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Direct phonon excitation in a neutron time-of-flight single-crystal Laue

diffraction experiment has been observed in a single crystal of NaCl. At room

temperature both phonon emission and excitation leave characteristic features

in the diffuse scattering and these are well reproduced using ab initio phonons

from density functional theory (DFT). A measurement at 20 K illustrates the

effect of thermal population of the phonons, leaving the features corresponding

to phonon excitation and strongly suppressing the phonon annihilation. A recipe

is given to compute these effects combining DFT results with the geometry of

the neutron experiment.

1. Introduction

The most common type of diffuse scattering at room-

temperature in a single-crystal diffraction experiment

designed to measure it is caused by lattice vibrations and is

known as thermal diffuse scattering (TDS) (Born & Lonsdale,

1942). This can be seen using laboratory or synchrotron X-ray

sources as well as neutrons at large-scale facilities (Osborn &

Welberry, 1990; Welberry & Goossens, 2008). In principle,

such data can be used to reconstruct phonon dispersion curves

at least for simple crystal structures and using model poten-

tials (Holt et al., 1999). Diffuse scattering was among the early

techniques used to obtain phonon dispersion curves along

high-symmetry directions in elemental crystals before inelastic

neutron and X-ray experiments became routine (Olmer, 1948;

Placzek & Van Hove, 1954, Squires, 1978; Burkel, 2000).

Inelastic techniques using single crystals provide complete

momentum and energy-resolved dispersion curves, whilst

diffraction only has momentum resolution. Interesting effects

were noted by Willis et al. in the case of time-of-flight (TOF)

Laue neutron diffraction where the neutron can accidentally

match the wavevector and energy of phonons leading to a

splitting of the thermal diffuse scattering features corre-

sponding to phonon emission and absorption (Willis et al.,

1986; Schofield & Willis, 1987). This effect has not been

observed with X-rays owing to the high energy of the order of

several keV compared with up to hundreds of meV for lattice

vibrations but in principle takes place as well. Willis derived a

formalism to extract the sound velocity of a crystal using the

splitting of the diffuse lines of the acoustic phonons which

dominate the TDS pattern, at least close to the Bragg peaks

(Willis, 1986). A few experiments were conducted to demon-

strate the feasibility, and good agreement was obtained for the
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sound velocity obtained by other means (Willis, 1986; Carlile

& Willis, 1989; Carlile et al., 1992). Inelastic effects have also

been noticed in quartz but were not considered further

(Tucker et al., 2001). It should be noted though that very few

observations of direct phonon excitation in neutron diffraction

experiments have been reported to date, limiting somewhat

the use of this technique for molecular crystals in particular,

with benzil being the only known example to the best of our

knowledge (Welberry et al., 2003).

Nowadays, density functional theory (DFT) has established

itself as a tool of choice to predict phonon dispersion curves

from a crystal structure and is routinely used in the planning

and interpretation of inelastic experiments (Mitchell et al.,

2005). These computations also give the phonon eigenvectors

for arbitrary q points which are not easily accessible experi-

mentally though, in principle, they are available from the

intensity of the TDS or inelastic peaks provided the inelastic

structure factor differs from zero. Examples are now emerging

where DFT computations are used to aid in the interpretation

of diffuse scattering experiments (Bosak et al., 2009; Wehinger

et al., 2014; Gutmann et al., 2013).

In this paper, we combine DFT calculations with the

geometry of the Laue neutron diffraction experiment to

compute the ‘inelastic diffraction’ associated with phonons.

This is compared with diffuse scattering calculated in the

instrument geometry using the quasi-static approximation,

which is when the phonon energy is negligible compared with

the energy of the scattering probe. Our motivation is to be

able to identify and reproduce the diffuse scattering arising

from one-phonon scattering over a large region in reciprocal

space in combination with ab initio calculations, in order to aid

in the interpretation of diffuse scattering patterns beyond the

Monte Carlo modelling approach (Welberry, 2004).

2. Experimental

2.1. Diffraction experiments

NaCl single crystals with a purity of 99.99% were purchased

from Sigma–Aldrich; hereafter, they are referred to as

synthetic. A large, irregularly shaped crystal was shaped into a

sphere of 6 mm diameter. This sample is usually used as a

calibration standard to ensure reproducibility between ISIS

experiment cycles. Natural specimens were obtained in Hall-

statt (Austria) from the local salt mine. They were of various

colour, indicating impurities, but there were also colourless,

optically clear crystals. An optically clear, colourless crystal of

approximate dimensions 2 � 4 � 5 mm was extracted.

However, the purity is not known explicitly and hence data

from the synthetic crystal are used throughout the paper. The

natural sample was only used to verify that effects similar to

those described below occur and hence are sample indepen-

dent, although they may vary in magnitude owing to impurity

effects on the phonons (Caldwell, 1967). Neutron diffraction

data were collected at room temperature using the SXD

single-crystal diffractometer at the ISIS spallation neutron

source (Oxfordshire, UK; Keen et al., 2006) on various occa-

sions on the synthetic crystal with exposures ranging between

four hours and up to two days at single settings or a series of

crystal settings about 20� apart. This crystal was also run at

20 K. The natural specimen was exposed for 12 h in various

orientations but only at room temperature. Reciprocal-space

volumes from these data were obtained using SXD2001

(Gutmann, 2005). A natural crystal was also used for a

complementary high-energy X-ray diffraction experiment on

the beamline BW5 installed at the storage ring DORIS III at

DESY in Hamburg, Germany. These data merely confirmed

the absence of inelastic excitation effects seen in the neutron

data.

2.2. Computation of phonon dispersions using DFT

Electronic structure calculations were performed using the

plane-wave pseudopotential methods as implemented in the

CASTEP code (Clark et al., 2005). The Perdew–Burke–

Ernzerhof (Perdew et al., 1996) generalized gradient approx-

imation functional was used for both the plane-wave calcula-

tion and the generation of pseudopotentials. These were of the

optimized norm-conserving variety (Rappe et al., 1990).

Energies and forces were well converged at a plane-wave

cutoff of 600 eV. A Brillouin zone sampling of 8 � 8 � 8 q

points (60 points when symmetry reduced) was found to be

sufficient to converge energy and atomic forces below 2.2 �

10�8 eV per ion and 1.0 � 10�3 eV Å�1, respectively. Suffi-

cient self-consistent cycles were performed to achieve a

convergence tolerance of 1.0 � 10�10 eV per atom. Geometry

optimizations used the Broyden–Fletcher–Goldfarb–Shanno

algorithm with a force tolerance of 1.0� 10�3 eV Å�1. Phonon

dispersion calculations were performed on the resulting

minimum-energy structures via diagonalization of dynamical

matrices computed using density functional perturbation

theory (DFPT) and linear-response methods (Refson et al.,

2006) on a total of 60 q points. Because our intention was to

enable the program to use output from either CASTEP or

VASP/PHONOPY, similar computations were also carried

out with VASP (Kresse & Hafner, 1994), which equally well

reproduced the diffraction features. Throughout the paper, the

CASTEP calculations are used.

3. Computation of the thermal diffuse scattering

We first establish a coordinate system in the neutron

diffractometer based on spherical coordinates. The location of

each pixel on the detector is characterized by two angles, � and

�, which correspond to the longitude and latitude, respectively,

as illustrated in Fig. 1. The incident neutron beam travels

along ki, which is along the positive y direction, and is scat-

tered into a pixel located at the end-point of kf. Expressed in

the left-handed orthonormal coordinate system (x, y, z) shown

in Fig. 1, the incident and scattered wavevectors read

ki ¼
2�

�i

0

1

0

0
@

1
A; kf ¼

2�

�f

sin � cos �
cos � cos �

sin �

0
@

1
A; ð1Þ
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where �i and �f are the wavelengths (Å) of the incident and

scattered neutrons, respectively. In the case of an elastic

scattering event these wavelengths have the same magnitude,

but they generally differ in the case of inelastic scattering.

Table 1 lists the � and � angles for the 11 detector modules of

the SXD instrument, and they are illustrated graphically in

Fig. 2 for an NaCl data set at room temperature.

The angular ranges for the � and � angles in equation (1) for

the various detectors of the SXD instrument are also given in

Table 1. For a single crystal, the scattering vector Q is

Q ¼ kf � ki ¼ 2�½!�½��½��½UB�

h

k

l

0
@

1
A; ð2Þ

where [!], [�] and [�] denote rotation matrices corresponding

to the angle settings of the goniometer stage, [UB] is the

orientation matrix of the crystal, and h, k, l are Miller indices,

which need not be integer valued (Busing & Levy, 1967). For

phonons it is convenient to decompose h, k, l into an integer

part, where Bragg reflection may occur, and a fractional part

such that the latter reflects the wavevector of the phonon in

the first Brillouin zone.

In TOF neutron scattering, every pixel has a time-of-flight

range associated with it, as a fixed histogram with a given

number of time channels and a fixed minimum and maximum

time. More recently event-mode has become available, where

neutron events are time stamped as they occur without

imposing a histogram. The SXD instrument at ISIS uses the

fixed histogram-mode. The time-of-flight recorded corre-

sponds to the total travel time of the neutron from the source

to the detector pixel and is measured in units of microseconds.

The total travel time ttot can be decomposed into the time from

the source to the sample, ti, and the time from the sample to

the pixel, tf. These components can be related to the wave-

lengths of the incident and scattered neutron:

�i ¼
hti

mnL1

; �f ¼
htf

mnL2

; ð3Þ

where h is the Planck constant, mn is the neutron mass, L1 is

the primary flight path (mm) from source to sample and L2 is

the secondary flight path (mm) from the sample to the pixel.

The energy (meV) of the neutron is related to the wavelength

as follows:

E ¼ h2=2mn�
2: ð4Þ

For calculating the TDS in the instrument geometry, every

pixel and TOF channel is converted to Ef for a given Ei and

the scattering vector Q which is transformed back to h, k, l

using equation (1) and decomposed into an integer and frac-

tional h, k, l in the first Brillouin zone in order to look up the

eigenvectors and phonon frequencies at that point in the DFT

output. We note that the DFT calculations sometimes use a

reduced cell compared with the conventional crystallographic

cell and hence a transformation between these two cells

should also be applied when converting to h, k, l of the DFT

cell.

For calculating first-order TDS it is convenient to define a

one-phonon structure factor (Xu & Chiang, 2005):

FjðQÞ ¼
Pnatoms

k¼1

bkðmkÞ
�1=2 expð�u2

kQ2=2Þ

� ½Q � ekjðQ� BÞ� expð�iQ � RkÞ:

ð5Þ
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Table 1
List of angular ranges (�) for the various detector modules of the SXD
instrument.

Detector module � (centre � range) � (centre � range)

1 142.5 � 23 0 � 23
2 90 � 23 0 � 23
3 37.5 � 23 0 � 23
4 �37.5 � 23 0 � 23
5 �90 � 23 0 � 23
6 �142.5 � 23 0 � 23
7 90 � 37 �45 � 20
8 0 � 37 �45 � 20
9 �90 � 37 �45 � 20
10 �180 � 37 �45 � 20
11 0 � 180 �90 � 25

Figure 2
Illustration of the SXD detector geometry with detector module number
labelling corresponding to Table 1 using an NaCl room-temperature data
set integrated between a time-of-flight of 1500 and 10 000 microseconds.
The coordinate system corresponding to Fig. 1 is superimposed as dotted
grid lines.

Figure 1
Coordinate system used to describe the scattering and instrument
geometry.



The summation extends over all natoms atoms in the unit cell.

Further, mk is the mass of atom k, bk is its coherent scattering

length, u2
k is the mean-square atomic displacement, taken as

isotropic for the case of NaCl, ekjðQ� BÞ is the complex-

valued eigenvector of atom k in the phonon mode j at wave-

vector Q� B in the first Brillouin zone, with B being the

nearest Bragg point, and Rk is the position of atom k in the

unit cell. Here, unit cell refers to the primitive unit cell used by

the DFT program. It should be noted that the form of equa-

tion (1) depends on whether the dynamical matrix in the DFT

program is defined such as to give periodic eigenvectors, as is

the case in CASTEP (Refson et al., 2006), or otherwise, as is

the case in PHONOPY (Togo et al., 2008). The formula given

here applies to CASTEP. For the case of nonperiodic eigen-

vectors see work by Xu & Chiang (2005).

The TDS intensity can be written as follows assuming

energy and momentum conservation are fulfilled:

IjþðQÞ ¼ C
kf

ki

1

!j

jFjðQÞj
2 nð!j;TÞ þ 1
� �

; ð6Þ

Ij�ðQÞ ¼ C
kf

ki

1

!j

jFj Qð Þj2n !j;T
� �

; ð7Þ

with C = N/2 and N being the number of atoms in the sample.

This constant is treated as a scale factor and is set to 1 for

convenience. !j denotes the frequency of the phonon mode j,

and ‘+’ and ‘�’ refer to phonon creation and annihilation,

respectively. The energy integration of the double-differential

cross section [equations (6) and (7)] is effectively carried out

here numerically using many wavelengths and counting the

number of phonons falling into a given Q bin and normalizing

to this. The phonon occupancy at temperature T is given by

nð!j;TÞ ¼
1

expðh- !j=kBTÞ � 1
; ð8Þ

where h- is the reduced Planck constant and kB is the Boltz-

mann constant.

In the quasi-static approximation, (6) and (7) are summed

over all nmodes phonon modes to yield

IðQÞ ¼ const�
Pnmodes

j¼1

ð1=!jÞjFjðQÞj
2 coth

�
h- !j=2kBT

�
: ð9Þ

The constant is treated again as a scale factor and set to one.

Initially a master mapping from pixel coordinates and TOF to

a reciprocal-space map is established, assuming only elastic

events. This master mapping is essentially assigning a given

pixel and TOF channel to a voxel in the reciprocal-space

volume. The recipe to compute inelastic diffraction can be

summarized as follows:

(1) Select a fixed wavelength �i and a fixed energy Ei, and ki.

(2) Compute for all pixels and TOF of the instrument �f, Ef

and kf:
(3) Compute Q ¼ kf � ki as well as ! ¼ Ef � Ei and use the

experimental UB matrix for a given experimental run to

derive h, k, l.

(4) Transform h, k, l from the conventional crystallographic

cell to the DFT cell, if necessary, and decompose it into an

integer part and a fractional part in the first Brillouin zone.

(5) Using the DFT phonons interpolated on a fine grid over

the first Brillouin zone, check whether for the given h, k, l

there is a matching phonon frequency corresponding to !
within a given tolerance in meV, and compute the TDS

intensity using equations (6) or (7) as appropriate and equa-

tion (8). Add this to the reciprocal-space voxel using the

master map.

(6) Repeat until all wavelengths are covered.

This recipe has been coded in OpenCL to enable parallel

computation using multicore CPUs and GPUs.

4. Results

Sections through the (0kl) plane are shown in Fig. 3(a)

employing data from the high-angle, 90� and low-angle banks.

With reference to Fig. 2, which illustrates the detector
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Figure 3
Comparison of the (0kl) layer between experiment and theory. (a)
Experimental data from the synthetic NaCl crystal at room temperature
recorded in one orientation. Contour lines are guides for the eye for the
shape of the Bragg peaks at the base of the peaks. (b) Computation of
phonon excitations and (c) thermal diffuse scattering in the quasi-static
approximation. Views (d), (e), ( f ) correspond to (a), (b), (c) for the same
NaCl specimen in a different orientation as described in the text. The
numbers in (c) and ( f ) refer to the detector bank contributing to this
section and correspond to the labelling in Fig. 2.



numbering used in this paper, the high-angle banks are

detectors 1, 6 and 10, the 90� banks are detectors 2, 5, 7, 9 and

11, and the low-angle banks are detectors 3, 4 and 8, respec-

tively.

Diffuse scattering is concentrated close to the Bragg spots

and takes the appearance of a butterfly shape. However,

comparing the data from the various detectors, it becomes

apparent that the diffuse scattering in the high-angle detectors

near the Bragg spots is geometrically distorted rather than

symmetric as would be expected. Weak arcs join or can be

thought of as joining various neighbouring reflections on

either side of the Bragg peak and these arcs are absent in the

data from the low-angle banks. It should be noted that the

indexing is taken as determined by the software. The assign-

ment of which Miller index is h, k or l merely corresponds to a

permutation of the symbols and is not relevant for comparing

the various data sets. Sections were chosen to provide as large

a coverage as possible. More complete volumetric data sets are

available in the form of movies in the supplementary infor-

mation.

NaCl phonons have been determined experimentally

(Raunio et al., 1969), albeit over a somewhat limited reciprocal

space, and can quite easily be computed using state-of-the-art

density functional codes such as CASTEP and VASP. NaCl is

often included as an example tutorial for learning these

programs, with the resulting phonon dispersion curves closely

matching the experimental ones. Owing to the limited

comparison and the fact that DFT phonons are calculated at

0 K with no adjustable parameters, only qualitative agreement

would be expected in our calculations below. In the absence of

direct phonon excitations in the quasi-static treatment, the

thermal diffuse scattering can be calculated as the sum over all

the phonon branches at a given q point using the formulas (5)

and (9). It should be noted that in all calculations only the

diffuse scattering is computed. Bragg peaks are not included,

as is common practice when modelling diffuse scattering

(Welberry, 2004).

The presence of direct phonon excitations in the data

requires a different treatment. When creating the reciprocal-

space maps, the underlying assumption is that the scattering

events are purely elastic, i.e. no energy transfer occurs and the

initial and final momenta of the scattered neutron have the

same magnitude. Neither of these conditions is fulfilled when

inelastic scattering takes place, which is governed by energy

and momentum conservation.

The computations were carried out in the detector

geometry of the instrument and then mapped to crystal-

lographic reciprocal space as a volumetric data set as outlined

in x3. Of the order of 5600 incident wavelengths were used

from 560 meV down to 1 meV covering the time-of-flight

range measured in the detector. The calculations were

performed on Intel Xeon E5-2687 CPUs comprising effec-

tively 32 cores. Despite parallelization of the codes, the

calculations were rather formidable. Computing a volumetric

data set of 300 � 300 � 300 points took 24 h per detector

module and 5600 wavelengths. Three modules were computed

in parallel and hence it would take of the order of four days to

compute these volumetric data sets for all 11 detector modules

and one orientation/temperature of the crystal. For compar-

ison the TDS patterns took 	100 s per detector module. At

this point, the codes have not been fully optimized for speed

or memory and further gains are possible. For each wave-

length, the phonon spectrum was calculated for cases of both

up and down scattering and all resulting maps were summed.

Only inelastic events arising from exciting phonons from the

ground state and vice versa were considered. Events such as

energy transfer between occupied phonon states, multiphonon

scattering and higher harmonics, i.e. any processes involving

more than one phonon, were not included and did not appear

essential as their contribution is thought to diminish rapidly.

The resulting reciprocal-space maps were not convoluted with

the instrument resolution. The time-of-flight peak shapes are

typically asymmetric along the time-of-flight direction, leading

to a tail at the base of the peak that points towards the origin

of reciprocal space, giving the peaks a tear-drop shape in the

reciprocal-space maps. The footprint of the Bragg peaks is

indicated by contours in Figs. 3, 4 and 5 and also the supple-

mentary movies. These were derived from the three-dimen-

sional profile fitting routine in SXD2001 after transforming

them to reciprocal space and taking a 1% contour level from

the maximum of each peak. The contours were elongated in

the radial direction to better capture the asymmetric tail.

Missing contours on some Bragg peaks are due to the peaks

being too close to the detector edge and the integration not

succeeding on them. However, they can be easily inferred

from the neighbouring Bragg peaks. Trial runs were initially

carried out to obtain a good value for the energy tolerance of
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Figure 4
Comparison of an enlarged area around the 040 reflection between
experiment and theory. (a) Experimental data from the synthetic NaCl
crystal at room temperature recorded in one orientation, (b) computation
of phonon excitations, (c) and (d) correspond to (a) and (b), respectively,
for the rotated crystal. Contours are as in Fig. 3.



1 meV. It can be seen that the results obtained using both the

standard TDS formalism and our method of explicitly taking

into account direct phonon excitations resemble the data

recorded with the low-angle bank, corresponding to detector 3

in Figs. 3(a)–3(c). However, for the 90� [detectors 2 and 9 in

Figs. 3(a)–3(c)] and backscattering data (detectors 1 and 10)

using the latter formalism results in a qualitatively better

agreement compared with the TDS formalism with the

observed diffuse scattering. A more complete illustration of

the inelastic effects as they occur throughout reciprocal space

and away from the (0kl) layer is contained in the movies in the

supplementary information. It was already noted by Willis

(1986) that inelastic effects would best be seen in back-

scattering.

To further ascertain the phonon origin of the scattering

leading to the splitting of diffuse lines, two more experiments

were conducted. In one, the same synthetic specimen was

measured at room temperature in a different orientation by

rotating the crystal around a vertical axis from ! = �150 to

+150� and the diffuse scattering calculated accordingly using

the full phonon dispersions and the quasi-static approach. The

results are shown in Figs. 3(d)–3( f). An enlarged portion

around the 040 reflection is shown in Fig. 4. Again, the diffuse

scattering computed using the inelastic treatment shows better

agreement. This illustrates that the diffuse features change

appearance in the presence of inelastic effects as the crystal is

rotated, whilst no changes are expected when using the quasi-

static approximation. The former is expected, because upon

rotating the crystal a given feature in reciprocal space is

probed with neutrons of a different wavelength and hence

energy. Intuitively, this can be understood from Bragg’s law:

given a constant d spacing, when changing the scattering angle

�, the wavelength has to change. A similar effect, also reported

by Welberry et al. (2003), is seen by comparing Figs. 3(a) and

5(a) in their paper. The angular dependence of this effect close

to the Bragg peaks is discussed rather more formally by

Schofield & Willis (1987). If the diffuse scattering changes

appearance and diffuse lines appear split when measured in

different orientations, this observation can be taken as an

indication that these diffuse features originate from excita-

tions arising in the sample rather than static lattice distortions.

The second experiment again used the synthetic crystal in a

somewhat different orientation compared with the room-

temperature measurement, but this time the crystal was

cooled to 20 K and the calculations carried out using this

temperature and an energy tolerance of 1 meV. It is expected

that this would change the population of the phonons leading

to a more pronounced asymmetry in the intensity distribution

of the features corresponding to the phonon excitation and

annihilation. The results are shown in Fig. 5. The differences

between the calculated patterns using the TDS and our

approach in the (0kl) layer (Figs. 5a–5c) are a bit more subtle

and from a comparison with the experimental data it is not

clear which would be preferred. In comparison, the (4kl) layer

contains stronger diffuse features and again the inelastic

treatment is clearly favoured. The intensity scales are the same

as in Fig. 3. This allows assignment of the arc-like features on

the higher- and lower-Q side of a Bragg peak to phonon

emission and absorption, respectively. The second supple-

mentary movie shows a side-by-side comparison of the 20 K

data and calculations for a volumetric data set. Finally, we note

that the inelastic effects break the symmetry of the diffraction

pattern, and hence averaging of the diffuse scattering using the

Laue symmetry of the crystal structure, as is commonly done

in single-crystal diffuse scattering experiments, should be

avoided in this case.

5. Summary and conclusions

In this paper, we have illustrated the effect of inelastic exci-

tations that can occur in a time-of-flight neutron single-crystal

Laue experiment. The signal arising from one-phonon exci-

tations takes the form of split arcs originating from Bragg

reflections, and this is most pronounced in the data from the

backscattering banks whilst being virtually absent in the low-

angle detectors. The consequence is the breaking of the

symmetry of the diffraction pattern, which means that such

data should not be symmetrized using the Laue symmetry as is
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Figure 5
Comparison of the (0kl) layer between experiment and theory. (a)
Experimental neutron data of the synthetic NaCl crystal at 20 K, (b)
theoretical calculation using inelastic events at a temperature of 20 K, (c)
thermal diffuse scattering in the quasi-static approximation. Views (d),
(e), ( f ) correspond to (a), (b), (c), respectively, but are for the (4kl) layer.



commonly done. Furthermore, recording of the diffuse scat-

tering at a much lower temperature results in a pronounced

asymmetry in the intensities of the diffuse split arcs on the

high- and low-Q side of Bragg reflections due to the change in

the phonon population. The 1/! factor in equations (6) and (7)

makes the acoustic modes the dominant contribution close to

the Bragg reflections. Further away there is a dependence on

the details of the phonon dispersions of a particular material,

e.g. whether branches cross and the relative alignment of the

eigenvectors and Q vector. Close to the h00, 0k0 and 00l

reflections these would be the longitudinal acoustic modes

allowing the derivation of the sound velocity as reported by

Willis et al. (1986). The effects have been computed combining

the TDS formulas for the inelastic scattering with phonon

eigenvectors and frequencies as well as the temperature, and

simulating the experiment in the actual instrument geometry

using many wavelengths as a discretized representation of the

incident white beam. It has been shown that in the case of

neutron diffraction at a pulsed source the quasi-static

approach is occasionally insufficient and the new approach

presented in this paper provides a better way to simulate such

features, despite the phonons being at the origin in both cases,

i.e. the underlying physical cause of the diffuse scattering is the

same. Whilst such effects may be considered a nuisance when

modelling diffuse scattering using a Monte Carlo approach

(Welberry, 2004), they can help in augmenting the information

and classifying diffuse features with respect to their dynamic

or static origin (Welberry et al., 2003). If ab initio phonons, or

magnons in the case of magnetic diffuse scattering, are avail-

able these can be used to aid in the interpretation of such

features and contrasting them with diffuse scattering arising

from other types of disorder. In the case of magnons, polarized

neutrons can further establish their magnetic origin (Brückel

& Schweika, 2002). As more instruments similar to SXD are

now operational at other spallation neutron sources such as

TOPAZ at the Spallation Neutron Source (Oak Ridge

National Laboratory, USA) or SENJU at J-PARC (Ibaraki

Prefecture, Japan), it is anticipated that such inelastic features

will increasingly be observed (Schultz et al., 2014; Tamura et

al., 2012). It can also be used complementarily to neutron

powder inelastic experiments or optical spectroscopies such as

IR, UV–Vis and Raman. The work presented in this paper can

serve as a starting point to address a number of interesting

topics arising from such effects, such as to what extent one can

derive phonon dispersion curves, possibly taking into account

several crystal orientations. This does not appear straightfor-

ward, as there is no simple geometric mapping between

features before and after rotating the crystal. The conditions

for phonon excitations are different, and the patterns are a

superposition of phonon excitation curves measured with

many different wavelengths and, in addition, are dependent

on the instrument geometry. Another point concerns the TDS

correction on Bragg intensities: Schofield & Willis (1987)

noted that in the presence of inelastic excitation effects under

favourable conditions phonon excitations may be forbidden

around certain reflections, leading to Bragg intensities

completely free of TDS, but details of the influence in the

presence of such effects in general have not been worked out

to date. Finally, as further extensions of this work one may

envisage using such effects to fit either model potentials (Holt

et al., 1999) or coupling this with DFT to derive better model

potentials, possibly including other kinds of spectroscopic data

as well. From a theory point of view, DFT has the advantage of

being applicable to different kinds of materials by choice of

the appropriate functional without the need to fit many

parameters to a model potential. The computational effort in

the current work for our method and the DFT calculations on

top of this seem rather discouraging for the time being but this

may change sometime in the future with growing computing

power.
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