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The role of C5a in acute lung injury induced by highly
pathogenic viral infections

Renxi Wang1, He Xiao1, Renfeng Guo2,3, Yan Li1 and Beifen Shen1

The complement system, an important part of innate immunity, plays a critical role in pathogen clearance. Unregulated complement

activation is likely to play a crucial role in the pathogenesis of acute lung injury (ALI) induced by highly pathogenic virus including

influenza A viruses H5N1, H7N9, and severe acute respiratory syndrome (SARS) coronavirus. In highly pathogenic virus-induced acute

lung diseases, high levels of chemotactic and anaphylatoxic C5a were produced as a result of excessive complement activaiton.

Overproduced C5a displays powerful biological activities in activation of phagocytic cells, generation of oxidants, and inflammatory

sequelae named ‘‘cytokine storm’’, and so on. Blockade of C5a signaling have been implicated in the treatment of ALI induced by highly

pathogenic virus. Herein, we review the literature that links C5a and ALI, and review our understanding of the mechanisms by which

C5a affects ALI during highly pathogenic viral infection. In particular, we discuss the potential of the blockade of C5a signaling to treat

ALI induced by highly pathogenic viruses.
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INTRODUCTION

The epithelium of the lung is vulnerable to damage caused by inhaled

microorganisms and other noxious particles. Many studies suggested

the presence of complement components at the alveolar epithelium,

where inhaled airborne particles and microorganisms are deposited.1-3

In addition, the complement system has been implicated in the

development of acute lung diseases induced by highly pathogenic

viruses including influenza A virus H1N1,4 H5N1,5 H7N9,6 severe

acute respiratory syndrome coronavirus (SARS-Cov),7 Middle East

respiratory syndrome coronavirus (MERS-Cov).8 However, the spe-

cific contributions of complement to lung diseases based on innate

and adaptive immunity are just beginning to emerge. Elucidating the

role of complement-mediated immune regulation in these diseases

will help identify new targets for therapeutic interventions.9

Complement activation leads to the formation of bioactive mole-

cules, including the anaphylatoxins, C3a and C5a, and the lytic mem-

brane attack complex (C5b-9).10 The complement-activated product

C5a is a strong chemoattractant and is involved in the recruitment of

inflammatory cells such as neutrophils, eosinophils, monocytes, and T

lymphocytes, in activation of phagocytic cells and release of granule-

based enzymes and generation of oxidants.10 C5a also displays other

powerful biological activities including inducing ‘‘cytokine storm.’’

On the other hand, blockade of C5a signaling has demonstrated

potential benefits in the treatment of acute lung injury (ALI) induced

by highly pathogenic viruses. In this article, we summarize recent

developments in our understanding of the role of C5a in mediating

aute lung injury induced by highly pathogenic viruses.

ACUTE LUNG INJURY INDUCED BY HIGHLY PATHOGENIC

VIRAL INFECTIONS

Highly pathogenic virus

Due to high mutation rates of viruses, every several years to decades a

highly pathogenic virus emerges. Especially in the recent decades,

there were more than five highly pathogenic viruses such as SARS

coronavirus in 2002, avian influenza A/H5N1 virus in 1997, H1N1

virus in 2009, H7N9 virus in 2013, and MERS coronavirus in 2012. As

exemplified by coronaviruses and influenza viruses, bats and birds are

natural reservoirs for providing viral genes during evolution of new

virus species and viruses for interspecies transmission.11,12 This is the

primary cause of an outbreak by jumping directly from bird to

human.

The novel influenza A virus (IAV) pandemic poses a serious threat to

public health. The data provided by the World Health Organization

demonstrated that the 2009 H1N1 influenza pandemic caused over

18 138 deaths from outbreak to May 30, 2010; highly pathogenic

H5N1 resulted in the deaths of 385 people from 2003 to Feb 27, 2015;

the avian-originating H7N9 has resulted in over 560 human infections,

leading to 135 deaths since emerging in 2013 to Feb 27, 2015.

Except for influenza A virus, coronaviruses such as SARS-CoV and

MERS-CoV represent another serious threat to public health. Between

November 2002 and July 2003, an outbreak of SARS caused an 8096 cases

and 774 deaths according to World Health Organization. MERS-CoV

was a novel human coronavirus that caused outbreaks of a SARS-like

illness in the Middle East in March of 2014.13 In two months, 536 labor-

atory-confirmed cases and 145 deaths have been reported globally.14
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There is an H5N1 vaccine for human use, but there is currently no

H7N9, SARS or MERS vaccine available. Current vaccination strat-

egies are still inadequate at providing protection against epidemic

outbreaks. Thus, it is urgent to explore the mechanism by which highly

pathogenic viruses induce diseases.

Acute lung injury induced by highly pathogenic viral infections

Although highly pathogenic virus infections have the different epi-

demiology, there is a similar rapid progression to acute respiratory

distress syndrome (ARDS).15 For example, histopathological changes

in the lung from patients infected with H5N1 are highly similar to

those of patients with SARS.16 Except for influenza A H5N1 virus,

avian influenza A H7N9 virus in 2013 also caused severe pneumonia.17

Postmortem biopsy of 3 patients infected with H7N9 in 2013 showed

acute diffuse alveolar damage: patient 1, who died 8 days after symp-

tom onset, had intra-alveolar hemorrhage, whereas patients 2 and 3,

who died 11 days after symptom onset, had pulmonary fibro prolif-

erative changes.18

Patients infected with H5N1 develop rapidly progressive pneu-

monia, further resulting in ALI or ARDS.19,20 ALI may be a critical

cause of death in patients with H5N1 infection.19,21 Like H5N1 infec-

tion, H7N9 also causes serious lung pathology. In addition, SARS-

CoV infection caused ALI that may progress to life-threatening

ARDS. MERS-CoV infection resulted in a more severe pneumonia

than SARS-CoV infection.22

Respiratory distress is the most common cause of death in patients

infected with highly pathogenic virus. In terms of therapy, lung

protective ventilation is the cornerstone of supportive care.23

Extracorporeal membrane oxygenation is routinely used in many

centers for the treatment of severe respiratory tract infections.

However, due to few effective treatment options, ALI is often fatal

for patients infected with highly pathogenic viruses. This suggests that

serious lung pathology should be of particular concern.

COMPLEMENT AND C5a ACTIVATION IN ACUTE LUNG INJURY

INDUCED BY HIGHLY PATHOGENIC VIRAL INFECTIONS

After a microorganism infection begins, the host quickly activates the

complement system to clear infected pathogens.24 During the

complement activation, the high levels of products such as C5a are

commonly involved in exacerbated inflammatory reactions that can

cause direct harm to the host following infections.25-27

IAV belongs to the Orthomyxoviridae family with single-stranded

negative-sense RNA virus,28 and has the capacity to activate the

complement system.29 In addition, the avian influenza hemagglutinins

typically bind alpha 2-3 sialic acid receptors, whereas human influenza

hemagglutinins bind alpha 2-6 sialic acid receptors.30 Thus, H5N1

replicates in the lower respiratory tract, then causes complement

activation.31 This suggests that upon influenza infection, the high

levels of C3 and C5 including fragments C3a and C5a are produced.

Complement activation possibly contributes to the observed tissue

damage in severe viral infection.32 Studies demonstrated that ALI in

H5N1-infected mice was caused by excessive complement activation

such as release of C5a.5 Thus, complement activation plays a critical

role in the pathogenesis of virus-induced acute lung injury.

Among the complement activation products, the anaphylatoxin

C5a is one of the most potent inflammatory peptides.33 Increased

levels of C5a were found in bronchoalveolar lavage fluid (BALF) and

serum from patients infected with fatally H1N1 pandemic virus.4,34

C5a had also been found to increase in BALF of mice infected with

highly pathogenic avian influenza H5N1 but not following seasonal

IAV infection.35 On the other hand, BALF from recovered patients

with ARDS demonstrated significantly reduced C5a-dependent che-

motactic activity.36 Thus, C5a might play a critical role in the patho-

genesis of virus-induced acute lung injury.

THE MECHANISMS UNDERLYING C5a-MEDIATED ACUTE

LUNG INJURY INDUCED BY HIGHLY PATHOGENIC

VIRAL INFECTIONS

C5a-mediated inflammatory cells migrate into lung tissue

Compared to normal controls, SARS patients had increased cellularity

of BALF with increased alveolar macrophages.37 Thus, mononuclear

cell infiltration might have an important role in the pathogenesis of

ALI induced by highly pathogenic viruses like SARS.

Anaphylatoxin C5a has been implicated in the pathogenesis of

ARDS by mediating neutrophil attraction, aggregation, activation,

and subsequent pulmonary endothelial damage.38-41 Reversely, C5a-

dependent chemotactic activity is significantly decreased in recovered

patients with ARDS.36 These suggest that C5a-mediated mobilization

and activation of immune cells might be the central events to tissue

injury caused by highly pathogenic viral infections.

Two chemoattractants C5a and interleukin 8 (IL-8) can be synthe-

sized by cells in the lung (e.g., macrophages, epithelial cells, endothe-

lial cells, smooth muscle cells and neutrophils).33 IL-8 levels have also

been found to correlate with neutrophil numbers and the degree of

lung dysfunction.42 C5a could strongly amplify IL-8 expression from

human whole blood cells induced by lipopolysaccharides and other

types of toll-like receptors agonists via extracellular-signal-regulated

kinases 1/2 and p38, but not c-Jun N-terminal kinase.43 The data

suggest that C5a might be a critical effector molecule to mediate

lymphocyte attraction by itself or indirectly by enhancing the produc-

tion of IL-8.

Altogether, C5a-mediated lymphocyte attraction plays a critical role

in the pathogenesis of ALI induced by highly pathogenic viruses.

C5a-mediated neutrophil extracellular traps

Neutrophil extracellular traps (NETs) are primarily composed of

DNA from neutrophils, which bind pathogens with antimicrobial

proteins. NETs are beneficial in antimicrobial defense and can help

fight against invading pathogens. However, an excess of NETs con-

tributes to the pathology of a number of diseases including those of the

lung.44 NETs are found in infection-related ALI models of influenza

virus.45,46

In vitro studies demonstrated that C5a, in association with granulo-

cyte-macrophage colony-stimulating factor, is able to induce the

release of NETs.47 C5a is also able to activate macrophages and

endothelial cells and to promote vascular leakage and the release of

NETs.10 Thus, NETs are induced by C5a during IAV infection and are

associated with alveolar damage in IAV-induced pneumonitis.45

The excess of NET components are potent factors in lung injury.

NET increases the permeability of the alveolar-capillary barrier

by cleaving endothelial actin cytoskeleton, E-cadherin and VE-

cadherin.48 The antimicrobial peptide LL-37 in NET structures pre-

sents cytotoxic and proapoptotic properties towards endothelial and

epithelial cells.49 NET also induces the release of proinflammatory cyto-

kines.48 The data suggest that C5a-mediated neutrophil extracellular

traps aggravate ALI in patients infected with highly pathogenic virus.

C5a-mediated release of reactive oxygen species

C5a is a strong chemoattractant for neutrophils and monocytes; it

then activates these cells to generate oxidative burst with release of
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reactive oxygen species (ROS), especially O2 and H2O2.10 A study

demonstrated that ROS are primary pathogenic molecules in pneu-

monia from mice infected with influenza virus.50 The amount and

duration of exposure of generated ROS, released from respiratory,

immune, and inflammatory cells, determined the extent of lung

damage.50 In lung fibroses, inflammatory cells produce a significantly

greater amount of ROS. Critically, antioxidant treatment significantly

reduces lung damage and mortality in influenza-infected mice.51

These studies demonstrated a critical role of reactive oxygen inter-

mediates (ROIs) in virus-induced epithelial damage.

C5a-C5aR interaction plays a critical role in oxidative burst.52

Interception of C5a/C5aR signaling with a C5aR antagonist signifi-

cantly inhibited oxidative burst in neutrophils induced with E. coli.

Similarly, anti-C5a blocked the oxidative burst in whole blood

induced with Neisseria meningitides.53 Phosphorylation of p47phox is

essential for assembly of NADPH oxidase and the subsequent produc-

tion of O2 and H2O2.10 C5a is a strong activator of mitogen-activated

protein kinase (including p42/p44), which is an important kinase for

p47phox phosphorylation.

Except for directly affecting tissue damage, oxidant production

might also be involved in signal transduction pathways. IL-8 expression

is enhanced by the oxidant sensitive transcription factor nuclear factor-

kB54 activated in the lungs of influenza-infected mice.55 This means

that oxygen-derived free radicals might exert much greater effects on

the pathogenesis of the disease by indirectly inducing other proinflam-

matory mediators. Thus, C5a-mediated oxygen-derived free radicals

are thought to be important events in the pathogenesis of the disease.

C5a-mediated release of histones

Histones are essential regulators of genome function in eukaryotic cells.

The NS1 protein of influenza A H3N2 subtype possesses a histone-like

sequence (histone mimic), and could target the human RNA polymer-

ase-associated factor 1 transcription elongation complex which has a

crucial role in the antiviral response.56 Thus, the virus used NS1

histone mimic to suppress human RNA polymerase-associated factor

1 transcription elongation complex-mediated antiviral response.

Diversely modified histone regulates gene replication, repair and

transcription. After activation with influenza, H3K4me3 reduced

association of interferon I (IFN-I) and IFN-III promoters in dendritic

cells (DCs) to suppress antiviral gene expression.57 In contrast to IFNs,

the association of tumor necrosis factor-a (TNF-a) promoter was not

disturbed.57

Histone can be excreted into cells to reduce intracellular histone to

suppress antiviral gene expression. In the setting of ALI both in humans

and in mice, histone presence has been found in BALF.58 In addition,

when polymorphonuclear leukocytes are incubated in vitro or in vivo

with C5a, neutrophil extracellular histones-contained extracellular traps

(NETs) develop.59 These results suggest that engagement of C5a with

its receptors led to the appearance of extracellular histones in BALF.

Extracellular histones significantly enhance inflammatory response

by inducing nucleotide-binding domain and leucine-rich repeat con-

taining family, pyrin domain containing 3 (NLRP3) inflammasome.58

Furthermore, airway instillation of histones resulted in intense lung

injury and inflammation, together with fibrin clots in pulmonary

veins.60 C5a-mediated release of histones has an important contri-

bution to the pathogenesis of ALI.

C5a-mediated the upregulation of adhesion molecules

The process of leukocyte adhesion to endothelial cells is the first crit-

ical step in neutrophil migration into an area of inflammation.

Adhesion molecules on the surface of endothelial cells have an import-

ant role in inflammatory cell migration. In fact, C5a can regulate the

expression of adhesion molecules.61 C5a directly activates endothelial

cells to upregulate adhesion molecules such as P-selectin. In addition,

C5a and TNF-a cooperate to enhance upregulation of intercellular

adhesion molecule 1 and E-selectin.62 Thus, C5a is an effective medi-

ator in the first step in inflammatory cell migration into the lung.

Adhesion molecules on the surface of inflammatory cells also have

an important role in inflammatory cell migration. In vitro studies

demonstrated upregulation of CD1lb/CD18 expression on neutro-

phils induced by C5a.10 In addition, C5a also induced the expression

of b1 and b2 integrin on blood neutrophils.63,64 Thus, enhanced

adhesive interactions of neutrophils to endothelial cells promote

inflammatory cell migration into inflammatory sites.

The adhesion molecules effectively enhanced pro-inflammatory

cytokines such as TNF-a production by pulmonary macrophages,

which, in turn, promotes the inflammatory response.62 Blockade of

CDllb, CD18, intercellular adhesion molecule 1, or P-selectin signifi-

cantly reduced ALI damage by neutrophil content of the lungs.65 Anti-

C5a might protect tissue injury in various organs by limiting neutro-

phil sequestration through downregulating the expression of adhesion

molecules.10 These studies suggest that C5a-mediated upregulation of

adhesion molecules promotes the inflammatory response.

C5a-mediated adaptive immune response

C5a induces innate immune cells including mast cells, neutrophils,

and macrophages to release cytokines such as IL-12, TNF-a and

macrophage inflammatory proteins-1a.66 IL-12 is a strong activator

of CD81 T cells, whereas TNF-a promotes transendothelial migration

of T cells by up-regulating vascular adhesion molecules and induces

IFN-c expression in T cells.66 These data demonstrate that C5a indir-

ectly induces adaptive immune response by activating innate immune

cells.

Apart from innate immune cells, human DCs67,68 and T cells69 also

express the C5a receptor (C5aR, CD88). Thus, C5a is also a potent

chemoattractant for human T cells,69,70 B cells,71 and DCs.67,68,72,73 In

addition, during the early inflammatory stage of a pathogen infection,

DCs used C5a as a homing signal to take up Ag, and then were primed

for helping T-cell function.74 Thus, C5a induces adaptive immune

response by recruiting for DCs.

CD28 and CD40L on T cells are important signaling for T-cell

proliferation and differentiation induced by interaction of locally-

produced C5a with C5aR on antigen-presenting cells (APCs).

Accordingly, C5a could not activate Cd802/2 Cd862/2 and

Cd402/2 APCs to induce T cell activation.75 The data suggest that

the local interaction of C5a and C5aR on APCs is critical to CD41

T cell proliferation and differentiation.

The binding of the C5a to the C5aR also plays an important role in

CD81 T cell responses.74 CD81 T cell activation during influenza

infection requires C5a, which acts as a chemoattractant for T lympho-

cytes.69,76 Thus, it is conceivable that C5a might elicit CD81 T cell

response upon the input stimuli. Accordingly, C5aR antagonist

reduced the frequency and absolute numbers of flu-specific CD81 T

cells.

C5a-mediated cytokines storm

In patients infected with influenza A virus like H5N1, Inflammatory

cytokines such as IL-1b, IL-8, and IL-6 play a major role in mediating

and amplifying ALI and ARDS by stimulating by chemotaxis C5a.77

C5a induces innate immune cells including mast cells, neutrophils,
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and monocytes/macrophages to release proinflammatory cytokines

such as IL-12, TNF-a and macrophage inflammatory proteins-1a.64

In addition, C5a also stimulates adaptive immune cells such as T and B

cells to release cytokines such as TNF-a, IL-1b, IL-6, and IL-8.78,79

Many cytokines, triggered by highly pathogenic viruses like H5N1,

has been called a ‘‘cytokine storm’’.80 Cytokines were rapidly induced

at 24h post infection with H5N1.81 The pro-inflammatory cytokines

including IL-1b and TNF-a might contribute to the severity of disease

by promoting maximal lung inflammation caused by H5N1 viral

infection.82 Compared to healthy volunteers, H7N9-infected patients

have significantly higher levels of cytokines such as IL-6, IFN-c-indu-

cible protein 10, IL-10, IFN-c, and TNF-a.83 A dangerous cytokine

storm also occurs in SARS. The representative SARS-CoV ssRNAs had

powerful immunostimulatory activities in inducing pro-inflammat-

ory cytokines TNF-a, IL-6 and IL-12.84 Elevated levels of some pro-

inflammatory cytokines including moncyte chemoattractant protein-

1, transforming growth factor-beta1, TNF-a, IL-1, and IL-6, produced

by cells infected by SARS-CoV, might cause ALI.85 In addition, a

cytokine could induce other cytokines to further enhance the pro-

inflammatory response. Take for example, elevated levels of TNF-a

induced other cytokines like IL-6.86 Thus, cytokine storm plays an

important role in ALI.

Anti-TNF-a (etanercept) significantly reduced the damage of

ALI.87 The inhibition of macrophage migration inhibitory factor alle-

viated H5N1 influenza virus pneumonia in murine model by causing a

significant reduction in pulmonary inflammatory cytokines IL-1b, IL-

6 and TNF-a and IFN-c-inducible protein 1088 A widely used antiviral

agent Arbidol hydrochloride efficiently inhibits both H1N1 strains

and diminishes both viral replication and acute inflammation through

suppression of inflammatory cytokines such as IL-1b, IL-6, IL-12, and

TNF-a.89 These studies indicate that blockade of cytokine storm is

effective in treatment of infections with highly pathogenic virus.

C5a-mediated immune paralysis

The severe H7N9 patients were in a state of immune paralysis with

general leukopenia, low antigen-presenting capacity and impaired T

cell response.90 Those suffering fatal infections with H7N9 have par-

ticularly low proportions of peripheral blood T lymphocyte sub-

groups.91 Previous studies have demonstrated that C5a induces

thymocyte apoptosis, which in turn results in decreased number of

T cells in circulation and attendant immunosuppression.10,92 This

suggests that in a striking contrast to neutrophils, thymocytes appar-

ently receive pro-apoptotic signals from C5a.

During SARS-CoV infection, IL-6 and IL-8 induced by C5a inhibits

the T-cell-priming ability of DCs.93 Compared to significant up-regu-

lation of inflammatory chemokines, the SARS-CoV-infected DCs

showed low expression of antiviral cytokines (IFN-a, IFN-b, IFN-c,

and IL-12p40).94 These studies are in accordance with the conclusion

that the N-protein of SARS-CoV induced ALI by resulting in imbal-

ance of pro-inflammatory and anti-inflammatory cytokines.95 Many

inflammatory and anti-viral genes were differentially expressed in

SARS patients. Plenty of pro-inflammatory cytokines such as IL-1,

TNF-a, and IL-8 significantly increased, whereas a number of IFN-

stimulated genes like double-stranded RNA-dependent protein

kinase, interferon-induced guanylate-binding protein-1 and 2,

C-X-C motif chemokine 10 decreased in the acute severe case.96

Like SARS-CoV, MERS-CoV viruses were unable to significantly

stimulate the expression of antiviral cytokines (IFN-a and IFN-b)

but induced comparable levels of TNF-a and IL-6.8 C5a-C5aR inter-

action might potentiate the mitochondrial apoptotic pathway and/or

enhance the expression of proapoptotic factors, such as TNF-a, which

has been linked to thymocyte apoptosis, in turn reducing the express-

ion of antiviral cytokines. This suggests that C5a-mediated immune

paralysis plays a critical role in mediating pathogenic damage in severe

patients infected with highly pathogenic virus like H7N9.

THE EFFECT OF BLOCKING C5a ON ACUTE LUNG INJURY

INDUCED BY HIGHLY PATHOGENIC VIRAL INFECTIONS

To evaluate the effect of C5a blockade, OmCI, a potent arthropod-

derived inhibitor of C5 activation that binds to C5 and prevents release

of C5a by complement activation, was used to treat mice infected with

H1N1 pandemic virus. OmCI significantly inhibited neutrophil and

macrophage infiltration in the airways, NETs formation, death of

leukocytes, lung epithelial injury and overall lung damage.4 The study

suggests that targeting C5a could be a promising approach to reduce

excessive inflammatory reactions associated with the severe forms of

IAV infections.

C5aR was found to be expressed on upper (bronchial) and lower

(alveolar) airway epithelial cells. An adenovirus construct (siRNA)

was used to silence mRNA for C5aR in the lung and resulted in buildup

of polymorphonuclear leukocytes, and lower levels of proinflamma-

tory mediators in bronchoalveolar lavage fluid.97 Antagonism of C5a

receptors also significantly inhibited the development of ARDS

induced by intravenous infusion of cobra venom factor, including

neutrophil migration and bronchoalveolar vascular leakage, blood

pressure alterations, pro-inflammatory cytokines including TNF-a

levels in bronchoalveolar lavage fluid.98 The study indicates that C5a

signaling greatly contributes to inflammation and injury in the lung

and was targeted to treat highly pathogenic virus infection. In addi-

tion, interception of C5a signaling has recently shown promising

beneficial effects in small animal models of ALI/ARDS by reducing

pro-inflammatory cytokines.99

Polyclonal anti-C5a antibody led to significantly reduced inflam-

mation in lungs, alleviating ALI in H5N1-infected mice.5 The study

indicates that inhibition of C5a might be an effective clinical interven-

tion for H5N1-induced ALI. However, studies in knockout mice

demonstrated that C3 was required for protection from influenza

infection, proper viral clearance, and associated with changes in cel-

lular infiltration.35 The data are in accordance with the fact that

complement C5a is the leading mediator of the over-inflammatory

response which induced ALI, whereas the lytic membrane attack com-

plex (C5b-9) provide a protective role in controlling viral infection.

Thus, we developed a neutralized humanized anti-human C5a anti-

body which only blocked C5a effects but did not affect the formation

of C5b-9 membrane attack complex.

In vitro experiments demonstrated that a novel, neutralizing, huma-

nized anti-human C5a antibody blocked the ability of C5a to induce

granulocytes to express CD11b while not affecting the ability of C5b to

form the membrane attack complex. African green monkeys were

inoculated with H7N9 virus and then treated intravenously with

anti-human C5a antibody. Anti-C5a treatment in H7N9-infected

monkeys substantially attenuated ALI by reducing the lung infiltration

of macrophages and neutrophils, and the levels of inflammatory med-

iators.6 The data suggest that humanized anti-human C5a antibody

might provide a potential therapeutic reagent for H7N9-infected

patients.100

The role of C5a in the different viral infections and the effect of C5a

blockade on acute lung injury were described in Table 1. Neutralizing,

humanized anti-human C5a antibodies are being tested on H5N1-

induced ALI in African green monkeys. It is reasonable to speculate
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that the neutralized humanized anti-human C5a antibody would be a

potential therapeutic option for H5N1-infected patients.100

CONCLUDING REMARKS

The complement system, a part of innate immunity, plays a critical

role in host defense against pathogens. Unregulated complement

activation is likely to play a crucial role in the pathogenesis of lung

diseases. The complement-activated product C5a displays powerful

biological activities in the activation of phagocytic cells, generation

of oxidants, release of histones and cytokine storm, and so on.10 In

particular, cytokine storm is believed to be responsible for many of the

deaths during the 1918 influenza pandemic,101 during the SARS epi-

demic in 2003,7 MERS-Cov in 2014,8 and the human deaths from

H1N1,4 H5N1102 and H7N9.6 There is growing awareness that there

are key similarities in the contribution to the cytokine storm and the

manifestation of lung pathology among the chronic respiratory dis-

eases,103 and the cause of death such as bleeding from Ebola virus.104

C5a, as a key trigger to induce cytokine storm, could be an ideal target

for many lung inflammatory diseases, and it would be important to

assess the therapeutic potentials of C5a blockade in human clinical

trials. We have evidence that humanized anti-C5a antibody greatly

reduced lung histopathologic injury, as well as decreased lung infiltra-

tion of macrophages and neutrophils and the levels of pro-inflammat-

ory cytokines including TNF-a in a monkey model of ALI induced by

H7N96 and herbicide, paraquat (Shihui Sun et al, unpublished data).

Thus, it is reasonable to speculate that blockade of C5a with a huma-

nized anti-human C5a antibody would be a potential therapeutic

target for highly pathogenic viral infection-induced acute lung injury.
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