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Topological assessment of 
metabolic networks reveals 
evolutionary information
Jeaneth Machicao1, Humberto A. Filho1, Daniel J. G. Lahr2, Marcos Buckeridge2 & 
Odemir M. Bruno   1

Evolutionary information was inferred from the topology of metabolic networks corresponding to 17 
plant species belonging to major plant lineages Chlorophytes, Bryophytes, Lycophytes and Angiosperms. 
The plant metabolic networks were built using the substrate-product network modeling based on the 
metabolic reactions available on the PlantCyc database (version 9.5), from which their local topological 
properties such as degree, in-degree, out-degree, clustering coefficient, hub-score, authority-score, 
local efficiency, betweenness and eigencentrality were measured. The topological measurements 
corresponding to each metabolite within the networks were considered as a set of metabolic characters 
to compound a feature vector representing each plant. Our results revealed that some local topological 
characters are able to discern among plant kinships, since similar phylogenies were found when 
comparing dendrograms obtained by topological metrics to the one obtained by DNA sequences of 
chloroplast genes. Furthermore, we also found that even a smaller number of metabolic characters is 
able to separate among major clades with high bootstrap support (BS > 95), while for some suborders a 
bigger content has been required.

Phylogenetic studies of plants were initiated by morphological observations related to their reproductive organs1. 
The molecular biology and recombinant DNA technology enabled the evaluation of the evolutionary relation-
ships by comparison of highly conserved DNA primary sequence of plastid genes, such as the successfully estab-
lished phylogenetic relationships between plants by correctly discerning the ancestry relations2.

Many works have used the metabolic network content and its topology as an alternative tool to assess the 
phylogenetic relationships3–14. Early approaches to construct phylogenetic trees were applied using, for instances, 
graph matching comparison algorithm4, graph kernel method5 and graph-based decomposition algorithm6 to 
organisms such as archaea, eukaryota, and bacteria. Other authors have traced phylogenetic distances between 
metabolic networks using network’s global properties, for instances, Zhu & Qin7 used higher-level topological 
properties (network indices, degree distribution measures, and motif profile measure), while others works have 
explored the spectral distribution (Laplacian spectrum) in different approaches8–10. Further attempts have used 
alternative models such as NIPs (network of interacting pathways)11, from which several network-descriptors 
are extracted in order to predict phylogenetic distances within these three living beings groups. Besides that, 
protein-protein interaction networks were explored as well based on the identification of modular network com-
ponents from each network12, and graph alignment for the cross-species analysis applied on Homo sapiens and 
Mus musculus species13.

Other efforts have brought progress to better understand the evolution of plants by means of their molecular 
networks. In that regard, Chae et al.14 have shown phylogenetic similarities based on the comparison of the con-
tent of reactions among plant species. However, less attention has been put to the local topological properties of 
metabolic networks. It could be applied to explore the separation of organisms belonging to a specific kingdom 
such as Viridiplantae in their respective phyla, classes, orders and so on.

Indeed, exploring the scale-free properties of metabolic networks, similarly to how non-biological networks 
are studied15–17, has brought great advances. In general, the existence of hubs is one of the most evident charac-
teristics of scale-free networks, which is corroborated by the correlation between the average shortest path length 
and the average clustering coefficient17. The existence of hubs is a direct consequence of the fact that many links 
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tend to be established on nodes with high connectivity. This scale-free property on metabolic networks indicates 
that the probability of finding a highly connected node is conserved among living beings18. Therefore, the anal-
ysis of local topological properties from metabolic networks based on most representative measures such as the 
degree distribution, clustering coefficient, hub score and many other18, may allow finding evolutionary informa-
tion that is hidden within their complex connections.

In this work, we propose a method to extract the topological metrics of plant metabolic networks, in 
order to compare it between different plants, to obtain phylogenetic signal. We considered 17 plants, namely: 
Brachypodium distachyon (BD), Hordeum vulgare (HV), Oryza sativa japonica (OSJ), Panicum virgatum (PV), 
Setaria italica (SI), Sorghum bicolor (SB), Zea mays (ZM); Arabidopsis thaliana (AT), Brassica rapa pekinensis 
(BRP), Carica papaya (CP), Glycine max (GM), Manihot esculenta (ME), Populus trichocarpa (PT), Vitis vinifera 
(VV); Selaginella moellendorffii (SM); Physcomitrella patens (PP) and Chlamydomonas reinhardtii (CR); whose 
metabolic pathways, catalytic enzymes and metabolites are available at PlantCyc database19.

Features were extracted using a representative set of local topological measurements from the 17 metabolic 
networks. These features were then submitted to hierarchical clustering methods which provided means to com-
pare it with phylogenetic data obtained from the plastid DNA primary sequence analysis. The results showed that 
our method manages to obtain information about kinship relationships, mainly in nodes Chlorophyta, Lycophyta, 
Bryophyta and Angiosperm that is divided into monocotyledons and dicotyledons. We observed that the local 
topological measure called hub-score provided quantitative parameters that were capable to group correctly the 
species studied within their respective clades.

Results
Plant metabolic networks topology.  The plant metabolic networks were modeled based on the metabolic 
reactions corresponding to the 17 plants of the PlantCyc19 (version 9.5) (see Supplementary Dataset S1–S3). A 
summary of measurements extracted from these metabolic networks is shown in Supplementary Information S1. 
The size of the networks were quantified in terms of the number of reactions and metabolites. For instance, the 
smallest and highest network contains 2433 and 3546 metabolites corresponding to Chlamydomonas reinhardtii 
and Arabidopsis thaliana col, while these same plants contain 2208 and 3424 reactions, respectively. We found 
1880 metabolites and 1149 metabolic reactions in common between all the 17 plants studied here. These 1880 
metabolites represent 64.3% of information of the average number of metabolites, i.e. 2923, are present in the 17 
networks, while 1149 common reactions represent 42.6% of information of the average number of the metabolic 
reactions, i.e. 2696 (see Supplementary Dataset S4–S6).

We analyzed the size of the metabolic networks and its dispersion throughout the taxonomic classes. Fig. 1a 
depicts the correlation between the average number of nodes (〈N〉) in terms of the average number of reactions 
(〈R〉) present on each major plant clade. This plot shows that the number of metabolites varies linearly with the 
number of reactions across the plant clades. This data suggests that the metabolic reactions have been accumu-
lated along the evolution of the species as already verified in earlier works14.

Global topological measurements (such as mean degree 〈k〉, average path length 〈L〉, the incoming and outgo-
ing power-law exponent γin and γout) were calculated for each of the five major clades considered here, i.e. 
Chlorophyta, Lycophyta, Bryophyta, monocotyledons and dicotyledons. Figure 1b depicts the measurements in 
function of the average number of reactions (〈R〉) per plant clade. Observe that only the the in-going power-law 
exponent is showed in Fig. 1b, since both the incoming and outgoing power-law exponents do not vary between 
the plant clades. These results reinforce the fact that plant metabolic networks are scale-free networks, as stated by 
Jeong et al.18. The average path length 〈L〉, varies slightly with the number of reactions, as it was observed in ear-
lier works20. Moreover, as expected, a small slope can be noticed in the curve of the average degree 〈k〉 in function 
of the average number of reactions (〈R〉) per plant clade, hence the number of nodes (metabolites) increases from 
chlorophytes to dicots (Supplementary Information S1).

Phylogenetic information at local topology of the metabolic network.  Nine local topological 
measurements were used independently to assembly feature vectors from the plant metabolic networks studied 
here, namely the degree (ki), in-degree (ki

in), out-degree k( )i
out , hub-score (H(vi)), local clustering coefficient (Ci), 

Figure 1.  (a) Average number of reactions (〈R〉) versus the average number of metabolites (〈N〉) per plant 
clade. The plant clades: Dicotyledons, Monocotyledons, Lycophytes, Bryophytes and Chlorophytes are listed 
according with their average number of nodes and reactions. (b) The average number of plant metabolic 
reactions in function of the average values of three topological measures namely, mean degree 〈k〉 (triangle), 
average path length L (circle) and the incoming power-law exponent γin (square), per each plant clade.
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authority-score (A(vi)), local efficiency (Fi), betweenness (Bi) and eigencentrality (Ei). We used these former top-
ological metrics since they are related to the connectivity, distance-based and centralities measurements. A fea-
ture vector φP was composed using the topological measures of m = 1880 metabolites corresponding to the size of 
the common-metabolites-set (see Material and methods section).

Figure 2 shows a scatter plot of the first and second principal component analysis (PCA) applied to each of the 
nine feature vectors. We can observe that the hub-score plot (Fig. 2a) is one of the measurements that best clus-
terizes plants belonging to the same clade, i.e. being able to distinguish between major clades, while the other five 
measures (degree, in-degree, out-degree, authorithy-score and betweenness in Fig. 2b–d,f,h) barely distinguish 
between Monocotyledons and Dicotyledons. Conversely, the local clustering coefficient and the local efficiency 
measures are not able to group plants of same clades (Fig. 2e,g,i).

Phylogenetic hierarchy inferred by the local topology.  We analyzed the distance matrix obtained 
by the hub-score metric (Supplementary Information S2), where each matrix element represents the Euclidean 
distance between each pair of plants among the 17 studied. In a similar way, a distance matrix was calculated for 
the degree, in-degree, out-degree, local clustering coefficient, authority-score, local efficiency, betweenness and 
eigencentrality, respectively (Supplementary Information S3–S10).

The hierarchical clustering method UPGMA (Unweighted Pair Group Method with Arithmetic mean)21 was 
employed in order to depict a dendrogram. Then the cophenetic correlation coefficient (CPCC) was used to 
measure the correlation between the distance matrices obtained by the topological measurements and the phy-
logenetic distance matrix obtained by the plastid gene sequence (Supplementary Information S20).

The dendrogram obtained by the hub-score metrics shown in Fig. 3 achieved CPCC = 0.88, which demon-
strates a taxonomical discernment of the five major clades. The dicots species used in this study belongs to 
Rosidae clade; Inside this clade, the species Populus trichocarpa, Manihot esculenta and Glycine max were cor-
rectly assigned as Fabidae subclade; and Carica papaya, Brassica rapa pekinensis and Arabidopsis thaliana into the 
Malvidae subclade. It was also found a correct assignment of species within the Fabidae and Malvidae subclades. 
The species Populus trichocarpa, and Manihot esculenta were correctly assigned at Malpighiales order; and the 

Figure 2.  Scatter plot of the two principal components of the feature vector corresponding to the topological 
networks measures, namely (a) hub-score, (b) degree, (c) in-degree, (d) out-degree, (e) local clustering 
coefficient, (f) authority-score, (g) local efficiency, (h) betweenness and (i) eigencentrality.



www.nature.com/scientificreports/

4ScIentIfIc REPOrTS |         (2018) 8:15918  | DOI:10.1038/s41598-018-34163-7

species Brassica rapa pekinensis and Arabidopsis thaliana into Brassicales order. These results show the discern-
ment of the method inside the dicots, on the other hand, the same was not observed inside the monocots clade.

In a similar manner, the other metrics were analyzed as well. The CPCCs obtained by the degree, in-degree, 
out-degree, local clustering coefficient, authority-score, local efficiency, betweenness and eigencentrality met-
rics were 0.85, 0.85, 0.88, −0.11, 0.71, −0.19, 0.72 and 0.29, respectively. We show in Fig. 4, the clustergrams 
corresponding to the out-degree and degree metrics, which obtained the second and third largest CPCC, and 
the local clustering coefficient and local efficiency metrics, which obtained the lowest values, respectively. The 
other clustergrams are found at the Supplementary Information S21. The heat map showed at the right of each 
dendrogram indicates the clustering grouping. As we can observe that the dendrograms corresponding to the 
degree, in-degree, out-degree, authority-score and betweenness obtained also high CPCCs, contrarily, the local 
clustering coefficient, local efficiency and eigencentrality has completely failed. Notice that the clustergrams with 
larger CPCC distinguishes among four clades (Chlorophytes, Bryophytes, Lycophytes, and Angiosperms). These 
metrics introduce attribution errors only within the group of angiosperms with ramifications including both 
monocotyledonous and dicotyledonous plants at the same branch.

Validation of the evolutionary information from local topology.  We obtained consistent 
information regarding the discrimination between major clades, as shown in Figs 3 and 4a,b, using the 
common-metabolites-set, however, this dataset excludes those specific metabolites of each plant, which need 
to be explored as well. Thus, we also analyzed the complete number of metabolites present in all the plants 
studied here. Therefore, we also considered the full-metabolites-set, which contains m = 4583 metabolites. We 
repeated all of the experiments shown previously and we have obtained very similar results, i.e. a high discern-
ment among major clades defined by its higher CPCCs, and more particularly, when using the hub-score met-
ric. The distances matrices corresponding to the nine topological metrics using the full-metabolites-set are given 
in the Supplementary Information S11–S19, while the corresponding scatter plots and clustergrams are in the 
Supplementary Information S22.

In order to validate the method, we compared the dendrograms obtained from the hub-score metric with 
the phylogenetic reconstruction regarding the 17 plants, i.e. a “guide tree” obtained from the DNA alignment 
(see Material and methods section and Supplementary Information S20). The DNA phylogenetic reconstruc-
tion is shown in Fig. 5a. The branches shown two confidence values obtained from the bootstrap applied to the 
hub-score feature vector for both the common-metabolites-set and the full-metabolites-set, left and right, respec-
tively. The bootstrap values correspond to 100 random replicas obtained by the hub-score dendrogram with fea-
ture vectors containing both dataset, i.e. m = 1880 and m = 4583 characters, using current RAxML (Randomized 
Axelerated Maximum Likelihood, version 8.2.11)22.

One can observe in Fig. 5a that some of the branches (colored lines) shown high taxonomic discernment of 
monocots and dicots (BS 100 and 100). Moving within the dicots subclade, it can be observed two relatively high 
confidence support values on branches enclosing CP, AT and BRP (BS 67-100) and PT and ME (BS 70-91). In con-
trast, the same feature vector provided lower BS for the rest of branches. Moving back to the monocots subclades, 
the species BD, HV, and OSJ are separated from species PV, SI, SB, and ZM with high confidence (BS 72–100), 
where the higher BS corresponds to the full-metabolites-set feature vector. On the other hand, the branches of 
species SB and ZM (BS 79–100) obtained high confidence values when using the common-metabolites-set as a 
feature vector.

Figure 3.  The hub-score dendrogram corresponding to the highest cophenetic coefficient correlation 
(CPCC = 0.88) respect to the phylogenetic distance matrix based on multiple alignment of 78 plastid gene 
sequences. The dash containing the number 0.125 shows the distance scale unit of the dendrogram.



www.nature.com/scientificreports/

5ScIentIfIc REPOrTS |         (2018) 8:15918  | DOI:10.1038/s41598-018-34163-7

Moreover, we also analyzed the robustness of the method according to the number of metabolites composing 
the feature vector φP = {μ1, μ2, …, μm}, i.e. in order to analyze the adequacy of the characters (metabolites) within 
this vector. Therefore, we built various samples containing, for example, 100, 200, …, 4500 characters in order 
to build different feature vectors, and then, we applied a bootstrap-re-sampling with 100 bootstrap rounds (see 
Material and methods section). The results of this analysis are found in Fig. 5b, where each curve (color) corre-
sponds to the branches found in Fig. 5a. The curves corresponding to the branches with the highest bootstrap 
show that this feature vector is able to distinguish between major clades with a small number of characters, while, 
for some other branches, a bigger number of characters are needed to reach a reasonable support value.

Discussions
We have analyzed the topological properties from 17 plant metabolic networks modeled from the metabolic 
reactions found at the PlantCyc database aiming to trace evolutionary information from these species. Initially, 
the number of reactions and the number of nodes (metabolites) in each plant metabolic network were useful 
to demonstrate the close relationship between their properties and their evolutionary pattern, as already sug-
gested by Chae et al.14. Although this previous work showed that the metabolic network sizes have an evident 
correlation with the evolutionary divergence at plant kingdom, the same is not true when considering the size 
of plant genomes. For instance, the size of the nuclear genome of Arabidopsis thaliana has 125 megabases (Mb) 
and Physcomitrella patens has 480 Mb with 25,498 and 35,938 genes, respectively23,24; However, the number of 
metabolic reactions of these plants is 3424 and 2651, respectively. Consequently, the number of genes per plant is 
not related to the size of the metabolic network. Preliminary data regarding the metabolic network size raised the 
question: has the topological structure of a metabolic network been modified in accordance with the evolutionary 
divergence of plants?

Besides the fact that metabolic networks, in general, have invariable global topological properties such as the 
scale-free nature18, it confirms that the same highly connected network nodes (hubs) may provide the relation 
between key metabolites responsible for distinct metabolic functions18. We have shown in this manuscript, that 
metabolic network posses intrinsic structural patterns that allow being more grouped between similar classes and 
more disperse from the unrelated ones. We have demonstrated that, conversely, some local topological network 
measurements (such as hub-score, degree, in-degree, and out-degree) showed variation within the major plant 
clades.

The dendrogram presented in Fig. 3 shows that the analysis performed using hub-score seems to reflect plant 
phylogeny, since the major groups Chlorophytes (Chlamydomonas), Bryophytes (Physcomitrella), Lycophytes 
(Selaginella), Dicotyledons, and Monocotyledons are well separated. These results were supported by both the 
cophenetic correlation and bootstrap analysis, regarding the phylogenetic distance based on the DNA sequence 
alignment of chloroplast genes2, which correctly establish the taxonomy of 17 studied species. The explanations 
for such separation are rather complex. However, some more general features of metabolism can help explain 
them from a broader viewpoint. One possible trend that might help to explain the pattern of the grouping of spe-
cies found in the present work is the gradual evolution of secondary metabolism during the evolution of plants25. 

Figure 4.  Clustergram of the 17 plant metabolic networks based on local topological metrics, namely (a) 
out-degree, (b) degree, (c) local clustering coefficient and (d) local efficiency. The dash containing numbers 
(0.05, 0.5 and 0.25) shows the distance scale unit of the dendrogram. The heat map showed at the right of each 
dendrogram indicates the clustering grouping similarity.
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One first step from Chlorophytes to Bryophytes/Lycophytes could be possibly associated with the evolution of the 
capacity to make lignin by plants from the latter groups. In the Angiosperm groups (represented here by mono-
cots and dicots), secondary metabolism evolved to produce volatile compounds related to plant communication 
and defense. Thus, the dendrogram that results from hub-score analysis observed in, for instance, the difference 
in structure, as well as the number of reactions likely reflect the complexity of metabolism.

The separation of species from Dicots and Monocots is more difficult to explain. The differences might be 
related to the different genes and corresponding reactions present in both groups of plants26. The secondary 
metabolism of plants of the two groups are different, but equally complex. Some parts of the metabolism (e.g., 
flavonoids) have even been demonstrated to complement each other27. It also is possible that in the case of Zea, 
Sorghum, and Brachypodium, the presence of the C4 photosynthesis might have made a difference. Wang et al.28 
found that important differences in the topology of the metabolic network of a C3 (Arabidopsis) and the C4 grass 
maize (Zea), the latter being considered denser, with higher robustness, and better modularity. Such differences 
might also have influenced the variations found in the present work.

Regarding the technical aspects of the proposed methodology, it is worth to notice that a reduced 
portion of the metabolic structure, i.e. 1880 metabolites that are common among all the studied plants 
(common-metabolites-set), was able to establish taxonomic correlations by means of topological measures of met-
abolic networks. This fact indicates that many other modeling strategies can be used to extract more accurate 
models, thus, allowing better pattern analysis. Besides that, regarding the point of using all the metabolites or just 
the common ones, we have observed that it is possible to separate monocots and dicots with 100 Bootstrap rounds 
by using only the common-metabolites-set (m = 1880), notwithstanding, when going throughout the subclades 
this BS falls. However, on the other hand, when considering the full-metabolites-set (m = 4583), the correct assign-
ment of subclades is improved. This suggests that important evolutionary information is also present in specific 
metabolites. Moreover, as shown in Fig. 5b, the number of metabolites is related to the performance of the boot-
strap analysis, which indicates that the more metabolites considered to compound the feature vector the more 

Figure 5.  (a) The DNA phylogenetic tree corresponding to the highest cophenetic coefficient correlation 
(CPCC = 0.88) respect to the phylogenetic distance matrix based on multiple alignments of 78 plastid gene 
sequences (Supplementary Information S20). The dash containing the number 0.125 shows the distance scale 
unit of the dendrogram. The numbers indicate support from 100 bootstrap rounds based a randomization from 
the hub-score vector with a range between 100–4500 characters. The colored circles at each branch represent the 
assignment of branch support corresponding to the curves in (b). (b) The support of each branch of the hub-
score tree based at bootstrap rounds according to the hubs-core feature vector enlargement between 100 and 
4500 vector elements (metabolites).
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confidence compared to the phylogenetic tree DNA can be obtained. Moreover, this also suggests that evolution-
ary information is present in common-metabolites-set as much as in the full content of metabolites of each plant.

One of the main advantages of the proposed method is the possibility to reconstruct phylogenetic trees based 
on simple topological measures extracted from the metabolic machinery (e.g. a feature vector extracted from the 
hubs-score), which consequently can be considered as a complementary tool for plant phylogenetic analysis. In 
this manner, different approaches or visions can provide extra information that can be used to corroborate the 
study of evolution, that apart from being largely studied is not fully understanding yet. Another advantage is 
that the metabolic network model studied in this work is considered a minimalist approximation of metabolic 
networks since they were constructed only by considering general aspects of the biochemical reactions. Due to 
this fact, we believed that many other scenarios of molecular networks can be also analyzed such as enzymes 
networks, genes, and proteins networks, since they may have rich information within their topological structure. 
This fact indicates that many other network modeling strategies, for instances, stoichiometric coefficients, and 
enzymes catalyzers, which could be explored in future investigations, can be used to extract yet more accurate 
phylogenetic correlations and pattern analysis.

On the other hand, one of the limitations of this approach is that it relies on the set of metabolic reactions, 
which consequently depends on the completeness of the content of the accessible databases29. Besides, PlantCyc 
contains a trustful reconstruction of the plant biochemical pathways, as it was used in many works30–36, perhaps 
future metabolic databases with more complete data would carry out an improvement of the results obtained in 
this work.

Finally, our findings call for more in-depth comparative analyses of the metabolic pathways of plants of these 
groups to try pointing out to functional features and to the possibility of including the metabolic networks in 
plant phylogenetic analysis–and also to other types of organisms–in the future. Not only these initial hypotheses 
related to metabolic networks evolution can be tested and possibly extended, but this could also open interesting 
opportunities to implement synthetic biology strategies for plants.

Material and Methods
Figure 6 shows the proposed method to extract evolutionary information from plant metabolic networks. First, 
some preprocessing of the dataset of metabolic reactions is required in order to build a metabolic network 
(Fig. 6a,b). Later on, the local topological measures are calculated (Fig. 6c), to later proceed with the feature 
extraction and dimensionality reduction (Fig. 6d), to finally construct a hierarchical clustering (Fig. 6e) to vali-
date them by comparisons using bootstrap support with an appropriate phylogenetic reconstruction data (“guide 
tree”).

Metabolic reactions database.  The plant metabolic networks studied here were constructed from the 
metabolic reactions of 17 plants available at PlantCyc database19 (version 9.5). Each plant reaction dataset and 
its corresponding web references are shown in Table 1. This database contains the reconstruction of the plant 
biochemical pathways based on enzyme sequence from annotated metabolic functions of proteins sequences30–35 
(curated dataset available at Supplementary Dataset S1–S3).

Prior to modeling the data into a network, some preprocessing steps were applied. (i) The database was con-
verted to UTF-8 codification in order to avoid invalid characters; (ii) The duplicated biochemical formulas were 
removed; (iii) The reactions were standardized, for example, NADP(H) was referred as NADPH and (iv) The 
stoichiometric coefficient that precedes biochemical formulas were removed, since they were not contemplated 
in this study. With this latter preprocessing, therefore, we have means to model a metabolic network.

Metabolic network modeling.  The plant metabolic networks were modeled using the set of biochem-
ical reactions from a specific plant. Moreover, we followed the substrate-product network model37, where 

Figure 6.  Overview of the proposed method. Each block represents a processing step. (a) An example of two 
metabolic reactions. (b) The metabolic network modeling considers the substrate-products network model, 
where each metabolite from substrates is linked to each metabolite from product reactions. (c) Local topological 
metrics are calculated for each network, thus each metabolite is represented by a value. (d) The measurements 
calculated previously are used to compound one feature vector per each metabolic network. (e) The distance 
matrix contains the Euclidean distances among pairs of plants. (f) Construction of a dendrogram using the 
UPGMA clustering method, which contains evolutionary information about the studied plants.
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metabolites (nodes) from substrates are linked to metabolites from products of the reactions (dataset available at 
Supplementary Dataset S1–S3). Figure 6a,b shows an example of the metabolic network modeling. For illustra-
tion’s sake, the plot shows two metabolic reactions that correspond to the network modeling on top. This network 
is represented by a directed graph G(V, E), where V is a set of N metabolites (nodes) linked by a set of edges E. 
Moreover, each metabolic reaction directionality was considered. Thus, each metabolite is individually linked to 
each other with respect to the reaction arrows (left ⇒ and right ⇐ and bidirectional ⇔). In the case of the bidi-
rectional arrows, two links are considered separately (incoming and outgoing directions). Noticed that as V and 
E are set, therefore repeated metabolites and/or edges are dismissed.The metabolic network is represented by the 
adjacency matrix A of N × N, where each element aij is related to each other by a link.

Datasets.  Common-metabolites-set.  This dataset contains m = 1880 metabolites representing those metab-
olite with high connectivity such as ADP, ammonia, AMP, ATP, CO 2, among others. This dataset is composed by 
the intersection among all metabolites of plants analyzed here (Supplementary Dataset S4).

Full-metabolites-set.  This dataset is composed by the total of metabolites (m = 4583) found in the 17 plants 
studied (Supplementary Dataset S5).

Common-reactions-set.  This dataset is composed by the common reactions (1149) among the 17 plants being 
studied (Supplementary Dataset S6).

Topological characterization.  The topological metrics used to characterize metabolic networks are 
described in the sequel. The degree of node vi is represented by ki, also called connectivity, which is the total num-
ber of incoming links and outgoing links, where ki

in and ki
out are the in- and out-degree, respectively given by 
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−

.
≠

L
D v v

N N
( , )

( 1) (3)i j

i j

Plant Database of reactions

Brachypodium distachyon https://pmn.plantcyc.org/BRACHYPODIUM/class-instances?object=Reactions

Hordeum vulgare https://pmn.plantcyc.org/BARLEY/class-instances?object=Reactions

Oryza sativa japonica https://pmn.plantcyc.org/ORYZA/class-instances?object=Reactions

Panicum virgatum https://pmn.plantcyc.org/SWITCHGRASS/class-instances?object=Reactions

Setaria italica https://pmn.plantcyc.org/SETARIA/class-instances?object=Reactions

Sorghum bicolor https://pmn.plantcyc.org/SORGHUMBICOLOR/class-instances?object=Reactions

Zea mays https://pmn.plantcyc.org/CORN/class-instances?object=Reactions

Arabidopsis thaliana col https://pmn.plantcyc.org/ARA/class-instances?object=Reactions

Brassica rapa pekinensis https://pmn.plantcyc.org/CHINESECABBAGE/class-instances?object=Reactions

Carica papaya https://pmn.plantcyc.org/PAPAYA/class-instances?object=Reactions

Glycine max https://pmn.plantcyc.org/SOY/class-instances?object=Reactions

Manihot esculenta https://pmn.plantcyc.org/CASSAVA/class-instances?object=Reactions

Populus trichocarpa https://pmn.plantcyc.org/POPLAR/class-instances?object=Reactions

Vitis vinifera https://pmn.plantcyc.org/GRAPE/class-instances?object=Reactions

Selaginella moellendorffii https://pmn.plantcyc.org/SELAGINELLA/class-instances?object=Reactions

Physcomitrella patens https://pmn.plantcyc.org/MOSS/class-instances?object=Reactions

Chlamydomonas reinhardtii https://pmn.plantcyc.org/CHLAMY/class-instances?object=Reactions

Table 1.  List of web references of the reaction dataset for the 17 plants used in this study corresponding to 
PlantCyc (version 9.5)19 is available.

https://pmn.plantcyc.org/BRACHYPODIUM/class-instances?object=Reactions
https://pmn.plantcyc.org/BARLEY/class-instances?object=Reactions
https://pmn.plantcyc.org/ORYZA/class-instances?object=Reactions
https://pmn.plantcyc.org/SWITCHGRASS/class-instances?object=Reactions
https://pmn.plantcyc.org/SETARIA/class-instances?object=Reactions
https://pmn.plantcyc.org/SORGHUMBICOLOR/class-instances?object=Reactions
https://pmn.plantcyc.org/CORN/class-instances?object=Reactions
https://pmn.plantcyc.org/ARA/class-instances?object=Reactions
https://pmn.plantcyc.org/CHINESECABBAGE/class-instances?object=Reactions
https://pmn.plantcyc.org/PAPAYA/class-instances?object=Reactions
https://pmn.plantcyc.org/SOY/class-instances?object=Reactions
https://pmn.plantcyc.org/CASSAVA/class-instances?object=Reactions
https://pmn.plantcyc.org/POPLAR/class-instances?object=Reactions
https://pmn.plantcyc.org/GRAPE/class-instances?object=Reactions
https://pmn.plantcyc.org/SELAGINELLA/class-instances?object=Reactions
https://pmn.plantcyc.org/MOSS/class-instances?object=Reactions
https://pmn.plantcyc.org/CHLAMY/class-instances?object=Reactions
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The in- and out-degree distribution P(k) is assumed as the probability of having a node with kin and kout 
degrees respectively17. Scale-free networks follow a power law distribution, γ−~P k k( )  where γin or γout are the 
incoming and outgoing power-law exponent respectively.

According to the Kleinberg’s HITS algorithm38, there are two types of nodes: hubs and authorities. Hubs 
are nodes highly connected, on the other hand authorities are nodes linked by many hubs. HITS algorithm 
assigns scores to hubs H(vi) and authorities A(vi), and computed them based on the node degree ki considering 
the participation of each node and their mutually reinforcement. This algorithm assumes the initial condition 
H(vi) = A(vi) = 1, as established by the equations

∑ ∑= = .
= =

v v v vA( ) H( ), and H( ) A( )
(4)

j
a

i i
a

j
ij ij1 1

We also considered two centrality measures, i.e. the betweenness and the eigenvector. The former metric 
considers the importance of a node regarding the information load it is responsible in the network39. The com-
munication between two nodes j and k, that are not adjacent, depends on the nodes that belong to the paths that 
connect j and k, i.e. acting as a bridge. Thus, the betweenness Bi of a node i is computed as a function of the num-
ber of shortest paths passing through i39:

∑
σ

σ
=

− − ≠N N
i

B 1
( 1)( 2)

( )
,

(5)
i

j k j k

jk

jk, ,

where σjk(i) is the number of geodesic paths connecting j and k passing through i and σjk is the number of geo-
desic paths connecting j and k.

Regarding the eigenvector centrality, or simply eigencentrality Ei
40, it is a metric that scores the influence of a 

node in a network. Thus, for instance, highest values represent those nodes which are connected to many other 
nodes which are, similarly, connected to many others. The eigencentrality metric is calculated using the highest 
eigenvalue λ given by the adjacency matrix A and corresponding eigenvector X40, as follows:

λ
= ⋅A XE 1

(6)i

Another metric used for network analysis is the efficiency, which can be applied in both local and global scales. 
The global efficiency ε measures how efficiently information is exchanged over the network41, while the local 
efficiency Fi accounts for the network’s tolerance when node i is removed, characterizing how well information is 
exchanged by its neighborhood, and it is defined as:

∑ ε=
N

vF 1 ( )
(7)i

i

N

i

where ε = ∑− ≠v( )i N N i j D v v
1

( 1)
1

( , )i j
.

Should be noticed that all of these metrics can be extracted by means of the network properties, being either 
local or global, thus, degree, in-degree, out-degree, hub-score, authority-score, local clustering coefficient, local 
efficiency, betweenness and eigencentrality are local topological measurements, on the other hand, power-law 
exponent, mean degree and average shortest path are global topological measures.

Feature extraction.  The metabolic networks were characterized in terms of their topological measure-
ments. We adopted local topological measures extracted from each node. Therefore, for each plant metabolic 
network MP, a feature vector φP = [μ1, μ2, …, μm] is composed by the concatenation of the calculated measures of 
each metabolite, where m is the number of characters (metabolites). In order to obtain an accurate characteriza-
tion of the metabolic networks, it was necessary a statistical method for feature normalization or dimensionality 
reduction, therefore, the principal component analysis (PCA) was employed in order to correlate the plant meas-
urements by using a dimensional projection of the original feature space.

Dendrograms based on hierarchical clustering.  In this work, we assumed that a pair of plants are sim-
ilar when there exist correlated patterns among their metabolic networks that are also similar to their topological 
measurements, or vice versa. Thus, after determining the projections of the feature vectors, it was calculated a 
17 × 17 distance matrix composed of the Euclidean distances between each pair of feature vector (i.e., a pair of 
plants), from which a dendrogram can be constructed. In this context, the hierarchical clustering aims to form 
groups of plants belonging to the same cluster based on their topological characteristics, i.e., plants from the same 
cluster are as similar as possible to each other, while plants from different clusters are dissimilar as possible42.

Thus, the UPGMA (Unweighted Pair Group Method with Arithmetic mean) hierarchical clustering method21 
performed on Matlab 2012a package was employed. In addition, the cophenetic correlation coefficient (CPCC)42 
is applied in order to evaluate the consistency between two the distance matrices. For our purposes, the distance 
matrices corresponding to the topological measurements using the common-metabolites-set (Supplementary 
Information S2–S10) and the full-metabolites-set (Supplementary Information S11–S20) are contrasted to 
the distance matrix obtained by the phylogenetic distance matrix based on gene alignment (Supplementary 
Information S21). The CPCC is a value in the range of [−1, 1], where a value close to 1 indicates a higher Pearson 
correlation between two clustering structures.
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Bootstrapping analysis of the topological network characters.  The bootstrapping method provided 
by the RAxML software (Randomized Axelerated Maximum Likelihood, version 8.2.11)22 was used in order to 
estimate confidence intervals (BS) in all experiments.

In order to show the adequacy of the number of characters m within the feature vector, we constructed ensem-
bles of feature vectors, sampling m characters within the 4583 metabolites present in the full-metabolites-set. 
Each ensemble contains 100 random combinations containing different sizes m = {100, 200, …, 4500} characters. 
Therefore, 100 bootstrap replicates were considered per each topological measurement.

Phylogenetic reconstruction based on 78 plastid genes.  In order to generate a phylogenetic recon-
struction as a comparison basis for the method proposed here, we have used a recent phylogenetic reconstruction 
of all plants as a starting point2. The matrix containing 78 aligned plastid genes from 360 taxa was pruned to gen-
erate an alignment with 15 taxa that included the plants used in this study that are present in the PlantCyc data-
base. For the remaining two taxa (Brassica rapa pekinensis and Setaria italica), the complete plastid genome was 
downloaded and the 78 relevant genes were aligned with the previous 15 taxa, using the MAFFT algorithm43. This 
multigene alignment was then subjected to Maximum Likelihood reconstruction using IQTREE44. We recon-
structed the phylogenetic relationships for all 17 taxa. We first performed the implemented model tool which 
yielded the following most appropriate models via AIC: JTTDCMut + F + G4 for 17 taxa. We then performed 
Maximum Likelihood searches using default parameters, followed by 1000 rapid bootstraps to determine support. 
Resulting trees (Supplementary Dataset S7) with bootstrap supports are concordant with each other and identical 
to the tree generated by Rufehl and colleagues2 if other taxa than those used in this study were removed.
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