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Abstract: With the advent of microservice-based software architectures, an increasing number of
modern cloud environments and enterprises use operating system level virtualization, which is
often referred to as container infrastructures. Docker Swarm is one of the most popular container
orchestration infrastructures, providing high availability and fault tolerance. Occasionally, discovered
container escape vulnerabilities allow adversaries to execute code on the host operating system and
operate within the cloud infrastructure. We show that Docker Swarm is currently not secured against
misbehaving manager nodes. This allows a high impact, high probability privilege escalation attack,
which we refer to as leadership hijacking, the possibility of which is neglected by the current cloud
security literature. Cloud lateral movement and defense evasion payloads allow an adversary to
leverage the Docker Swarm functionality to control each and every host in the underlying cluster. We
demonstrate an end-to-end attack, in which an adversary with access to an application running on
the cluster achieves full control of the cluster. To reduce the probability of a successful high impact
attack, container orchestration infrastructures must reduce the trust level of participating nodes and,
in particular, incorporate adversary immune leader election algorithms.

Keywords: Docker Swarm; leader election; privilege escalation; defense evasion; cloud

1. Introduction

Securing distributed collaborative multi-agent agent systems is an extremely com-
plex task. Since attackers are not obliged to follow the protocols defined by the system
developers, they may create diverse adverse effects with simple manipulations applied to
non-adversary-resilient protocols. Unfortunately, it is extremely difficult to secure a multi-
agent system if it was not designed with security in mind. A good example of a design
decision that may affect the overall security of a system is the choice of the leader-election
algorithm [1]. In this article, we explore the consequences of the insecure leader election
algorithm used in Docker Swarm.

As Docker gained popularity among cloud service providers, attackers began to
develop various techniques to attack Docker-based applications. Although a great deal of
attention was paid to securing Docker hosts from application level exploits and container
escape few solutions exist for securing against privilege escalation among different hosts
in a Docker cluster. In this work, we show how an attacker with access to a manager host
inside a Docker cluster can escalate their privileges in the cluster. The research scope is
presented in Figure 1.

For example, Raft, a consensus algorithm used to manage a replicated log [2], is used
in Docker Swarm to synchronize the cluster’s state between all managers of the cluster. See
Section 2.2 for details. The logs are replicated using a strong leader, which is elected in the
leader election phase in the algorithm. In case of a leader failure (a crash, network issues,
etc.), the rest of the managers choose a new leader using the Raft algorithm. Despite its
many advantages, Raft is a non-Byzantine algorithm that can allow a malicious insider to
become a leader.
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Figure 1. High-level description of the end-to-end scenario.

In this paper, we highlight a new privilege escalation technique called leadership
hijacking (see Section 4.2). An attacker with access to a manager node in Docker Swarm
can use this technique, which abuses the aforementioned fact that Raft is a non-Byzantine
algorithm, to escalate their cluster privileges and become the cluster leader. By doing so,
the attacker can control all messages and decisions within the cluster.

In addition, we demonstrate two possible malicious payloads expected to be executed
by a typical attacker: a lateral movement payload and a defense evasion payload. The former
utilizes cluster leader privileges and allows the attacker to execute code on every host in
the cluster.

The latter is used by an attacker in order to hide their malicious activity from infras-
tructure management tools.

The rest of this paper is structured as follows: Section 2 reviews the technical back-
ground. In Section 4.2, we introduce the novel privilege escalation technique, called
leadership hijacking. Next, in Section 4.3 we investigate malicious payloads that can be
executed after the privilege escalation. In Section 5, we demonstrate an end-to-end attack
scenario that illustrates the potential security risk and the impact of the investigated attack.
Finally, in Section 6, we discuss possible mitigation and propose countermeasures. Our
final remarks can be found in Section 7.

2. Background
2.1. Docker Swarm

An increasing number of organizations are moving their digital systems to the cloud.
The benefits of cloud servers are easy deployment, high availability, continuous mainte-
nance, system security, and more. From online websites to internal servers and databases,
cloud servers store a lot of sensitive information, making them an attractive target for at-
tackers. As the cost of hardware has decreased, software has become the main performance
bottleneck. In order to fully utilize the available hardware, cloud service providers use
virtualization technology to run different applications on the same hardware.

Until recently, the most advanced solution was virtual machine (VM) technology.
VM technology allows one physical server to run many different virtual servers, all of

them running different operating systems.
From a security point of view, a VM is a good solution, since breaking out of a VM is a

relatively complex task [3].
On the other hand, VMs suffer from significant performance overhead [4]. The main

reason for the reduced performance is the overhead added by the hypervisor to each
hardware operation emulated to the VM.
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Today, many cloud service providers use operating system level virtualization, which
employs isolated user space instances called containers. In contrast to a VM, which
includes its own operating system, containers run under the host’s operating system and
communicate with it directly. During the runtime, a container communicates through a
regular system call interface with the host OS, without any intermediate software.

The architectural difference is illustrated in Figure 2.

Figure 2. Container vs. VM architecture [5].

At the time of this writing, Docker is one of the leading OS virtualization solu-
tions (https://resources.flexera.com/web/media/documents/rightscale-2019-state-of-
the-cloud-report-from-flexera.pdf (accessed on 8 July 2021)). Docker is implemented in
the Go programming language and enables the creation, deployment, and management
of containers on a host computer. A Docker container is a lightweight software unit that
bundles its own tools and libraries. Typically, one container includes one instance of an
application or service, e.g., a Web server, database, or scientific software package.

Docker is a rich ecosystem. One of the main components of this ecosystem is the
Docker daemon. The Docker daemon is software that runs on the host and is responsible
for the creation of images and containers. The Docker daemon can run containers and
create their runtime environment; it can also create a container’s networking interfaces,
mount points, can trigger actions, and execute commands inside a running container. The
Docker daemon implements Docker’s main logic and many of its features.

When deploying an application in a production environment, it is important to ensure
that when a container fails, a new container will start and replace the faulty container.
In addition, it is highly recommended to run several instances of a container for high
availability and load balancing. To address these issues, Docker introduced a feature
called swarm.

Docker Swarm abstracts many Docker hosts to one virtual Docker host. Each host that
participates in the swarm cluster is called a node. Each node can have two roles: manager or
worker. A manager’s job is to keep a replicated state of the cluster. One manager node is
also a leader. The cluster’s leader is responsible for scheduling new containers and services
for the cluster. A worker’s job is to get container tasks from the leader and to actually run
the container. The weakest point in the design of Docker Swarm exploited in this research
is the Raft leader election algorithm.

https://resources.flexera.com/web/media/documents/rightscale-2019-state-of-the-cloud-report-from-flexera.pdf
https://resources.flexera.com/web/media/documents/rightscale-2019-state-of-the-cloud-report-from-flexera.pdf
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2.2. Leader Election

Raft [2] is a consensus algorithm used to manage a replicated log. Raft was de-
signed with the aim of producing an efficient and understandable algorithm which, unlike
Paxos [6–8], would be easy to learn and use in practical systems. Raft was chosen in Docker
Swarm due to its important features:

• Strong leader—Raft uses a stronger form of leadership than other consensus algo-
rithms. For example, log entries only flow from the leader to other servers.

• Leader election—Raft uses randomized timers to elect leaders. This adds only a small
number of mechanisms to the already existing heartbeat mechanism and facilitates
simpler conflict resolution.

• Membership changes—Raft’s mechanism for changing the set of servers in the cluster
uses a new joint consensus approach, which allows the cluster to continue operating
normally during configuration changes.

Raft assumes that all nodes are honest and is not tolerant to malicious (Byzantine)
nodes participating in the leader election process.

Byzantine fault tolerant (BFT) leader election algorithms have existed for a long time.
These algorithms provide the ability to overcome failures in networks where some nodes
are Byzantine. For example, Castro et al. [9,10] described a state machine replication
algorithm able to tolerate Byzantine faults. The algorithm guarantees safety, i.e., each
replicated log is agreed on by all non-faulty nodes.

Bessani et al. [11] introduced an open-source Java library implementing robust BFT
state machine replication. Key features of their implementation include reliability, modular-
ity, and a flexible application programming interface (API). Moreover, their implementation
achieved good performance and can tolerate real world faults.

Castro et al. [9] implemented a BFT library, that can be used to build highly available
systems that tolerate Byzantine faults. Castro et al. used the library to implement a
Byzantine-fault-tolerant NFS file system. They showed that the replicated library can be
even more efficient than the non-replicated version of NFS.

3. Related Work

When attacking a cloud based application, an adversary may exploit classical ap-
plication vulnerabilities, such as SQL injection, buffer overflow, command injection, etc.
Using such vulnerabilities, an attacker can control the victim’s container and data inside it.
Container escape exploits are another technique class; in this case, after successful container
exploitation, the attacker exploits a vulnerability allowing the attacker to escape from the
container to the underlying host. Access to the underlying host grants an attacker access to
data and other containers that run on the compromised host.

There are many products and protocols that try to mitigate the above-mentioned
techniques. First, Docker offers built in protections (https://docs.docker.com/engine/
security/ (accessed on 8 July 2021)), such as protecting the Docker daemon socket and
using data encryption between the Docker daemon and public registries. These protections
harden Docker hosts with a “security in depth” approach. In addition, software, such as
SE-Linux and App-Armor, can help harden container isolation and minimize the attack
surface between containers and the host. Furthermore, Docker offers an image scanning
service (https://docs.docker.com/engine/scan/ (accessed on 8 July 2021)), which can
detect vulnerabilities in Docker images.

In the rest of this section, we overview the previous work on cloud security related to
Docker. Table 1 summarizes the main differences from related works.

Singh et al. [12] demonstrated primary techniques used by attackers to attack cloud
services. There are many potential attack vectors that attackers can use, including: DoS and
DDoS attacks [13,14], malware injection, and side-channel attacks [15–18]. In their study,
Jensen et al. [19] demonstrated an attack on the software of the cloud itself and outlined the
threat of flooding attacks on cloud systems. The authors suggested improving the cloud’s
security by first improving the security of frameworks used in the cloud.

https://docs.docker.com/engine/security/
https://docs.docker.com/engine/security/
https://docs.docker.com/engine/scan/
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In [20], Liu et al. provided an overview of the latest technologies in cloud computing
and discussed how Docker is integrated into it. According to Liu et al., the major difference
between classic VM and containers is that a VM contains not only the application and
its dependencies but also the entire guest operating system. The authors listed rapid
application deployment, portability across machines, lightweight footprint, and minimal
overhead as the main advantages of Docker over traditional VM-based virtualization
software. Moreover, in [21], Marathe et al. overviewed the process of the setup of a
computer cluster based on Docker Swarm and Kubernetes and evaluated each one of
these platforms.

Xavier et al. [22] performed numerous experiments in order to evaluate the perfor-
mance of container-based cloud environments compared to VM-based cloud environments
as well as the trade-off between performance and isolation. They found that the cloud envi-
ronment would benefit from container-based solutions, due to the fact that container-based
solutions achieve near-native performance.

Table 1. Comparison with related works.
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Our paper ! ! ! !

Wu et al., 2020 [23] ! ! !

Linetsky et al., 2020 [24] ! !

Seather 2018 [25] !

Amara et al., 2017 [26] ! !

Kabbe 2017 [27] !

Combe et al., 2016 [28] ! !

Singh & Shrivastava 2012 [12] ! !

Jensen et al., 2008 [13] !

Other research [28] suggested a new attack surface in the Docker environment: namely
indirect adversaries. Unlike a direct adversary, who exploits vulnerabilities in the cluster
directly, an indirect adversary exploits third party appliances (e.g., Docker Hub) in order to
attack Docker’s environment.

An overview of attack types and mitigations in cloud environments is shown in [26].
Among others, Amara et al. mentioned SQL injection as “application level attack”, which
is used to obtain an initial foothold in the cluster. Moreover, they mentioned hypervisor
attacks as “VM level attacks”, which are used for privilege escalation and breaking VM
isolation. In addition, they offered mitigations to each one of the attacks that they describe.

Moreover, Wu et al. [23] evaluated the security of container based cloud services.
They defined metrics upon which they evaluated a number of services. Among others,
they specified “privilege escalation” metric and “container escape” metric. They found
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that, although there are some services that failed in the “privilege escalation” metric, the
“container escape” metric was very high, which limits the impact of the attacker.

In his master’s work, Kabbe [27] compared the security model of containers to
hypervisor-based systems and virtual machines. He compared the outcome of known
attacks (DirtyCow, (https://nvd.nist.gov/vuln/detail/CVE-2016-5195 (accessed on 8 July
2021)) Heartbleed, (https://nvd.nist.gov/vuln/detail/CVE-2014-0160 (accessed on 8 July
2021)) and Shellshock (https://nvd.nist.gov/vuln/detail/CVE-2014-6271 (accessed on
8 July 2021))) in a containerized environment, with the outcome of the same attacks per-
formed in hypervisor/virtual machine environments. He found that containers offered at
least the same amount of security as hypervisor/virtual machine environments.

In his master thesis [25], Seather reviewed the underlying security of the Docker
Swarm infrastructure. Namely, Seather tested many adversarial scenarios, including:
flooding the orchestrator with invalid/corrupted requests, sniffing the network from
within the cluster, impersonating a cluster member, performing man-in-the-middle attacks
between containers within Docker’s internal network, and more. The conclusions of his
thesis were that Docker’s infrastructure is secure, Docker Swarm’s design is good (from a
security point of view), the technology stack used by Docker is immune to known attacks,
and the development community responds quickly to security incidents.

Attacking the cloud’s infrastructure is also shown in [24]. In their work, Linetskyi et
al. showed and utilized a Kubernetes privilege escalation exploit, in which an attacker can
obtain a root privileges inside a container. If the container is misconfigured, this can result
in root privileges to the underlying host. The bug resides in Kubernetes’s management tool,
which stresses the fact that extra care should be made to secure the code of the infrastructure
(in that case, Kubernetes).

4. Taking over the Docker Swarm

In this section we present the new techniques that can be used to take over a Docker
Swarm cluster. We present a full exploit chain starting with existing container escape
exploit. When combined with our leadership hijacking technique it ultimately gives the
attacker cluster leader privileges. Later, we show how our malicious payloads can be used
to completely compromise cloud environment while evading detection.

4.1. High-Level Overview

A high-level overview of the end-to-end attack scenario can be seen in Figure 1. The
attack consists of five major steps:

1. Exploitation of an application vulnerability inside a container, in which an attacker
gains a foothold within the user’s container

2. Container escape exploitation, in which an attacker obtains access to the container’s
underlying host

3. Leadership hijacking, in which an attacker executes the privilege escalation technique
presented in Section 4.2 and obtains cluster leader privileges

4. Lateral movement, in which an attacker executes the lateral movement payload
described in Section 4.3.1 and gains privileged access to all hosts in the cluster

5. Defense evasion, in which an attacker uses the defense evasion payload described in
Section 4.3.2 in order to hide their lateral movement payload from management tools

In order to demonstrate the feasibility and impact of the leadership hijacking technique
and the malicious payloads, we developed an end-to-end attack scenario that shows how
an external attacker can chain exploits seen in the wild with our technique and payloads, in
order to obtain full control of a cluster. A detailed description of this scenario is provided
in Section 5. Steps 1 and 2 are implemented in order to demonstrate the feasibility of our
work, but they are not elaborated upon, since they are out of the scope of our research.

https://nvd.nist.gov/vuln/detail/CVE-2016-5195
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://nvd.nist.gov/vuln/detail/CVE-2014-6271
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4.2. Leadership Hijacking

In this section, we introduce an adversarial technique named leadership hijacking. A
precondition to employing this technique is code execution access to a manager node.

In Section 5, we show how this precondition can be achieved in a production envi-
ronment. From now on, we will refer to the manager host compromised by the attacker as
the attacker’s manager. The main idea of our technique is to repeatedly trigger a leader
election phase until the attacker’s manager becomes the cluster leader.

The technique’s pseudocode is shown in Algorithm 1.

Algorithm 1 Attack pseudo code.

1: @Pre-condition: attacker escaped his container
2: procedure GET-LEADERSHIP
3: if Attacker’s manager is cluster leader then
4: Exit
5: while Attacker’s manager is not leader do
6: leader_id← find out current leader ID
7: demote node with id leader_id
8: wait until a new leader is elected
9: promote node with id leader_id to be manager

10: @Post-condition: attacker’s manager is the leader

As shown in Algorithm 1, the first step of the technique is to identify the current
cluster leader. If the current leader is the attacker’s manger, the technique’s code will exit.
Otherwise, the technique starts a loop.

In each loop iteration, the technique demotes (i.e., removes from the leader role) the
current cluster leader using the Docker’s demotion API [29]. This will cause the cluster to
initiate a leader election algorithm and elect a new leader. The first manager that reaches
timeout proposes itself as the cluster leader. Afterwards, each manager votes in favor of
one manager, and the manager that receives the majority of the votes becomes the new
cluster leader.

In the final step of the iteration, the current cluster leader is identified again. If
the attacker’s manager is the leader, the technique exits. Otherwise, it will continue the
loop until the attacker’s manager becomes the cluster leader. To avoid being detected
through repeated reduction in the number of available managers, the attacker promotes
the demoted node back to the manager role [30] by the end of each leader election.

In order to prove that the technique works in practice, we implemented the pseu-
docode shown in Algorithm 1. We set up a lab to test the implementation, and its architec-
ture is illustrated in Figure 3.

Running our technique’s implementation in the lab was successful: the attacker was
able to escalate privileges in order to become the new cluster leader.

4.2.1. Analysis
Convergence

In each iteration, the technique code demotes the leader. According to the Docker
Swarm documentation, a manager that does not receive the heartbeat from the leader
during the predefined time window assumes that the leader is unavailable and proposes
itself to be the new cluster leader. Since the leader has been demoted, none of the managers
receive the heartbeat from the leader, and hence a new leader election phase will start when
the first manager reaches its timeout.
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Figure 3. Overview of the lab architecture.

Docker Swarm closely follows the specification and implementation of Raft where
the election timeout (the time a node waits before starting a new election) is randomly
drawn from a predefined range. In addition to the election timeout, the probability of every
manager becoming a leader depends on the communication delays and may not be the
same for all managers [31]. Yet, it is safe to assume that in a properly configured swarm,
every manager has a roughly equal probability to be elected.

In the absence of an attacker, each leader election is independent of the previous
iterations of leader election. This stems from the fact that Raft nodes do not maintain any
state concerning the leader election process except being a follower, a candidate, or a leader
(Temporarily, there may be more than one node in a leader state due to collisions, which
are solved by Raft). The attack introduces a slight dependency between iterations due to
the absence of the previous demoted leader in the set of candidates.

The absence of a candidate cannot reduce the probability of the attacker’s manager
being elected. Thus the probability of the attacker’s manager to be elected during each
attack iteration is bounded from below by the probability of the respective manager to be
elected without the attack. The positive probability of the attack success in each iteration
and the ability of the attacker to continue demoting the leaders guarantee the eventual
success of the attack.

The positive probability of the attack success in each iteration and the ability of the
attacker to continue demoting the leaders guarantee the eventual success of the attack. In a
properly configured system where each manager has the same probability to be elected,
the number of managers is the mean number of leader elections until the attack succeeds.
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Advantages

The first advantage of the technique is its simple implementation. In order to prove its
feasibility, we decided to implement the technique in the most simple way possible. After
reviewing the Docker Swarm API, we realized that our technique could be implemented
with repeated calls to demote and promote API [29,30]. This simple implementation makes
our technique stable and reliable.

The second advantage of our technique is its stealthiness. A typical attacker would
like to stay undetected as long as possible while in an engagement. Our technique can be
implemented in many ways; however, some are rather loud, which will increase the chance
to get caught by the system administrators. For example, an attacker can demote all other
managers of the cluster and become the only manger and, hence, the cluster leader. The
obvious issue of this implementation is that the system administrators will quickly notice
that the cluster state has changed. On the other hand, our implementation’s changes to the
cluster state are minimal, which makes it harder to detect the technique.

Limitations

The main limitation of our technique is that it is probabilistic. Although we showed
that our technique completes successfully with probability P→ 1, the number of iterations
in each execution may differ. An unknown number of iterations is particularly problematic
in a real-world scenario.

4.3. Malicious Payloads

In order to illustrate the impact of the leadership hijacking technique, we developed
malicious payloads that use cluster leader privileges and used them to perform some
malicious operations.

Typically, an attacker who has access to one host inside a cluster would like to spread
and obtain a wider foothold in the cluster. Ideally, the attacker would like to have access to
all hosts in the cluster, with high privileges in each host. Moreover, once the attacker con-
trols a cluster they would like to remain undetectable by the users/system administrators
for as long as possible.

To achieve the above goals, the attacker has to find a way to spread inside the cluster
and hide their malicious activity from users and monitoring tools. In this work, we
introduce and develop two types of malicious payloads: a lateral movement payload and a
defense evasion payload. These payloads utilize leader privileges and allow an attacker to
execute high privileged code on every node in the cluster and hide from monitoring tools.

4.3.1. Lateral Movement

Typically, an attacker would like to establish a wide foothold in a cluster, preferably
with high privileges. In this work, we create a payload that enables lateral movement in
the cloud. Using this payload, we demonstrate how an attacker with leader privileges in a
Docker Swarm cluster can execute high privileged code on each host in the cluster.

Due to the fact that, after successful execution of leadership hijacking, the attacker
gains leader privileges, the attacker can control all messages that come out of the leader
node. By hooking the leader’s function responsible for sending messages between the
leader and other nodes, the attacker can change these messages and alter their content.

In order to execute code on other nodes in the cluster, the attacker who is in control of
a leader host can send the victim node a task to run. The attacker instructs the worker to
run a container task with an image controlled by the attacker. As we show in Section 5, the
victim node will execute the container. The container’s image will be a malicious image.

However, the malicious container runs in an isolated environment in the host. As
discussed in Section 3, containers run in a separate namespace from the host. Thus, for
example, a process inside a container cannot sniff the host’s network.

There are many ways to overcome this limitation. In addition to controlling what
image the container will run on each host, the attacker also controls the creation flags of the
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container. Thus, for example, the attacker can mount the main file system of the host to the
container. Then, from inside the container, the attacker can alter the host’s executable files
with a malicious code. In order to obtain highly privileged code execution, the attacker
has to alter a file that is executed by a highly privileged user on the host. When the user
executes the file, the attacker’s malicious code will get executed as well, resulting in high
privileged code execution on the host.

4.3.2. Defense Evasion

With the above lateral movement payload, the attacker can spread and move laterally
by deploying service with malicious image to every host in the cluster. In this subsection,
we show how an attacker can stay undetected in the cluster and hide malicious activity
from the cloud’s management tools. We introduce the cloud defense evasion payload,
which offers rootkit-like functionality in the cloud.

In this subsection, we assume that the attacker is the cluster leader and has a malicious
service in the cluster, which they wish to hide from system administrators, e.g., a malicious
cryptocurrency mining service.

The default Docker Swarm command line offers a rich variety of commands for cluster
administration. In particular, Swarm offers the docker service (https://docs.docker.
com/engine/reference/commandline/service/ (accessed on 8 July 2021)) command for
viewing and updating services that run on the cluster. In order to view services that
run on the cluster, the system administrator can issue the docker service ls (https:
//docs.docker.com/engine/reference/commandline/service_ls/ (accessed on 8 July 2021))
command and view its output. The output includes the service’s name, image, number of
replicas, exposed ports, etc.

In order to obtain this information, the Docker daemon of the host that issued the
command queries the leader of the cluster and retrieves the information from the leader.

However, the attacker is in control of the leader host. Hence, the attacker can hook
the function that returns this information on the leader’s Docker daemon and spoof the
answers. In this way, the attacker can change malicious service’s name, image, ports, or
even the service itself (i.e., the attacker can trick the user into thinking that there is no such
service at all, by removing any information related to the malicious service).

In a similar manner, the system administrator can view what containers are running
for each service. Using docker service ps (https://docs.docker.com/engine/reference/
commandline/service_ps/ (accessed on 8 July 2021)) command, the system administrator
can obtain information about a container’s image, name, state, etc. In a similar way to
the docker service ls command, the issuing host queries the leader host and retrieves
that information. The attacker has access to the leader host, and thus they can alter that
information as well. By doing so, the attacker can trick the system administrator and show
them that a container is running a different image than the real image, for example.

In this way, the attacker can hide malicious activity from Docker’s default tools, which
query the cluster leader to obtain information about objects (running services, containers,
etc.) in the cluster.

5. End-to-End Attack Showcase

To prove that our leadership hijacking technique and malicious payloads are feasible,
we implemented a combined scenario that demonstrates the impact of our technique and
of the payloads. We show the importance of our technique and payloads, as well as that
the initial assumption regarding the attack is reasonable. We provide proof-of-concept
demonstration of an external attacker leveraging an exploit, which has been seen in the
wild together with our leadership hijacking technique and malicious payloads, in order to
ultimately control the entire cluster.

https://docs.docker.com/engine/reference/commandline/service/
https://docs.docker.com/engine/reference/commandline/service/
https://docs.docker.com/engine/reference/commandline/service_ls/
https://docs.docker.com/engine/reference/commandline/service_ls/
https://docs.docker.com/engine/reference/commandline/service_ps/
https://docs.docker.com/engine/reference/commandline/service_ps/
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5.1. Lab Setup

To demonstrate the attack we set up a test-bed that, on the one hand, mimicked a
cloud environment with a Docker Swarm and multiple client’s services; and, on the other
hand, included a typical attackers’ tool set.

Cloud nodes were simulated using virtual machines that ran the Ubuntu guest OS.
We set up a Docker Swarm cluster in which all hosts were both manager and worker hosts.
In addition, an external laptop was used as the attacking machine. The laptop ran the Kali
Linux operating system version 2019.3.

One important tool that we used was the Metasploit framework [32], an open-source
framework supporting various penetration testing tasks.

The lab’s architecture is shown in Figure 4.

Figure 4. Diagram of the attack steps.

5.2. Scenario Overview

In our end-to-end attack scenario, the attacker started on an external laptop with
network access to a Docker container that ran inside a Docker cluster. Ultimately, the
attacker obtained high privileged code execution on each host in the cluster. The scenario
contained five major steps:

1. Container exploitation
2. Container escape exploitation
3. Leadership hijacking
4. Lateral movement
5. Defense evasion

In each step, the attacker expands their foothold in the cluster. An illustration of the
entire scenario and its steps can be seen in Figure 4.

The next subsections explain these steps in greater detail.

5.3. Container Exploitation

First, the attacker needs to have an initial foothold in the cluster. They have network
access to an application that runs on a container in the cluster. In order to obtain an initial
foothold, the attacker exploits a vulnerability in the application.

In this case, the application running inside the container is the Apache Tomcat Web
server, version 8.5.19. The attacker finds a one-day exploit for that Web server in the
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Metasploit framework; after successful exploit completion, the attacker has shell access to
the application’s container.

5.4. Container Escape

After the attacker has successfully exploited the application, the attacker has a shell in
the restricted Docker environment. In order to execute our privilege escalation technique,
the attacker needs to escape from the restricted environment and retrieve a shell on the
underlying host of the container.

The attacker then exploits a vulnerability in the host’s RunC component (https://
www.cvedetails.com/cve/CVE-2019-5736/ (accessed on 8 July 2021)). RunC is a container
runtime that was originally developed as part of Docker, which is responsible for running
and managing new container environments.

A vulnerability resides in RunC version < 1.0-rc6 (which is used by Docker < 18.09.2),
allowing the attacker to overwrite the host’s RunC binary and, thus, achieve code execution
with root privileges on the host.

5.5. Cloud Privilege Escalation

Once the attacker has achieved code execution on Docker’s manager host, they can
execute the leadership hijacking technique and escalate their privileges in order to become
the cluster leader (see Section 4.2 for a description of the leadership hijacking technique).

After the leadership hijacking technique’s successful execution, the attacker obtains
leader privileges in the cluster and, thus, will be able to control all messages that flow
between the leader and other hosts in the cluster.

The result of the technique’s successful execution can be seen in Figure 5. In this figure,
we can see that, before the attack, UBUNTU-HOST3 was the cluster leader, and after the
technique was successfully executed, UBUNTU-HOST1 (which is the attacker’s manager)
obtained the leadership role in the cluster.

Figure 5. Successful attack attempt.

https://www.cvedetails.com/cve/CVE-2019-5736/
https://www.cvedetails.com/cve/CVE-2019-5736/
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5.6. Lateral Movement and Defense Evasion

Armed with leader privileges, the attacker can now control all messages that flow
between the leader and other hosts in the cluster. As described in Sections 4.3.1 and 4.3.2,
the attacker can execute a malicious container on each host in the cluster and hide these
actions from various management tools.

To effectively demonstrate the attack and its potential impact, in our scenario, the
attacker will run a WebShell service, which will run a WebShell container on every host in
the cluster.

The malicious WebShell container provides a root privileged command execution envi-
ronment on the underlying host. The host’s file system is mounted in the container’s /tmp
directory. This allows the attacker to view, modify, and delete the host’s files. Effectively,
the attacker runs a root WebShell on all hosts in the cluster.

The output of the WebShell can be seen in Figure 6. In addition, the figure shows that
the WebShell is executed with high privileges (root).

Figure 6. The output of the malicious WebShell.

The attacker uses the defense evasion functionality described in Section 4.3.2, hooking
the leader’s Docker daemon function, which is responsible for listing the services and
containers of services. By doing so, any service listing request that is made to the cluster
leader will be monitored by the attacker. In cases in which the attacker’s malicious service
is running, the attacker will spoof the answer of the listing and hide their malicious service
image with a benign Alpine image.

As seen in Figure 7, docker service ls command reveals a single running service,
with image "alpine:latest". In addition, it seems that there are no listening ports;
however, in actuality, a container on each host is listening on port 80.

Furthermore, the attacker also hooks the function responsible for listing container
of each service; thus, the output of docker service ps $(docker service ls -q) does
not reveal the real image that each container is actually running. According to Docker’s
default tools, it looks like the service running is a benign alpine service but accessing each
host in port 80 reveals the true “face” of the service.
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Figure 7. Docker’s default tools used for viewing information about malicious services.

6. Discussion

The main advantage of our technique is that, unlike many techniques seen in the wild,
our technique does not exploit any software bugs. A software bug is usually a mistake in a
program’s code, which can lead to an undefined behavior of the program. In most cases,
software bugs are easily fixed. However, our technique does not exploit any programming
errors but rather exploits a design flaw. Unlike programming bugs, logical bugs are much
harder to fix, since, in many scenarios, a large amount of code must be changed, which can
be costly and time-consuming for software developers.

As shown in Section 4.2, our technique exploits the fact that the Raft algorithm is used
to replicate logs in the Docker Swarm environment but is a non-adversarial algorithm. Raft
is a key component of Docker Swarm’s management infrastructure, and it is integrated
into the core logic of Docker Swarm. Replacing the Raft algorithm in Docker Swarm is a
mandatory step to mitigate our proposed technique, since exploits used to escape from
container to host (as shown in Section 5) are very common and relatively easy to find. Since
its a design bug, replacing Raft requires a significant amount of work.

First, Docker’s developers should choose and implement a byzantine fault tolerant
algorithm [9,11] in Go, or find such an implementation as a Go package. The implemen-
tation should be high quality, since it will be deployed to every manager in the cluster.
Next, the developers should modify Docker Swarm’s source code. In Docker Swarm, Raft’s
implementation is encapsulated with a wrapper object. The developers of Docker Swarm
should change the entire wrapper object to encapsulate the new package instead of Raft.

Then, series of tests should be ran to ensure that the new package meets Docker’s
efficiency requirements: both local and network. The new package should not consume a
significant amount of the host’s resources, and should be be efficient in terms of network
activity between hosts in the Docker Swarm. Moreover, the tests should ensure that the
new package works as expected on every operating system supported by Docker Swarm.
Since managers are the most valuable servers in the cluster, any bug in a manager can be
fatal. The tests should ensure, as much as possible, that the new package is bug free and
that it has no unwanted side effects. In any case, replacing the Raft implementation holds a
major risk and may cause a service degradation.

There are some best practices that may block our attack; the most common is to
separate the manager nodes from worker nodes. In such a case, even if the attacker
compromised a worker node, he will not be able to escalate his privileges in the way
we suggested in this article, since the attacker’s node is not part of the managers group.
However, although considered a best practice, this is not the default behavior of Docker
Swarm. We believe that Docker’s developers chose to make the manager node a worker too
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by default in order to not waste expensive computing power. If a node is just a manager, it
will not receive the client container to execute, and hence the cluster’s computing capacity
decreases. Regardless, in this article, we chose to research and exploit systems in their
default state and not delve into best practices.

We offer two strategies in order to effectively mitigate our technique. In the short
term, the technique can be mitigated by detecting and blocking container escape exploits.
As discussed in Section 4.2, the leadership hijacking technique should be executed from
a manager host. We showed in Section 5 that an attacker can gain such access using a
container escape exploit. In the case that the container escape exploit fails, an attacker
cannot launch the technique and, therefore, cannot escalate his privileges in the cluster. In
order to reduce the amount of container escape exploits, Docker can start a bug bounty
program. We believe that this will help Docker patch container escape vulnerabilities
before they can be exploited by real attackers in the wild.

In the long term, we offer to replace the Raft algorithm with a byzantine fault tolerant
algorithm [33,34]. As discussed earlier, Raft is a non adversarial algorithm; hence, an
attacker who is in control of a Raft’s participant can forge and spoof messages. In that way,
the attacker can trick other participants to vote for him in the leader election phase and
become the cluster’s leader. In the case that a BFT algorithm is used, other participants
would not vote for the attacker since the algorithm can tolerate byzantine participants.
In that way, the attacker would not be able to escalate his privileges to cluster leader.
Furthermore, in order to support future changes, the developers of Docker should divide
Docker’s infrastructure from the leader election algorithm. The architecture of Docker
Swarm should be “plug and play”, such that the leader election algorithm is chosen as a
configuration option instead of a source code modification.

7. Conclusions

In this work, we suggested a new attack vector on the Docker Swarm orchestrator.
Our technique demonstrated a new concept in offensive security in which a cluster is
treated as a single unit of processing and an attacker is able to escalate their privileges
in that unit and, thereafter, perform malicious activity on every component of that unit
separately (i.e., every host in the cluster).

We presented a novel technique that, when combined with our proposed payloads,
allows an attacker to gain full control over the Docker Swarm cluster. Since our tech-
nique and payloads do not exploit a software bug but rather exploit a design weakness,
developers should take them into account during the design of their multi-agent systems.
Future research should, on the one hand, explore additional ways in which attackers can
obtain leader privileges in other cloud environments, e.g., Kubernetes, and, on the other
hand, develop methods to detect misbehaving managers, for example, using anomaly
detection techniques.
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