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The human ZC3H14 gene, which encodes a ubiquitously
expressed polyadenosine zinc finger RNA-binding protein, is
mutated in an inherited form of autosomal recessive, non-
syndromic intellectual disability. To gain insight into neuro-
logical functions of ZC3H14, we previously developed a
Drosophila melanogaster model of ZC3H14 loss by deleting the
fly ortholog, Nab2. Studies in this invertebrate model revealed
that Nab2 controls final patterns of neuron projection within
fully developed adult brains, but the role of Nab2 during
development of the Drosophila brain is not known. Here, we
identify roles for Nab2 in controlling the dynamic growth of
axons in the developing brain mushroom bodies, which sup-
port olfactory learning and memory, and regulating abundance
of a small fraction of the total brain proteome. The group of
Nab2-regulated brain proteins, identified by quantitative pro-
teomic analysis, includes the microtubule-binding protein
Futsch, the neuronal Ig-family transmembrane protein turtle,
the glial:neuron adhesion protein contactin, the Rac GTPase-
activating protein tumbleweed, and the planar cell polarity
factor Van Gogh, which collectively link Nab2 to the processes
of brain morphogenesis, neuroblast proliferation, circadian
sleep/wake cycles, and synaptic development. Overall, these
data indicate that Nab2 controls the abundance of a subset of
brain proteins during the active process of wiring the pupal
brain mushroom body and thus provide a window into
potentially conserved functions of the Nab2/ZC3H14 RNA-
binding proteins in neurodevelopment.

Neurons develop complex architectures that allow them to
function within massive interconnected networks that trans-
mit electrochemical signals among thousands of other neurons
in a shared circuit. The polarized morphology of neurons is
particularly unique, with each cell containing axons and
dendrite projections that can extend over enormous distances
relative to the size of the cell body. Axonal growth and guid-
ance is largely directed through the growth cone, which re-
sponds to guidance cues to steer the axon (1, 2). This axonal
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guidance is regulated in part by local translation of mRNAs
within the growth cone that modifies the local proteome. This
process of local translation, which relies on predelivery of
mRNAs to the axon tip, facilitates rapid shifts in translation in
response to extracellular cues that would otherwise be limited
by distance from the nucleus and relatively slow speed of
intracellular transport (1–4). The local translation of mRNAs
in distal neuronal projections is critical for proper develop-
ment of the nervous system (1, 3) but poses many biological
challenges, including the need to maintain mRNAs in a
translationally repressed state during transport from the nu-
clear periphery to distal sites where regulated translation must
occur (2, 4). RNA-binding proteins (RBPs) play a major role in
this process (4).

RBPs play critical roles in regulating temporal and spatial
expression of numerous mRNAs that encode proteins with
roles in neuronal function (5). Although RBPs play broadly
important roles in regulating multiple steps in gene expression
shared by all cell types, mutations in genes encoding RBPs
often result in tissue type– or cell type–specific diseases (2, 4,
6–10). A large number of these RBP-linked diseases include
significant neurologic impairments, which likely reflects an
enhanced reliance on post-transcriptional mechanisms to
pattern spatiotemporal gene expression over the long distances
that neurons extend (1, 11, 12). This dependence on RBP-
based mechanisms of gene expression is exemplified by
disease-causing mutations in the genes (4) encoding the fragile
X mental retardation protein (13), survival of motor neuron
protein (14), and TAR DNA-binding protein 43 (11). Muta-
tions in the ZC3H14 gene, which encodes a zinc finger RBP
(zinc finger CysCysCysHis-type 14), cause neurological defects
that broadly resemble those associated with these more
extensively characterized RBPs (4, 15).

The human ZC3H14 gene encodes a ubiquitously expressed
polyadenosine RBP that is lost in a heritable nonsyndromic
form of intellectual disability (15). The Drosophila ZC3H14
homolog, Nab2, has provided an excellent model to probe the
function of ZC3H14/Nab2 in neurons (16–18). Nab2 deletion
in flies results in defects in locomotion and neuromorphology
that are rescued by neuron-specific re-expression of Nab2 (17).
Neuron-specific expression of human ZC3H14 partially res-
cues many of the Nab2 null phenotypes, demonstrating a high
J. Biol. Chem. (2021) 297(1) 100877 1
Biochemistry and Molecular Biology. This is an open access article under the CC

https://doi.org/10.1016/j.jbc.2021.100877
https://orcid.org/0000-0003-4985-2696
Delta:1_given name
Delta:1_surname
https://orcid.org/0000-0001-5287-8454
Delta:1_given name
https://orcid.org/0000-0002-0461-6895
Delta:1_surname
https://orcid.org/0000-0002-9820-5543
mailto:kmoberg@emory.edu
mailto:acorbe2@emory.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbc.2021.100877&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Nab2 regulates the fly brain proteome
level of functional conservation between ZC3H14 and Nab2
(17–19).

Nab2 and its orthologs are found primarily in the nucleus at
the steady state (20–25), but evidence shows that these pro-
teins can shuttle between the nucleus and cytoplasm (22, 23,
26). Within neurons, small pools of Nab2 are detected within
axons and dendrites (15–17, 20, 21), raising the possibility that
Nab2 has both nuclear and cytoplasmic roles in this cell type.
Multiple studies in a variety of model organisms have defined
key roles for Nab2 in pre-mRNA processing events within the
nucleus, including regulation of splicing events (19, 27, 28),
transcript termination (19, 29), and control of poly(A) tail
length (16, 19, 27–29). Additional studies localize Nab2 within
cytoplasmic mRNA ribonucleoprotein particles and imply
roles in translational repression, likely mediated in part
through interactions with fragile X mental retardation protein
(20–22, 27). Ultimately, all of these post-transcriptional reg-
ulatory events are likely to alter levels of key proteins that are
critical for proper neuronal function.

At a morphological level, zygotic deficiency for Nab2 produces
structural defects in the adultDrosophila brainmushroombodies
(MBs) (17), twin neuropil structures that mirror across the brain
midline and are required for olfactory learning and memory (17,
Figure 1. Nab2 is required during pupal development for proper neuro
Drosophila mushroom body depicting cell bodies (dashed lines) projecting axon
across the brain midline (dashed line). B, Fasciclin II (FasII) antibody staining of co
after puparium formation. Confocal images show maximum intensity Z-sta
transverse plane sections (single section) that display midline crossing of β-lob
while Nab2ex3 brains often have thinning or loss of the α-lobes and β-lobes that
fusion of the lobes or occasionally loss of β-lobes. The ellipsoid body (donut-sha
images that mask the β-lobe status, so single section images are included for c
lobe defect (thinning or missing α-lobe) or (right) total β-lobe defect (fusion
procedures. Control (α-lobe = 11 biological and 22 technical replicates; β-lob
logical and 34 technical replicates; β-lobe = 17 biological and technical replic
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30, 31). TheMBsare formedoffive lobes: γ,α,α’,β, andβ’ (Fig. 1A)
(32, 33). In the fully formed adult brain,Nab2 null neurons fail to
project axons into the α-lobe and β-lobe axons inappropriately
cross the midline into the contralateral hemisphere (17, 20).
These findings implicate Nab2 in developmental control of axo-
nogenesis and growth cone guidance. MB development begins in
the larval stage with neuroblast pools that project axons into
nascent γ-lobes (32–36). During the subsequent pupal stage,
these γ-lobes are pruned back, and α- and β-axons begin to
project into their corresponding tracks (32–36). By 24 h after
puparium formation (APF), α- and β-lobes have formed their
initial structure and are being thickenedby new axons that project
through the core of the bundle. This process continues through
�72hAPF, when theα- and β-lobes are fully formed (32, 34). The
effect ofNab2 alleles on final α- and β-lobe structure in the adult
brain implies a role for the Nab2 RBP in axon projection and
guidance during early pupal stages (17, 20, 33–35).

Here, we exploit the predictable time course of brain devel-
opment inDrosophila to perform temporally coupled analysis of
the effect of Nab2 loss on the pupal brain proteome and the
process of axon projection into the forming pupalMBs.We find
that Nab2 loss disrupts α- and β-axon projection in the pupal
MBs coincident with significant increases in the steady-state
morphological patterning of the mushroom bodies. A, diagram of the
s that bundle to make the dorsal (α) and medial (β) lobes that are mirrored
ntrol (C155>Gal4, w1118) and Nab2ex3 (C155>Gal4;;Nab2ex3) brains 48 to 72 h
ck projections (projection) that display full mushroom bodies and single
e axons. Imaging reveals that control rarely shows defects in α- and β-lobes,
project across the midline into the contralateral hemisphere resulting in the
ped structure at the brain midline) is visible in maximum intensity projection
larity. C, quantification of the frequency of control and Nab2ex3 (left) total α-
or missing β-lobes) using the scoring system as described in Experimental
e = 11 biological and technical replicates) and Nab2ex3 (α-lobe = 17 bio-
ates). The asterisk indicates p < 0.05; α-lobe p = 0.002; β-lobe p = 0.007.
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abundance of proteins that are enriched for roles in neuro-
development, neuronal and glial metabolism, axon guidance,
and trans-synaptic signaling. Complementary analysis of
neuron-specific Nab2-overexpressing brains confirms that a
subset of these proteins also change abundance in response to
excess Nab2. In sum, this paired morphological-proteomic
analysis provides strong evidence that Nab2 is required to
control the abundance of proteins with critical roles in
Drosophila neurons that may play conserved roles in humans.

Results

Nab2 loss disrupts axon projection into the forming pupal MBs

Our prior finding that loss of Nab2 impairs MB neuro-
morphology in the mature adult Drosophila brain (4, 6, 7) sug-
gests a role for Nab2 in MB morphogenesis in the preceding
pupal phase. Consistent with this idea, serial optical sectioning
of α-FasII-stained Nab2ex3 (i.e., zygotic null) and control brains
48 to 72 h APF reveals thinning or missing α-lobes and β-lobes
that project and fuse across the midline that are not present to
the same extent in control brains (Fig. 1,A andB). The 48- to 72-
h APF time window coincides with amidpoint in projection and
guidance of α- and β-lobes. At this stage, control brains show
incompletely formed α- and β-lobes with a low degree of defects
(13% and 18%, respectively), whereas Nab2ex3 brains already
display a high rate of missing/thinning α-lobes and fused/
missing β-lobes (both 85%) (Fig. 1C). These data indicate that
Nab2 is required during pupal projection and guidance of the
MB axons, raising the question of how loss of the Nab2 RBP
affects the pupal brain proteome.

Quantitative proteomic analysis of developmentally timed
pupal brains

Nab2 has been identified as a component of cytoplasmic
ribonucleoprotein particles linked to mRNA trafficking and
translation (20, 23, 25) and as a nuclear component of post-
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Figure 2. Study design and analytic approach for quantitative pro
showing dissection window, experimental design, and analysis. The Drosophil
with the dissection time window (23.25–25.5 h APF) in red, left. There we
genotype, control (C155>Gal4, w1118); Nab2 zygotic null (Nab2ex3 = C
C155>Gal4;Nab2EP3716;Nab2ex3), and by sex, resulting in 30 individual pools, c
Tribrid Mass Spectrometer and quantified using MaxQuant against the Droso
analyses. Differential protein abundance of Nab2ex3 and Nab2 oe brains was cal
analyses cross-referencing the Nab2ex3 and Nab2 oe proteomic profiles (green
transcriptional complexes (20, 21) that control mRNA splicing
(22, 27, 28), transcription termination (29), and polyadenylation
(16). To explore howDrosophilaNab2 affects themRNA-derived
proteome in the developing pupal brain, global label-free LC-MS/
MS was performed on dissected 24-h APF brains of control
(C155>Gal4, w1118), mutant Nab2ex3 (C155>Gal4;;Nab2ex3),
and neuron-specific Nab2 overexpression (Nab2 oe)
(C155>Gal4;Nab2EP3716;Nab2ex3) animals as illustrated in
Figure 2. We used 24-h APF brains for proteomic analysis to
capture the developmental window during which MB defects
were observed in the absence of Nab2.

MS was carried out for ten biological replicates for each of
the three genotypes (control, Nab2ex3, and Nab2 oe), with five
male samples and five female samples analyzed separately.
Across brain samples, a total of 4302 proteins were detected.
Unbiased principal component analysis (PCA), which was
performed using summed peptide intensities across all 30
samples per protein, per genotype, reveals three distinct
clusters (Fig. 3A). The 30 plotted samples form three distinct
clusters by genotype, indicating high similarity between male
and female samples within a given genotype. Subsequent
simple linear regression modeling of the data obtained indi-
cated that male and female samples could be combined for
analyses adding power. These combined datasets (n = 10 per
genotype) were used for subsequent analyses.
Proteomic analysis identifies proteins that change in
abundance when Nab2 levels are altered

We first analyzed differences between each experimental
genotype and control. Differentially expressed proteins were
then identified for Nab2ex3 and Nab2 oe genotypes by
comparing each to the control dataset (Nab2ex3 versus control
and Nab2 oe versus control) with protein abundance change
thresholds of log2(experimental/control) ≥0.32 or ≤−0.32 and a
significance threshold of −log10(p-value) ≥1.3.
control

p < 0.05
log2FC > 0.32

Nab2 oeNab2ex3

= differential expression
= cross reference profiles

s/genotype 
 per pool) 

d brains
5 hr apf

rol

2ex3
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Orbitrap Fusion
Tribrid LC-MS/MS

teomic analysis of Drosophila pupal brains. A workflow summary
a life cycle with developmental stage and hours of development depicted
re 600 developmentally timed brain samples that were pooled by the
155>Gal4;;Nab2ex3); and Nab2 overexpression in neurons (Nab2 oe =
enter. Each sample pool was processed, analyzed using an Orbitrap Fusion
phila melanogaster UniProt database, center. Arrows depict the performed
culated with an FDR-adjusted p-value (black arrows) and then second-degree
arrows), right. APF, after puparium formation; FDR, false discovery rate.
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Figure 3. Quantitative proteomic analysis of developmentally timed pupal brains reveals a role for Nab2 in neurodevelopment. A, principal
component analysis (PCA) of proteomic data from 24 h after puparium formation Drosophila brains from ten biological replicates of control, Nab2ex3, and
Nab2 oe flies (control = C155>Gal4, w1118; Nab2ex3 = C155>Gal4;;Nab2ex3; Nab2 oe =C155>Gal4;Nab2EP3716;Nab2ex3) show results cluster based on the
genotype and that Nab2ex3 and Nab2 oe are distinct from control and each other. PCA was performed in RStudio using prcomp (default stats package
v3.5.1), and summed peptide intensities were used as the input. B and C, volcano plots show proteins differentially expressed in each Nab2 genotype
compared with the control [B, Nab2ex3 (346; 188 down and 158 up) and C, Nab2 oe compared with the control (514; 285 down and 229 up)]. Ten biological
replicates (n = 10) per genotype (20 brains per pooled biological replicate) with 30 technical replicates in total. Significance thresholds: log2(≥0.32 and
≤−0.32) and −log10(p-value) ≥1.3; thresholds were based on power calculation and instrumental limits. Protein abundance change (down or up) indicated
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ex3/Cont or Nab2 oe/Cont: gray = not significant, blue ≤ −0.32, red ≥ 0.32). The number of differentially expressed proteins
to total detected proteins is shown atop the graph; 346 of 4302 Nab2ex3 proteins are differentially expressed (B) and 514 of 4302 Nab2 oe proteins are
differentially expressed (C). D–G, the enriched gene ontology terms from FlyEnrichr database for biological process are shown for proteins increased
log2(Nab2

ex3/Cont) ≥0.32 in panel D Nab2ex3 and log2(Nab2 oe/Cont) in panel E Nab2 oe and decreased log2(Nab2
ex3/Cont) ≤−0.32 in panel F Nab2ex3 and

log2(Nab2 oe/Cont) in panel G Nab2 oe. The bars shown correspond to the top ten c-scores (c-score = ln(adj p-val) * z-score) in each dataset (adjusted p-
value <0.05) (74–76).

Nab2 regulates the fly brain proteome
Nab2ex3 versus control

Of the 4302 total proteins detected by LC-MS/MS across all
three groups, 346 proteins (�8% of total proteins detected) are
differentially expressed in the Nab2ex3 brains versus control
brains (Fig. 3B) (Table S1) (full dataset available at Proteo-
meXchange Consortium via PRIDE under the accession
4 J. Biol. Chem. (2021) 297(1) 100877
#PXD022984). Within this group, 158 proteins score ≥0.32
log2 fold change increase (five most elevated: CG1910, Got1,
Ida, Mtp, and Wwox) and 188 proteins score ≤−0.32 log2 fold
change decrease, with Nab2 among the top five most
decreased (Nab2, Pglym78, Mkk4, Cortactin, and Psa)
(Fig. 3B).
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Nab2 oe versus control

Of 4302 total proteins detected, 514 proteins are differen-
tially expressed in Nab2 oe brains relative to control brains
(approximately 12% of total proteins detected). Within this
group, 229 proteins score ≥0.32 log2 fold change increase (five
most elevated: CG1910, Ccp84Ae, Ida, Ccp84Ag, and alien)
and 285 proteins scored ≤−0.32 log2 fold change decrease (five
most decreased: Pglym, Mkk4, cortactin, Gnmt, and CG34280)
(Fig. 3C) (Table S1). Nab2 itself was the 32nd most elevated
protein among the 229 proteins increased in abundance in
Nab2 oe relative to control, confirming the effectiveness of the
neuron-specific expression of the C155>Gal4;Nab2EP3716

genotype.
Gene ontology analysis supports a role for Nab2 in
neurodevelopment

Looking beyond individual protein changes can provide a
broader understanding of the effects of disrupting Nab2.
Therefore, gene ontology (GO) analysis for biological process
enrichment was performed with FlyEnrichr by analyzing the
differentially expressed (Nab2ex3 versus control and Nab2 oe
versus control) protein datasets. This FlyEnrichr analysis re-
veals that proteins increased in the Nab2ex3 differentially
expressed dataset represent biological processes involved in
genome maintenance (e.g., DNA replication initiation, G2

DNA damage checkpoint, centromere complex assembly) and
development (e.g., female germline stem cell) (Fig. 3D), while
proteins increased in the Nab2oe differentially expressed
dataset represent processes related to development (e.g., stri-
ated muscle development, cuticle development) and muscle
organization (e.g., sarcomere organization, myosin filament
assembly) (Fig. 3E). Proteins decreased in the Nab2ex3 differ-
entially expressed and Nab2oe differentially expressed datasets
are strongly enriched for processes linked to neuro-
development, synaptic function, and brain maintenance (Fig. 3,
F and G). Within the Nab2ex3 differentially expressed dataset,
decreased proteins are enriched for the processes of neuroblast
proliferation, circadian sleep/wake cycle, and axonal transport
(Fig. 3F). Within the Nab2oe differentially expressed dataset,
decreased proteins are enriched for the processes of axon
injury response, circadian sleep/wake cycle, and neurotrans-
mitter transport (Fig. 3G).

Comparison of individual protein changes and FlyEnrichr
GO terms between Nab2ex3 differentially expressed (346 pro-
teins) and Nab2oe differentially expressed (514 proteins)
datasets provides some significant insights (Fig. 4, A–C). There
are individual protein changes and GO terms that are shared
between Nab2ex3-DE and Nab2oe-DE, and there are changes
that are exclusive to one or the other dataset (Fig. 4A). Of the
total differentially expressed proteins in both datasets, 23% are
unique to Nab2ex3, 47% are unique to Nab2 oe, and 30% are
shared between the two genotypes (referred to as “shared DE
changes”) (Fig. 4A). Among the last category, in addition to
protein identity, there is significant correlation in protein
expression between Nab2ex3 and Nab2 oe shared DE changes
(Fig. 4B). A total of 195 proteins accounted for the shared
differentially expressed changes between Nab2ex3 and Nab2 oe
brains (Fig. 4A), and these shared changes are highly correlated
with one another (R = 0.86, p < 2.2−16; Fig. 4B). Of the 195
shared proteins, a large fraction (184 of 195, approximately
94%) changes abundance in Nab2ex3 differentially expressed
and Nab2oe differentially expressed datasets in the same di-
rection (Fig. 4B). However, a subset of 11 shared differentially
expressed proteins is altered in opposing directions, for
example, increased in Nab2ex3 differentially expressed and
decreased in Nab2oe differentially expressed or vice versa
(Table 1). Nab2 itself is one of these 11 shared proteins
(Fig. 4B, Table 1). Nab2 is decreased relative to control in
Nab2ex3 brains (log2(−8.36)) and increased relative to control
in Nab2 oe brains (log2(3.94)) (Fig. 4B, Nab2-labeled data
point). Finally, the Nab2ex3 differentially expressed and Nab2oe

differentially expressed datasets each have unique proteins that
may provide insight into previously observed phenotypes in
Nab2 mutants or overexpression systems (15, 17, 20, 28, 37,
38). There are 152 proteins changed exclusively in Nab2ex3

brains relative to control, and 311 proteins changed exclusively
in the Nab2 oe brains relative to control (Fig. 4A). As general
overexpression of Nab2 is more lethal than zygotic Nab2 loss
(15), the 311 changes unique to Nab2 oe may represent
dominant effects of excess Nab2. However, the 152 proteins
that are significantly changed only in Nab2ex3 brains, and not
in the Nab2 oe genotype (which is in the Nab2ex3 background),
are thus rescued by re-expression of WT Nab2 in Nab2ex3

brain neurons. These differences in Nab2ex3 and Nab2 oe
differentially expressed proteins are also reflected in the
FlyEnrichr GO analysis, which reveals 172 terms unique to
Nab2ex3 and 999 unique to Nab2 oe (Fig. 4C). Differences
between Nab2ex3 and Nab2 oe have the potential to provide
insight into the neuroanatomical defects observed in Nab2ex3

pupal brains (Fig. 1B).
As previous studies suggest Nab2 can function as a trans-

lational repressor (20, 21), themost direct Nab2 targets could be
expected to increase in abundance upon loss of Nab2 function
(Nab2ex3). However, factors that decrease in protein abundance,
whether due to direct or indirect effects of Nab2, may also be
phenotypically significant in the Nab2ex3 genotype. To parse
these effects, the unique and shared changes in the Nab2ex3-DE
andNab2oe-DE datasets were further divided into increased and
decreased groups, and then subjected to FlyEnrichr analysis
(Fig. 4C). Protein increases unique to the Nab2ex3 differentially
expressed dataset represent processes involved in metabolism
(Fig. 5A), while increases unique to the Nab2oe differentially
expressed dataset represent processes involved in tissue devel-
opment and organization (Fig. 5B). The increases common to
both Nab2ex3 differentially expressed and Nab2oe differentially
expressed datasets are enriched in processes involved in genome
maintenance and development (Fig. 5C). A chord plot of bio-
logical process GO terms relating to RNA processing and neu-
rodevelopment highlights proteins increased in both datasets
(Fig. 5D). Among these are the glial-neuronal adhesion protein
contactin, the planar cell polarity (PCP) accessory protein A-
kinase anchor protein 200, the condensin subunit gluon, and the
neuroblast regulator Polo (Fig. 5D).
J. Biol. Chem. (2021) 297(1) 100877 5
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A similar analysis of shared and exclusive decreased proteins
between the Nab2ex3 differentially expressed and Nab2oe

differentially expressed datasets (Fig. 6, A–D) reveals that de-
creases unique to Nab2ex3 are enriched for the processes of
neuroblast proliferation, taste perception, and brain morpho-
genesis (Fig. 6A), while unique Nab2 oe decreases are enriched
for the processes of postsynapse assembly, synaptic vesicle
recycling, and sodium ion transport (Fig. 6B). The shared de-
creases between Nab2ex3 and Nab2 oe represent processes
involved in neurodevelopment and brain function (Fig. 6C). A
chord plot of biological process GO terms relating to neuro-
development, behavior, and brain function highlights proteins
decreased in both datasets (Fig. 6D). Among these are the
microtubule-associated protein Futsch, the neuronal Ig-family
transmembrane protein turtle, the axon guidance and PCP
component Vang, and the Rho GEF Trio (Fig. 6D). The pro-
teomic changes revealed here resulting from disruption of the
RBP Nab2 likely correspond in part to changes in mRNA
regulation.
Table 1
Nab2ex3 and Nab2 oe shared proteins that change in different directio

Protein symbol log2(Nab2
ex3/Cont) −log10(p-

Nab2 −8.4 8.3
Hml −1.1 2.0
Mhc −0.8 1.8
LamC 0.3 2.2
CG15369 0.4 2.3
Sgs7 0.8 1.9
Sgs5 0.8 3.1
Sgs3 0.8 1.3
Sgs8 0.9 2.2
Eig71Ed 1.9 2.2
Sls 2.4 6.8
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Shared protein changes between Nab2ex3 flies and
ZC3H14Δex13/Δex13 mice

Comparing the differentially expressed proteins from
Nab2ex3 brains to a previously reported proteomic dataset
generated from the hippocampi of P0 Zc3h14 KO
(Zc3h14Δex13/Δex13) mice (21) reveals six proteomic changes
shared between flies and mice (Fig. 7, A and B). These
conserved changes may give insight into conserved targets of
Nab2/ZC3H14. The transcripts, of these conserved protein
changes, may represent targets of Nab2/ZC3H14 and thus may
share a sequence motif recognized by Nab2/ZC3H14. To test
for shared motifs among this set of conserved candidate target
RNAs, sequence analysis was performed using Multiple
Expectation maximizations for Motif Elicitation (MEME) (39,
40). The transcripts representing the 12 shared proteins, six
from flies and six from mice, were used as input for MEME
analysis (Fig. 7, A and B). MEME discovers novel, ungapped
motifs and identified a 29-bp-long, internal-A-rich motif as the
most enriched among the transcripts (Fig. 7C). This 29-bp
ns

value) Log2(Nab2oe/Cont) −log10(p-value)

3.9 6.2
1.0 3.3
0.3 4.0

−1.8 1.6
−0.5 2.1
−1.7 2.2
−1.2 3.1
−5.3 2.7
−1.5 3.0
−7.3 2.0
−2.6 1.3
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ex3/Cont) in Nab2ex3 is represented by color change (white to red) next to each protein annotation. GO, gene ontology.
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motif (log likelihood ratio 370, E-value 9.0e-37) is over-
represented in these transcripts relative to the random chance
expected across the transcriptome. The shared motif across
these conserved targets suggests this could be a binding
sequence common to fly Nab2 and mouse ZC3H14. The
location of this 29-bp motif varies among the transcripts
analyzed (Fig. 7D, Fig. S1).

Discussion

Here, we examine the role of a conserved RBP in neuro-
development by exploiting a Drosophilamodel. Using carefully
timed brain collections, we find that axon projection and
development of MB α- and β-lobes structure are severely
perturbed in pupal brains, and that coincident with these de-
fects in axonal trajectories, we detect clear changes in a small
fraction (�8%) of the brain proteome. This restricted effect on
a subset of brain proteins is consistent with our recent finding
that Nab2 loss has specific effects on the brain transcriptome
(28) and supports the hypothesis that Nab2 regulates expres-
sion of a subset of neuronal mRNAs and proteins that are
involved in various neurodevelopmental processes, including
axon growth and guidance in the MBs.

Bioinformatic analysis of differentially expressed proteins in
Nab2ex3 mutant brains relative to control samples indicates
that Nab2-regulated proteins are enriched in functional classes
corresponding to axonal development but also suggest a po-
tential role in dendrites. The former link to axonogenesis
matches the observed MB α- and β-lobe defects, but the latter
link to dendritic proteins is more novel and may be conserved.
The murine Nab2 homolog, ZC3H14, localizes to dendritic
shafts and spines and controls dendritic spine morphology in
cultured neurons (21, 41). Nab2-regulated proteins identified
J. Biol. Chem. (2021) 297(1) 100877 7
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in the present study that have predicted dendritic roles include
the PCP factor Vang, the adhesion protein cortactin, the netrin
receptor frazzled, the neuronal Ig-family transmembrane
protein turtle, the fragile-X mental retardation homolog Fmr1,
the Rho GEF trio, the RBP Alan Shepherd/RBMS3, and the
microtubule-associated protein Futsch. Significantly, a prote-
omic dataset generated from the hippocampi of P0 Zc3h14 KO
mice (21) also shows enrichment for the Vang homolog Vang
like-2, in addition to five other neurodevelopmental proteins
that are also detected here as differentially expressed in
Nab2ex3 pupal brains: the oxioreductase Wwox, the PDZ-
domain protein X11Lβ/Apba1, the DnaJ protein CG6693/
Dnajc9, the ARF-GEF factor Sec71/Psd3, and the endosomal
protein Asrij/Ociad1 (Table 1).

Human ZC3H14 expressed in neurons of Nab2ex3 flies
rescues many of the Nab2 null phenotypes (15). This finding
suggests that there should be shared function and RNA targets
8 J. Biol. Chem. (2021) 297(1) 100877
between mammalian ZC3H14 and fly Nab2. The 29-bp, A-rich
motif identified in the transcripts represented by these
conserved protein changes between flies and mice (Fig. 7C)
may represent a target binding motif for Nab2/ZC3H14. The
potential for this A-rich motif to be a Nab2-binding site is
supported by the previous definition of a Nab2-binding motif
in Saccharomyces cerevisiae (A11G and A12) (19, 42, 43). This
A-rich motif identified in the present study by examining
conserved proteomics changes between Nab2ex3 fly brains and
ZC3H14Δex13/Δex13 mouse hippocampi is similar to a recently
identified A-rich motif defined via RNA-IP of fly Nab2 (38).

The evidence to suggest conserved target RNAs suggests
that Nab2/ZC3H14 may have a shared role in regulating key
RNAs involved in neuronal development and signaling. Of
note, fly Nab2 physically and functionally interacts with the
Drosophila Fragile-X mental retardation protein (Fmr1) (20),
which has a key role in postsynaptic, activity-dependent local
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log2(−2.8); and X11Lβ log2(−4.7). C, MEME logo of A-rich motif identified in the 12 transcripts encoding the six fly proteins and the six mouse proteins. MEME
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mRNA translation and is required for normal dendritic
morphology (13).

Our comparison of the effects of Nab2 dosage reveals that
almost one-third of proteomic changes (29%) that occur in
Nab2-deficient pupal brains are shared in brains with neuronal
overexpression of Nab2. Of 195 proteins that change in
abundance in the Nab2ex3 and Nab2 oe datasets, only 11 of
these are inverse changes (i.e., increased in Nab2ex3 and
decreased in Nab2 oe or vice versa) while the other 184 pro-
teins change in the same direction between these two geno-
types (i.e., increased or decreased in both Nab2ex3 and Nab2
oe). A simplistic model would predict that loss and gain of
Nab2 would have the opposite effect on targets, but these data
suggest that excess Nab2 can generate a dominant-negative
effect on some candidate target RNAs, perhaps by seques-
tering Nab2-interacting proteins or blocking access of other
RBPs to sites on RNAs. The 184 shared protein changes that
occur in the same direction can be explained either by a
dominant-negative effect of Nab2 overexpression or by the
nature of the experiment where the Nab2 oe is performed in a
background of Nab2 ex3 flies. As the Nab2 ex3 is a zygotic
allele (15) and Nab2 oe is driven by a neuron-specific promoter
(C155>Gal4), the shared proteomic changes could reflect
changes in non-neuronal cell types. Indeed, the 11 proteins
that show inverse changes in the Nab2ex3 and Nab2 oe datasets
could represent a subset of targets that respond in a linear
fashion to Nab2 dose in neurons. One possibility is that the
mRNAs encoding these proteins represent direct targets of the
Nab2 RBP. Our analysis detects 152 significantly changed
proteins in Nab2ex3 brains that are rescued back to normal
levels in Nab2 oe brains, which parallels the morphological
rescue of Nab2ex3 by Nab2 oe documented in prior studies
(15–17). Among the proteins in this group is tumbleweed,
which is homologous to human RacGap1 and required for
J. Biol. Chem. (2021) 297(1) 100877 9
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normal MB development (44). This putative link from Nab2 to
tumbleweed-based control of MB patterning warrants further
study.

Evidence of interactions between Nab2 and elements of the
miRNA machinery (e.g., argonaute) and ncRNA-processing
factors (e.g., Rm62) detected in our prior work (17, 20) are
also supported by these proteomic analyses. Seven GO terms
relating to miRNA/ncRNA are enriched in the Nab2ex3 dataset
including pre-miRNA processing, production of small RNA
involved in gene silencing by RNA, and ncRNA 3’-end
processing. As miRNAs and ncRNAs can regulate gene
expression (45), some observed effects of Nab2 alleles on the
brain proteome could be indirect, rather than changes to direct
(i.e., bound) Nab2 target RNAs. This model aligns with our
prior work showing that Nab2 physically associates with Fmr1
and coregulates some mRNAs (20). In the adult brain, deple-
tion of Nab2 derepresses a CamKII translation but Nab2
depletion has no effect on futsch (20). In the present study of
pupal brains, Futsch protein is decreased in Nab2ex3 brains
(log2(Nab2

ex3/contactin) = −0.38), whereas CamKII protein
levels are not significantly changed. These stage-specific effects
on the brain proteome raise the possibility that Nab2 in-
teractions are not only target-specific (e.g., as in the case of
alternative splicing) (28) but can also vary across develop-
mental stages.

As noted above, the PCP component Vang and the Vang
murine homolog Vang like-2 are among a small group of
proteins that are differentially expressed in both Drosophila
Nab2ex3 pupal brains and in P0 hippocampi dissected from
Zc3h14 KO mice (21) (Table 1). This finding is particularly
significant, given the strong genetic interactions detected be-
tween an eye-specific Nab2 overexpression system (GMR-
Nab2) and multiple PCP alleles, including an allele of Vang
(37). The PCP pathway plays a conserved role in regulating
axon projection and guidance in multiple higher eukaryotic
species (46–50), including in the Drosophila MBs (51–55).
Thus, the change in levels of Vang, a core PCP component
(56–60), in Nab2ex3 brains could provide an additional, direct
link from Nab2 to a pathway that guides neurodevelopment
including the MB α- and β-lobes.

In aggregate, these data provide a comprehensive view of the
role Nab2 plays in regulating abundance of a specific cohort of
proteins in the developing pupal brain, some of which are likely
to correspond to mRNAs that are bound and regulated by Nab2
in brain neurons. Furthermore, this set of proteins is enriched
for neurodevelopmental factors that could represent evolu-
tionarily conserved targets of this class of zinc finger RBPs.

Experimental procedures

Drosophila genetics

All crosses were maintained in humidified incubators at 25
�C with 12-h light–dark cycles unless otherwise noted. The
Nab2ex3 loss-of-function mutant has been described previously
(15). Alleles and transgenes: Nab2EP3716 (Bloomington (BL)
#17159) and P{GawB}elavC155 (BL #458), and w1118 (‘control’;
BL #3605).
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Brain imaging, statistical analysis, and visualization

Brain dissections were performed as previously described
(17). Briefly, 48 to 72 h APF, brains were dissected in PBS
(1xPBS) at 4 �C, fixed in 4% paraformaldehyde at RT, washed
3× in PBS, and permeabilized in 0.3% PBS-T (1xPBS and 0.3%
Triton X-100). After blocking for 1 h (0.1% PBS-T, 5% normal
goat serum), brains were stained overnight in block + primary
antibodies. After 5× washes in PBS-T, brains were incubated in
block for 1 h, moved into block + secondary antibody for 3 h,
and then washed 5× in PBS-T and mounted in VECTA-
SHIELD (Vector Labs). The anti-FasII monoclonal antibody
1D4 (Developmental Studies Hybridoma Bank) was used at
1:20 dilution. Whole brain anti-FasII images were captured on
a Nikon AR1 HD25 confocal microscope using NIS-Elements
C Imaging software v5.20.01, and maximum intensity pro-
jections were generated in ImageJ Fiji. MB morphological
defects were called as α-lobe thinning or missing and β-lobe
fusion or missing for control (α-lobe = 11 biological and 22
technical replicates; β-lobe = 11 biological and technical rep-
licates) and Nab2ex3 (α-lobe = 17 biological and 34 technical
replicates; β-lobe = 17 biological and technical replicates).
Quantitation of MB phenotypes was performed as previously
described (17).

Global proteomics

Sample collection

Five biological replicates of control, Nab2ex3, and Nab2 oe
for both female and male brains were collected at 23.25 to
25.5 h APF (five pools per condition, 20 brains per pool), lysed
in urea buffer (8 M urea, 100 mM NaHPO4, pH 8.5) with
HALT protease and phosphatase inhibitor (Pierce) and pro-
cessed at the Emory Proteomics Core.

LC-MS/MS

Data acquisition by LC-MS/MS was adapted from a previ-
ously published procedure (61). Derived peptides were resus-
pended in 20 μl of the loading buffer (0.1% TFA). Peptide
mixtures (2 μl) were separated on a self-packed C18 (1.9 μm,
Dr Maisch) fused silica column (25 cm × 75 μM internal
diameter; New Objective) and were monitored on an Orbitrap
Fusion Tribrid Mass Spectrometer (Thermo Fisher Scientific).
Samples were run in 30 technical replicates of five biological
replicates per condition. Elution was performed over a 130-
min gradient at 250 nl/min with buffer B ranging from 3%
to 99% (buffer A: 0.1% formic acid in water, buffer B: 0.1%
formic acid in acetonitrile). The mass spectrometer duty cycle
was programmed to collect at top speed with 3-s cycles. The
full MS scans (300–1500 m/z range, 50-ms maximum injec-
tion time) were collected at a nominal resolution of 120,000 at
200 m/z and automatic gain control target of 200,000 ion
counts in the profile mode. Subsequently, the most intense
ions above an intensity threshold of 5000 were selected for
higher-energy collision dissociation (0.7 m/z isolation window
with no offset, 30% collision energy, 10,000 automatic gain
control target, and 35-ms maximum injection time), and the
MS/MS spectra were acquired in the ion trap. Dynamic
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exclusion was set to exclude previously sequenced precursor
ions for 30 s within a 10-ppm window. Precursor ions with
charge states 2 to 7 were included.

MaxQuant protein identification

Label-free quantification analysis was adapted from a pre-
viously published procedure (62). Data files for the samples
were analyzed using MaxQuant v1.5.2.8 with Thermo Foun-
dation 2.0 for RAW file reading capability. Spectra were
searched using the search engine Andromeda and integrated
into MaxQuant against the Drosophila melanogaster UniProt
database (43,836 target sequences, downloaded in February,
2018). The Andromeda score measures how an acquired
spectrum matches the theoretical fragment masses and is
defined as the −10 logarithmic probability of observing the
given number of matches or more by chance (63). Methionine
oxidation (+15.9949 Da), asparagine and glutamine deamida-
tion (+0.9840 Da), and protein N-terminal acetylation
(+42.0106 Da) were variable modifications (up to five allowed
per peptide); cysteine was assigned as a fixed carbamidomethyl
modification (+57.0215 Da). Only fully tryptic peptides were
considered with up to two missed cleavages in the database
search. A precursor mass tolerance of ±20 ppm was applied
before mass accuracy calibration and ±4.5 ppm after internal
MaxQuant calibration. Other search settings included a
maximum peptide mass of 6000 Da, a minimum peptide
length of six residues, 0.6 Da tolerance for ion trap MS/MS
scans. Cofragmented peptide search was enabled to deconvo-
lute multiplex spectra. The false discovery rates for peptide
spectral matches, proteins, and site decoy fraction were all set
to 1%. Quantification settings were as follows: requantify with
a second peak finding attempt after protein identification has
completed; match MS1 peaks between runs; a 0.7-min reten-
tion time match window was used after an alignment function
was found with a 20-min RT search space. Quantitation of
proteins was performed using summed peptide intensities
given by MaxQuant. The quantitation method only considered
razor plus unique peptides for protein level quantitation.
Statistical analysis and data visualization

Statistical analyses were performed in either RStudio v1.1.453
or GraphPad Prism 8. Statistical analyses for MB phenotypes
and plotting were performed using GraphPad. Significance was
determined using Student’s t test. Graphs reported either
quartile ranks or error bars representing SD. Significance scores
indicated on graphs are *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001.
Statistical analyses for the proteomics, including differential
expression analysis, linear regressionmodeling, and comparison
across genotypes of protein and GO term differences were
performed using RStudio v1.1.453 (64), custom in-house scripts,
and the following packages: ggpubr v0.2 (65), cluster v2.1.0 (66),
and GOplot v1.0.2 (67). Five biological replicates of control,
Nab2ex3, and Nab2 oe for both female and male brains were
collected as five pools per condition with 20 brains per pool
(each pool meets the needed amount of protein for detection on
Orbitrap Fusion Tribrid mass spectrometer). Simple linear
regression modeling was performed to test variability across
biological replicates including covariates of the genotype, sam-
ple ID, and sex. The results of the models did not support the
null hypothesis that the LFQ value of the biological replicates
was dependent on sample ID (F = 0.0888) or sex (F = 0.2135).
Linear modeling was performed in RStudio using lm (default
stats package v3.5.1) (68, 69). Based on modeling results, no
samples were removed, but male and female samples were
combined based on the genotype (n = 10 per genotype). Sub-
sequent analyses consist of ten biological replicates per geno-
type (20 brains per pooled biological replicate) with 30 technical
replicates in total. By applying Benjamini–Hochberg false dis-
covery rate correction to group-wise ANOVA p-values, signif-
icant differentially expressed proteins were determined.
Thresholds for significance of differentially expressed proteins
were set at log2(protein abundance change genotype 1/protein
abundance change genotype 2) ≥0.32 or ≤−0.32 and −log10(p-
value) ≥1.3 (equivalent to individual protein adj p-val < 0.05),
which were based on power calculation and instrumental
detection limits. Protein abundance ratios use LFQ values. In
addition, for quality control, all proteins with fewer than eight
peptide reads were not considered for further analysis. PCAwas
performed in RStudio using prcomp (default stats package
v3.5.1) and summed peptide intensities were used as input
(70–73). Input data came from 24-h APF Drosophila brains
from ten biological replicates of control, Nab2ex3, and Nab2 oe
flies (control = C155>Gal4, w1118; Nab2ex3 = C155>Gal4;;
Nab2ex3; Nab2 oe = C155>Gal4;Nab2EP3716;Nab2ex3). Prcomp
PCA was conducted (k = 3) with mapping of normal confidence
ellipses and post hoc genotype labeling. Ellipses indicate sig-
nificance of clusters; Prcomp default ellipse assumes a multi-
variate t-distribution. GO analyses were performed using
FlyEnrichr (FlyEnrichr:amp.pharm.mssm.edu/FlyEnrichr/;
accessed June 2020) (74–76). FlyEnrichr is aDrosophila-specific
GO enrichment analysis package. Input data were differentially
expressed proteins (Nab2ex3 relative to control;Nab2 oe relative
to control). FlyEnrichr analyses were performed under default
conditions with following term databases used: Coexpression
Predicted GO Biological Process 2018, GO Biological Process
AutoRIF Predicted zscore, and GO Biological Process
AutoRIF. Significance of terms were determined using c-
scores (c-score = ln(adj p-val) * z-score) in each dataset and a
threshold of adjusted p-value <0.05. C-score is the combined
score of the p-value computed using Fisher’s exact test and
the z-score computed to assess the deviation from the ex-
pected rank (74–76). FlyEnrichr corrects for multiple hy-
potheses using the Benjamini–Hochberg procedure with a
threshold of 0.05. MEME analysis conducted with OOPS
(exactly one site per sequence) motif site distribution, with
minimum motif width of six and maximum motif width of 50.
Threshold of significance: E-value < 0.05. E-value estimates
the number of motifs, given the log likelihood ratio, ac-
counting for the width and site count, that one would find in
a set of random sequences. Where appropriate, additional
analysis parameters used default settings. The analysis was
performed under MEME version 5.3.2 (release date: 02/06/
2021) (39, 40).
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Data availability
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partner repository with the dataset identifier PXD022984. All
remaining data are contained within the article.
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information (39, 40).
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