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Abstract
Objective: The aim of the study was to construct and validate a robust prognostic 
model based on liquid-liquid phase separation (LLPS)–related genes in lung squamous 
cell carcinoma (LUSC).
Methods: The Cancer Genome Atlas dataset was used as the discovery set to identify 
the LLPS-related differentially expressed genes (DEGs) between LUSC and normal 
tissue. These DEGs were screened by the LASSO Cox regression analysis to identify 
the genes with nonzero coefficient, which were next included in the multivariate Cox 
regression analysis to construct the prediction model. The dataset GSE41271 was 
adopted as the validation set to verify the efficacy of the model. Enrichment analysis 
and the CIBERSORT were performed to illustrate potential immune mechanisms un-
derlying the prediction model.
Results: A total of 48 LLPS-related genes were aberrantly expressed in LUSC. Among 
them, 7 genes were selected by the LASSO Cox regression analysis to construct the 
prediction model. Risk index (RI) was calculated according to the model for each pa-
tient. The prognosis was significantly different between the patients with high and 
low RI in the discovery set and the validation set (p < 0.001 and p = 0.028, respec-
tively). The multivariate survival analysis confirmed RI as an independent prognostic 
factor in LUSC (in the discovery set: p < 0.001, HR = 2.643, 95% CI = 1.986–3.518; 
in the validation set: p = 0.042, HR = 2.144, 95% CI = 1.026–4.480). A series of path-
ways involving immune cells were found to be related to RI. The distribution pattern 
of immune cells and chemokines varied according to the value of RI.
Conclusion: The prediction model based on LLPS-related genes was constructed and 
validated as a robust prognostic tool for LUSC using multiple datasets. LLPS might 
have an impact on LUSC through immune pathways.
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1  |  INTRODUC TION

Non–small-cell lung cancer (NSCLC), one of the most common 
malignancies worldwide, is characterized by high morbidity and 
mortality.1 Lung squamous cell carcinoma (LUSC) is known as a 
main pathological subtype of NSCLC.2,3 Although molecular tar-
geted therapy has been constantly applied in clinical practice, its 
effect against LUSC remained limited.4,5 The prognosis of LUSC is 
still dismal, especially in patients with advanced-stage disease.6 
Recently, the promising outcome of immune checkpoint inhibitors 
(ICIs) such as anti-PD-1 agents has shed light on the anti-LUSC 
strategies.7,8 Its treatment response is mainly predicted by expres-
sion level of PD-L1.9,10 However, only a small group of patients 
with NSCLC can benefit from ICIs.11 More predictors for the effi-
cacy of immunotherapy and more profound understanding of the 
underlying mechanisms become an urgent requirement for clinical 
practice.

The important roles and comprehensive mechanisms of liquid-
liquid phase separation (LLPS) of proteins and nucleic acids in cellular 
activities have been continuously uncovered by recent studies.12–14 
Its correlation with the development of some human diseases has 
been indicated by a growing number of studies and has become a 
new paradigm in relevant researches.15,16 Emerging evidence also 
revealed the correlation of LLPS-related activities with anti-tumoral 
immune response, providing a new perspective for understanding 
tumor immunology.17,18 All these findings indicated the potential 
impact of LLPS on cancer development by its direct and indirect 
effects.

The aim of this study was to construct and validate a model 
based on LLPS-related genes for predicting the prognosis of LUSC, 
and to preliminarily uncover the relationship between LLPS-  and 
tumor-related immune activities in LUSC.

2  |  MATERIAL S AND METHODS

2.1  |  Study cohorts and LLPS-related genes

The list of LLPS-related genes was downloaded from PhaSepDB19 
(a database provides a collection of manually curated phase sepa-
ration proteins and membraneless organelles–related proteins; 
http://db.phasep.pro/). The gene expression data of LUSC pa-
tients were downloaded from The Cancer Genome Atlas (TCGA; 
https://portal.gdc.cancer.gov/). Among them, 550 cases with suffi-
cient clinical and survival data were enrolled as the discovery set 
to identify the LLPS-related differentially expressed genes (DEGs) 
between LUSC and normal tissue, and to construct the prediction 
model. Another dataset (GSE41271) obtained from Gene Expression 
Omnibus  (GEO;  https://www.ncbi.nlm.nih.gov/geo/) was used to 
validate the prediction model. The workflow of this study is shown 
in Figure 1.

2.2  |  Construction of a LLPS-related 
prediction model

TCGA dataset was adopted to calculate the LLPS-related DEGs 
between LUSC and normal tissue using “limma” package in R. The 
genes with fold changes >1.5 and p value <0.05 were considered to 
be statistically significant.

All the LLPS-related DEGs in the discovery set were subjected to 
least absolute shrinkage and selection operator (LASSO) Cox regres-
sion. Then, the genes with nonzero coefficients found in the LASSO 
Cox analysis by using the “glmnet” package were put into the mul-
tivariate Cox regression analysis to construct the prediction model. 
The model was expressed as:

In the formula, “Exp” represented the expression value of a gene, 
and “Coef” represented the coefficient of the gene.

2.3  |  Prognostic value of the prediction model

RI was calculated for each individual in the discovery set accord-
ing to our prediction model. The prognosis of 2 patient groups di-
vided by the level of RI was compared to illustrate the prognostic 
value of the model. Then, RI and other clinical characteristics were 
subjected to the multivariate Cox regression analysis to confirm the 
independence of RI (cases with missing data for these variables were 
excluded).

All the aforementioned analyses were additionally performed in 
the validation set to confirm the efficacy of the model.

2.4  |  Enrichment analysis and the 
CIBERSORT method

Enrichment analysis was conducted in order to identify the related 
biological pathways through the Gene Ontology (GO) database 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) database 
by using “clusterProfiler” and “enrichplot” packages in R. The sig-
nificant cutoff threshold was defined as adjusted p value <0.05 and 
|NES|>1.5.

The CIBERSORT method, known as a useful tool to convert 
gene expression profile to relative proportion of different types of 
immune cells,20 was performed to assess the distribution of tumor-
infiltrating immune cells (TICs) in LUSC using TCGA data.

2.5  |  Statistical analysis

All the statistical analysis was performed using R (version 4.1.1) 
(https://www.r-proje​ct.org). Statistical significance was defined as a 

Risk index (RI) = Coef1 × exp1 + Coef2 × exp2 + Coef3 × exp3 +⋯
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two-sided p value <0.05 for all results in this study, unless otherwise 
stated.

3  |  RESULTS

3.1  |  Construction of the prediction model based 
on LLPS-related genes

LLPS-related genes were derived from PhaSepDB and matched in 
the discovery set. A total of 43 LLPS-related genes were identified 
to be up-regulated, and 5 of them were down-regulated in LUSC 
compared with normal tissues (Figure 2A). Next, all the LLPS-related 
DEGs of 493 LUSC patients were included in the LASSO Cox re-
gression model. After the screening, 7 genes remained with nonzero 
regression coefficient, including HOXA13, SSX1, MAGEA4, DPPA2, 
PLA2G1B, CALML5, and H2BC9 (Figure 2B,C). These selected genes 
were used to construct a prognostic model for LUSC patients using 
multivariate Cox regression analysis (Figure 2D). The formula of the 
model was expressed as follows: Risk index (RI) = −0.03359×HOXA
13+0.11907×SSX1+0.01246×MAGEA4+0.06373×DPPA2+0.0961
7×PLA2G1B +0.02794×CALML5-0.13094×H2BC9.

The area under the curve (AUC) of the model was calculated to 
reveal its efficacy. The AUC at 1 year, 3 years, and 5 years equaled 
to 62.76, 64.24, and 65.40, respectively (Figure 3A). The result of 
the log-rank test indicated that RI was significantly related to OS 
in LUSC (p < 0.001). Patients with high RI had a poorer prognosis 
in comparison with those with low RI (Figure 3B). Additionally, RI 
and the other clinical characteristics including age, gender, and can-
cer stage were included in the multivariate Cox analysis. As a result, 
the prognostic value of RI remained significant (p < 0.001, hazard 

ratio [HR]  =  2.643, 95% confidence interval [CI]  =  1.986–3.518; 
Figure 3C).

3.2  |  Validation of the prediction model

Patients were divided into two groups according to the level 
of RI in the validation set. As shown in Figure  4A, high RI was 
significantly related to shorter OS (p  =  0.028). After multivari-
ate analysis, RI remained as an independent predictor for the 
prognosis of LUSC (p = 0.042, HR = 2.144, 95% CI = 1.026–4.480; 
Figure 4B).

3.3  |  Correlation between LLPS and immune 
in LUSC

In order to identify the plausible mechanisms to illustrate the prog-
nostic effect of RI, enrichment analysis was performed between 
patients with low and high RI in TCGA dataset. Interestingly, a se-
ries of immune-related pathways were found to be associated with 
RI in LUSC, such as “cytokine production” (NES = 1.818, adjusted 
p = 0.003), “activation of immune response” (NES = 1.704, adjusted 
p = 0.003), and “leukocyte-mediated immunity” (NES = 1.781, ad-
justed p = 0.003) (Figure 5A,B). Next, the distribution pattern of 
tumor-infiltrating immune cells was compared according to the 
level of RI. The results indicated that natural killer cells and CD8+ 
T cells were more abundant in the low-RI group (p  <  0.05 and 
p  <  0.01, respectively), and more resting CD4+ memory T cells 
were found in the high-RI group (p < 0.05; Figure 6A). The phe-
notypes of CD8+ cells were further analyzed between low-  and 
high-RI groups. Exhaustion phenotype markers such as PDCD1 
(PD-1) and HAVCR2 (TIM-3) were highly expressed in the patients 
with high RI (p < 0.05 and p < 0.001, respectively; Figure 6B). The 
expression of chemokines from CC, CXC, XC, and CX3C subfam-
ily was also analyzed according to the level of RI. Among them, 
CXCL12, CCL23, and CCL14 were found to be correlated with RI 
(|r|>0.3, p < 0.05; Figure 6C–E).

4  |  DISCUSSION

Aberrant LLPS of molecules in living cells might trigger abnormal 
cellular activities, leading to human diseases. Previous studies pre-
sented robust evidence regarding the various LLPS-related biologi-
cal processes in the progression of neurodegenerative diseases.15,16 
As for the impact of LLPS on the development of cancer, relevant 
studies were limited. In the present study, the expression of LLPS-
related genes in LUSC was significantly different from normal tis-
sues, which indicated the potential roles of LLPS processes in the 
cancer development.

F I G U R E  1 Workflow of the present study
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The LASSO Cox regression analysis was known as an efficient 
method dealing with a high-dimensional data and avoiding overfit-
ting problems.21,22 Thus, LASSO Cox was adopted in this study to 
provide the optimal solution for the prediction model by screening 
the suitable genes from a large number of candidates with low mu-
tual correlation. In addition, the efficacy of the prediction model 
constructed by the selected genes was verified by the validation 
set.

The indispensable role of TICs in different types of cancer 
including LUSC has been reported by numerous studies.23–25 
Complex immune mechanisms illustrated the various effects of 
immune cells and immune molecules on cancer development, pro-
viding potential therapeutic targets and anti-tumor strategies.26,27 
Recently, some studies tried to interpret immune activities in tumor 

microenvironment from the perspective of LLPS.17,18 However, this 
field is still in its infancy. In the present study, our analysis iden-
tified a series of immune-related processes were correlated with 
LLPS in LUSC, including pathways involving different immune cells, 
adaptive and innate immune response, and immune checkpoint. 
Thus, we further investigated the distribution pattern of TICs and 
immune molecules with different LLPS-related gene signatures. As 
a result, the abundance of some critical cells in anti-cancer immune 
activities, including CD8+ T cells, NK cells and CD4+ T cells, varied 
according to the value of RI. Additionally, the functions of CD8+ T 
cells were altered in patients with high RI in comparison with low 
RI. It was noteworthy that these biomarkers indicating the function 
of CD8+ T cells were also known as immune checkpoint, such as 
PD-1 and TIM-3. The differential expression of immune checkpoint 

F I G U R E  2 Construction of the prognostic model based on liquid-liquid phase separation (LLPS)-related genes. (A) The volcano plot 
showing the different expression of LLPS-related genes between lung squamous cell carcinoma (LUSC) and normal lung tissue. (B) The 
coefficient profiles of the 7 LLPS-related genes selected by the least absolute shrinkage and selection operator (LASSO) Cox regression 
analysis. (C) Selection of the optimal parameter in the LASSO Cox regression analysis with 10-fold cross-validation. (D) The 7 LLPS-related 
genes constituting the prediction model in the discovery set
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was correlated with the level of RI, which implied the potential pre-
dictive value of RI for the therapeutic effectiveness of ICIs. The 
significant correlation between the expression of some chemok-
ines and RI further indicated the immune effect of LLPS-related 
processes in LUSC.

There were several limitations of this study. First, all the data-
sets were obtained from retrospective studies. A prospective study 

should be performed in the future to confirm these findings. Second, 
our conclusion was based on bioinformatic analysis without verifica-
tion of molecular biological experiments.

In conclusion, the LLPS-related gene–based prediction model 
was a robust prognostic tool for LUSC patients. The correlation be-
tween LLPS processes and immune activities might have an impact 
on the development of LUSC.

F I G U R E  3 Predictive value of the prognostic model. (A) The area under the curve (AUC) of the prediction model in the discovery set. (B) 
Significantly different overall survival (OS) between patients with high and low risk index (RI). (C) RI as an independent prognostic factor in 
lung squamous cell carcinoma (LUSC) in comparison with routine clinical characteristics



6 of 9  |     ZHUGE et al.

F I G U R E  4 Validation of the liquid-liquid phase separation (LLPS)-related prediction model. (A) The worse prognosis of patients with high 
risk index (RI) compared to those with low RI in the validation set. (B) The independent predictive value of RI in the validation set
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