HOXA13,	SSX1,	MAGEA4,	DPPA2,	
PLA2G1B,	CALML5,	and	H2BC9	(Figure	2B,C).	These	selected	genes	
were	used	to	construct	a	prognostic	model	for	LUSC	patients	using	
multivariate	Cox	regression	analysis	(Figure	2D).	The	formula	of	the	
model	was	expressed	as	follows:	Risk	index	(RI)	=	−0.03359×HOXA
13+0.11907×SSX1+0.01246×MAGEA4+0.06373×DPPA2+0.0961
7×PLA2G1B	+0.02794×CALML5-	0.13094×H2BC9.

The	area	under	the	curve	(AUC)	of	the	model	was	calculated	to	
reveal	its	efficacy.	The	AUC	at	1	year,	3	years,	and	5	years	equaled	
to	62.76,	64.24,	and	65.40,	 respectively	 (Figure	3A).	The	 result	of	
the	 log-	rank	 test	 indicated	 that	 RI	was	 significantly	 related	 to	OS	
in	LUSC	 (p <	0.001).	Patients	with	high	RI	had	a	poorer	prognosis	
in	 comparison	with	 those	with	 low	RI	 (Figure	3B).	Additionally,	 RI	
and	the	other	clinical	characteristics	including	age,	gender,	and	can-
cer	stage	were	included	in	the	multivariate	Cox	analysis.	As	a	result,	
the	prognostic	value	of	RI	 remained	significant	 (p <	0.001,	hazard	

ratio	 [HR]	 =	 2.643,	 95%	 confidence	 interval	 [CI]	 =	 1.986–	3.518;	
Figure	3C).

3.2  |  Validation of the prediction model

Patients were divided into two groups according to the level 
of	 RI	 in	 the	 validation	 set.	 As	 shown	 in	 Figure	 4A,	 high	 RI	 was	
significantly	 related	 to	 shorter	 OS	 (p =	 0.028).	 After	 multivari-
ate	 analysis,	 RI	 remained	 as	 an	 independent	 predictor	 for	 the	
prognosis	of	LUSC	(p =	0.042,	HR	=	2.144,	95%	CI	=	1.026–	4.480;	
Figure	4B).

3.3  |  Correlation between LLPS and immune 
in LUSC

In order to identify the plausible mechanisms to illustrate the prog-
nostic	effect	of	RI,	enrichment	analysis	was	performed	between	
patients	with	low	and	high	RI	in	TCGA	dataset.	Interestingly,	a	se-
ries	of	immune-	related	pathways	were	found	to	be	associated	with	
RI	in	LUSC,	such	as	“cytokine	production”	(NES	=	1.818,	adjusted	
p =	0.003),	“activation	of	immune	response”	(NES	=	1.704,	adjusted	
p =	0.003),	and	“leukocyte-	mediated	immunity”	(NES	=	1.781,	ad-
justed p =	0.003)	(Figure	5A,B).	Next,	the	distribution	pattern	of	
tumor-	infiltrating	 immune	 cells	 was	 compared	 according	 to	 the	
level	of	RI.	The	results	indicated	that	natural	killer	cells	and	CD8+ 
T	 cells	 were	 more	 abundant	 in	 the	 low-	RI	 group	 (p < 0.05 and 
p <	 0.01,	 respectively),	 and	more	 resting	 CD4+ memory T cells 
were	found	 in	 the	high-	RI	group	 (p <	0.05;	Figure	6A).	The	phe-
notypes	 of	CD8+	 cells	were	 further	 analyzed	 between	 low-		 and	
high-	RI	 groups.	 Exhaustion	 phenotype	 markers	 such	 as	 PDCD1	
(PD-	1)	and	HAVCR2	(TIM-	3)	were	highly	expressed	in	the	patients	
with	high	RI	(p < 0.05 and p <	0.001,	respectively;	Figure	6B).	The	
expression	of	chemokines	from	CC,	CXC,	XC,	and	CX3C	subfam-
ily	was	 also	 analyzed	 according	 to	 the	 level	 of	RI.	Among	 them,	
CXCL12,	CCL23,	and	CCL14	were	found	to	be	correlated	with	RI	
(|r|>0.3,	p <	0.05;	Figure	6C–	E).

4  |  DISCUSSION

Aberrant	 LLPS	 of	molecules	 in	 living	 cells	might	 trigger	 abnormal	
cellular	activities,	leading	to	human	diseases.	Previous	studies	pre-
sented	robust	evidence	regarding	the	various	LLPS-	related	biologi-
cal processes in the progression of neurodegenerative diseases.15,16 
As	for	 the	 impact	of	LLPS	on	the	development	of	cancer,	 relevant	
studies	were	limited.	In	the	present	study,	the	expression	of	LLPS-	
related	genes	 in	 LUSC	was	 significantly	 different	 from	normal	 tis-
sues,	which	 indicated	 the	potential	 roles	of	LLPS	processes	 in	 the	
cancer development.

F I G U R E  1 Workflow	of	the	present	study



4 of 9  |     ZHUGE Et al.

The	LASSO	Cox	regression	analysis	was	known	as	an	efficient	
method	dealing	with	a	high-	dimensional	data	and	avoiding	overfit-
ting problems.21,22	Thus,	LASSO	Cox	was	adopted	in	this	study	to	
provide the optimal solution for the prediction model by screening 
the suitable genes from a large number of candidates with low mu-
tual	correlation.	In	addition,	the	efficacy	of	the	prediction	model	
constructed by the selected genes was verified by the validation 
set.

The indispensable role of TICs in different types of cancer 
including	 LUSC	 has	 been	 reported	 by	 numerous	 studies.23–	25 
Complex	 immune	 mechanisms	 illustrated	 the	 various	 effects	 of	
immune	cells	and	immune	molecules	on	cancer	development,	pro-
viding	potential	therapeutic	targets	and	anti-	tumor	strategies.26,27 
Recently,	some	studies	tried	to	interpret	immune	activities	in	tumor	

microenvironment	from	the	perspective	of	LLPS.17,18	However,	this	
field	 is	 still	 in	 its	 infancy.	 In	 the	present	study,	our	analysis	 iden-
tified	 a	 series	of	 immune-	related	processes	were	 correlated	with	
LLPS	in	LUSC,	including	pathways	involving	different	immune	cells,	
adaptive	 and	 innate	 immune	 response,	 and	 immune	 checkpoint.	
Thus,	we	further	investigated	the	distribution	pattern	of	TICs	and	
immune	molecules	with	different	LLPS-	related	gene	signatures.	As	
a	result,	the	abundance	of	some	critical	cells	in	anti-	cancer	immune	
activities,	including	CD8+	T	cells,	NK	cells	and	CD4+	T	cells,	varied	
according	to	the	value	of	RI.	Additionally,	the	functions	of	CD8+ T 
cells were altered in patients with high RI in comparison with low 
RI.	It	was	noteworthy	that	these	biomarkers	indicating	the	function	
of	CD8+	T	cells	were	also	known	as	 immune	checkpoint,	 such	as	
PD-	1	and	TIM-	3.	The	differential	expression	of	immune	checkpoint	

F I G U R E  2 Construction	of	the	prognostic	model	based	on	liquid-	liquid	phase	separation	(LLPS)-	related	genes.	(A)	The	volcano	plot	
showing	the	different	expression	of	LLPS-	related	genes	between	lung	squamous	cell	carcinoma	(LUSC)	and	normal	lung	tissue.	(B)	The	
coefficient	profiles	of	the	7	LLPS-	related	genes	selected	by	the	least	absolute	shrinkage	and	selection	operator	(LASSO)	Cox	regression	
analysis.	(C)	Selection	of	the	optimal	parameter	in	the	LASSO	Cox	regression	analysis	with	10-	fold	cross-	validation.	(D)	The	7	LLPS-	related	
genes constituting the prediction model in the discovery set
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was	correlated	with	the	level	of	RI,	which	implied	the	potential	pre-
dictive value of RI for the therapeutic effectiveness of ICIs. The 
significant	 correlation	 between	 the	 expression	 of	 some	 chemok-
ines	 and	 RI	 further	 indicated	 the	 immune	 effect	 of	 LLPS-	related	
processes	in	LUSC.

There	were	several	 limitations	of	 this	study.	First,	all	 the	data-
sets	were	obtained	from	retrospective	studies.	A	prospective	study	

should	be	performed	in	the	future	to	confirm	these	findings.	Second,	
our conclusion was based on bioinformatic analysis without verifica-
tion	of	molecular	biological	experiments.

In	 conclusion,	 the	 LLPS-	related	 gene–	based	 prediction	 model	
was	a	robust	prognostic	tool	for	LUSC	patients.	The	correlation	be-
tween	LLPS	processes	and	immune	activities	might	have	an	impact	
on	the	development	of	LUSC.

F I G U R E  3 Predictive	value	of	the	prognostic	model.	(A)	The	area	under	the	curve	(AUC)	of	the	prediction	model	in	the	discovery	set.	(B)	
Significantly	different	overall	survival	(OS)	between	patients	with	high	and	low	risk	index	(RI).	(C)	RI	as	an	independent	prognostic	factor	in	
lung	squamous	cell	carcinoma	(LUSC)	in	comparison	with	routine	clinical	characteristics
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F I G U R E  4 Validation	of	the	liquid-	liquid	phase	separation	(LLPS)-	related	prediction	model.	(A)	The	worse	prognosis	of	patients	with	high	
risk	index	(RI)	compared	to	those	with	low	RI	in	the	validation	set.	(B)	The	independent	predictive	value	of	RI	in	the	validation	set
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